コード例 #1
0
def make_osmexposure(highValueArea,
                     mode="default",
                     country=None,
                     save_path=None,
                     check_plot=1,
                     **kwargs):
    """
    Generate climada-compatiple entity by assigning values to midpoints of
    individual house shapes from OSM query, according to surface area and country.

    Parameters:
        highValueArea (str): absolute path for gdf of building features queried
          from get_features_OSM()
        mode (str): "LitPop" or "default": Default assigns a value of 5400 Chf to
          each m2 of building, LitPop assigns total LitPop value for the region
          proportionally to houses (by base area of house)
        Country (str): ISO3 code or name of country in which entity is located.
          Only if mode = LitPop
        kwargs (dict): arguments for LitPop set_country method

    Returns:
        exp_building (Exposure): (CLIMADA-compatible) with allocated asset values.
          Saved as exposure_buildings_mode_lat_lon.h5

    Example:
        buildings_47_8 = \
        make_osmexposure(save_path + '/OSM_features_47_8.shp',
                         mode="default", save_path = save_path, check_plot=1)
    """
    if save_path is None:
        save_path = Path.cwd()
    elif isinstance(save_path, str):
        save_path = Path(save_path)

    High_Value_Area_gdf = _get_midpoints(highValueArea)

    High_Value_Area_gdf = _assign_values_exposure(High_Value_Area_gdf, mode,
                                                  country, **kwargs)

    # put back into CLIMADA-compatible entity format and save as hdf5 file:
    exp_buildings = Exposures(High_Value_Area_gdf)
    exp_buildings.set_lat_lon()
    exp_buildings.check()
    exp_buildings.write_hdf5(
        save_path.joinpath('exposure_buildings_' + mode + '_' +
                           str(int(min(High_Value_Area_gdf.bounds.miny))) +
                           '_' +
                           str(int(min(High_Value_Area_gdf.bounds.minx))) +
                           '.h5'))

    # plotting
    if check_plot == 1:
        # normal hexagons
        exp_buildings.plot_hexbin(pop_name=True)
        # select the OSM background image from the available ctx.sources
        # - returns connection error, left out for now:
        #fig, ax = exp_buildings.plot_basemap(buffer=30000, url=ctx.sources.OSM_C, cmap='brg')

    return exp_buildings
コード例 #2
0
def get_osmstencil_litpop(bbox, country, mode, highValueArea=None, \
                              save_path=os.getcwd(), check_plot=1, **kwargs):
    """
    Generate climada-compatible exposure by downloading LitPop exposure for a bounding box,
    corrected for centroids which lie inside a certain high-value multipolygon area
    from previous OSM query.

    Parameters:
        bbox (array): List of coordinates in format [South, West, North, East]
        Country (str): ISO3 code or name of country in which bbox is located
        highValueArea (str): path of gdf of high-value area from previous step.
          If empty, searches for cwd/High_Value_Area_lat_lon.shp
        mode (str): mode of re-assigning low-value points to high-value points.
          "nearest", "even", or "proportional"
        kwargs (dict): arguments for LitPop set_country method

    Returns:
        exp_sub_high_exp (Exposure): (CLIMADA-compatible) with re-allocated asset
          values with name exposure_high_lat_lon

    Example:
        exposure_high_47_8 = get_osmstencil_litpop([47.16, 8.0, 47.3, 8.0712],\
                          'CHE',"proportional", highValueArea = \
                          save_path + '/High_Value_Area_47_8.shp' ,\
                          save_path = save_path)
    """
    if highValueArea == None:
        try:
            High_Value_Area_gdf = \
            geopandas.read_file(os.getcwd() + '/High_Value_Area_'+ str(int(bbox[0]))+'_'+
                                str(int(bbox[1]))+".shp")
        except:
            print('No file found of form %s. Please add or specify path.' \
                  %(os.getcwd() + 'High_Value_Area_'+str(int(bbox[0]))+'_'+\
                    str(int(bbox[1]))+".shp"))
    else:
        High_Value_Area_gdf = geopandas.read_file(highValueArea)

    exp_sub = _get_litpop_bbox(country, High_Value_Area_gdf, **kwargs)

    exp_sub_high = _split_exposure_highlow(exp_sub, mode, High_Value_Area_gdf)

    ###### how to "spread" centroids with value to e.g. hexagons? ###########
    # put exp_sub_high back into CLIMADA-compatible exposure format and save as hdf5 file:
    exp_sub_high_exp = Exposures(exp_sub_high)
    exp_sub_high_exp.set_lat_lon()
    exp_sub_high_exp.check()
    exp_sub_high_exp.write_hdf5(save_path + '/exposure_high_'+str(int(bbox[0]))+\
                                '_'+str(int(bbox[1]))+'.h5')
    # plotting
    if check_plot == 1:
        # normal hexagons
        exp_sub_high_exp.plot_hexbin(pop_name=True)
        # select the OSM background image from the available ctx.sources - doesnt work atm
        #fig, ax = exp_sub_high_exp.plot_basemap(buffer=30000, url=ctx.sources.OSM_C, cmap='brg')

    return exp_sub_high_exp
コード例 #3
0
def load_exp_agr(force_new_hdf5_generation, name_hdf5_file, input_folder, haz_real):
    """
    

    Parameters
    ----------
    Load generate Exposure of agriculture if forced or if hdf5 file not present. 
    Otherwise load hdf5 file.

    Parameters
    ----------
    force_new_hdf5_generation : dict of bool
        contains bool wether new Exposure should be forcefully generated.
    name_hdf5_file : str
        name of hdf5 file from wich Exposure is loaded.
    input_folder : str
        Path to input folder containing hdf5 file.
    haz_real : climada.hazard.base.Hazard
        CLIMADA hazard.

    Returns
    -------
    exp_infr : climada.entity.exposures.base.Exposures
        CLIMADA Exposure of Exposure.

    """
    file1 = Path(input_folder + "/" + name_hdf5_file["exp_agr"])
    file2 = Path(input_folder + "/" + "exp_agr_no_centr.hdf5")
    if not file2.exists() and not file1.exists():
        print("Please use import_agrar_exposure to create the hdf5 file!" + 
              " and move it to the input folder")
        sys.exit()
    elif force_new_hdf5_generation["exp_agr"]: #be carefull, this step will take ages when you do both at once
        if not file2.exists():
                    print("Please use import_agrar_exposure to create the hdf5 file!" + 
                          " and move it to the input folder")
                    sys.exit()
        exp_agr = Exposures()
        exp_agr.read_hdf5(input_folder + "/exp_agr_no_centr.hdf5")
    
        exp_agr.check()
        exp_agr.assign_centroids(haz_real, method = "NN", distance = "haversine", threshold = 2)
        exp_agr.check()
        exp_agr.write_hdf5(input_folder + "/exp_agr.hdf5")
    
    else:
        #Agrar Exposure    
        exp_agr = Exposures()
        exp_agr.read_hdf5(input_folder + "/exp_agr.hdf5")
        exp_agr.check()
    return exp_agr
コード例 #4
0
        exposure_tmp = Exposures()
        if os.path.exists(os.path.join(RES_DIR, '%s_%ias.tiff' %(fi[0:-4]+fadd, res_target))):
            print('\n' + '\x1b[1;03;30;30m' + 'TIFF exists already, skipping: %s_%ias.tiff' %(fi[0:-4], res_target) + '\x1b[0m')

            continue
        else:
            print('\n' + '\x1b[1;03;30;30m' + 'Loading: %s ...' %(fi) + '\x1b[0m')
            exposure_tmp = exposure_tmp.from_csv(os.path.join(ENTITY_DIR, fi), index_col=None)

            if np.isnan(exposure_tmp.value.max()):
                continue
            exposure_tmp = Exposures(exposure_tmp)
            exposure_tmp.set_geometry_points() # set geometry attribute (shapely Points) from GeoDataFrame from latitude and longitude
            exposure_tmp.check() # puts metadata that has not been assigned        
            if write_to_hdf5:
                exposure_tmp.write_hdf5(os.path.join(ENTITY_DIR_HDF5, '%s.hdf5' %(fi[0:-4]+fadd)))
            if write_to_tiff:
                if fix_zeros:
                    exposure_tmp.value[exposure_tmp.value<1] = 1
                # exposure_tmp.plot_raster(res=RES_ARCSEC/3600, save_tiff=\
                #                          os.path.join(RES_DIR, '%s_%ias.tiff' %(fi[0:-4], RES_ARCSEC)))
                exposure_tmp.plot_raster(res=RES_ARCSEC/3600, raster_res=res_target/3600, save_tiff=\
                                         os.path.join(RES_DIR, '%s_%ias.tiff' %(fi[0:-4]+fadd, res_target)))

"""COMBINE AND PLOT EXPOSURE AT TARGET RESOLUTION:"""
print('\n' + '\x1b[1;03;30;30m' + 'COMBINE AND PLOT EXPOSURE AT TARGET RESOLUTION' + '\x1b[0m')
for res_target in res_targets:
    exposure_data = Exposures()
    for idx, fi in enumerate(files):
        exposure_tmp = Exposures()
        if try_read_from_tiff and os.path.exists(os.path.join(RES_DIR, '%s_%ias.tiff' %(fi[0:-4]+fadd, res_target))):
コード例 #5
0
avg_value_ackerbau = value_ackerbau / exp_hail_agr[exp_hail_agr["region_id"] ==
                                                   221].shape[0]
a = exp_hail_agr[exp_hail_agr["region_id"] == 201].assign(value=avg_value_obst)
b = exp_hail_agr[exp_hail_agr["region_id"] == 202].assign(
    value=avg_value_rebbau)
c = exp_hail_agr[exp_hail_agr["region_id"] == 221].assign(
    value=avg_value_ackerbau)

exp_hail_agr = pd.concat([a, b, c]).sort_index()
exp_hail_agr = Exposures(exp_hail_agr)

exp_hail_agr.loc[exp_hail_agr["region_id"] == 201, "if_"] = int(3)
exp_hail_agr.loc[exp_hail_agr["region_id"] == 202, "if_"] = int(2)
exp_hail_agr.loc[exp_hail_agr["region_id"] == 221, "if_"] = int(4)
exp_hail_agr = exp_hail_agr.rename(columns={'if_': 'if_HL'})

exp_hail_agr.check()
exp_hail_agr.head()
exp_hail_agr.value_unit = "CHF"
exp_hail_agr.write_hdf5(input_folder + "/exp_agr_no_centr.hdf5")

test = exp_hail_agr[exp_hail_agr["value"] > 0]

plt.scatter(test[test["region_id"].isin([221, 222, 223])]["longitude"],
            test[test["region_id"].isin([221, 222, 223])]["latitude"])
plt.scatter(test[test["region_id"] == 201]["longitude"],
            test[test["region_id"] == 201]["latitude"])
plt.scatter(test[test["region_id"] == 202]["longitude"],
            test[test["region_id"] == 202]["latitude"])
plt.legend(labels=["Acker - Futterbau", "Obstbau", "Rebbau"])