コード例 #1
0
def filter_subj_bids(df_files, location, bids_ids):
    import clinica.iotools.bids_utils as bids

    # Depending of the file that needs to be open, identify and
    # do needed preprocessing on the column that contains the
    # subjects ids
    bids_ids = [x[8:] for x in bids_ids if "sub-ADNI" in x]
    if location == "ADNIMERGE.csv":
        df_files["RID"] = df_files["PTID"].apply(
            lambda x: bids.remove_space_and_symbols(x)[4:])
    else:
        df_files["RID"] = df_files["RID"].apply(lambda x: pad_id(x))
    return df_files.loc[df_files["RID"].isin([x[4:] for x in bids_ids])]
コード例 #2
0
def create_adni_sessions_dict(bids_ids, clinic_specs_path, clinical_data_dir,
                              bids_subjs_paths):
    """
    Extract all the data required for the sessions files and organize them in a
    dictionary

    Args: bids_ids: clinic_specs_path: path to the specifications for
    converting the clinical data clinical_data_dir: path to the clinical data
    folder bids_subjs_paths: a list with the path to all the BIDS subjects

    Returns:

    """
    import pandas as pd
    from os import path
    from datetime import datetime
    import clinica.iotools.bids_utils as bids
    from clinica.utils.stream import cprint

    # Load data
    sessions = pd.read_excel(clinic_specs_path, sheetname='sessions.tsv')
    sessions_fields = sessions['ADNI']
    field_location = sessions['ADNI location']
    sessions_fields_bids = sessions['BIDS CLINICA']
    fields_dataset = []
    previous_location = ''
    fields_bids = []
    sessions_dict = {}

    for i in range(0, len(sessions_fields)):
        if not pd.isnull(sessions_fields[i]):
            fields_bids.append(sessions_fields_bids[i])
            fields_dataset.append(sessions_fields[i])

    sessions_df = pd.DataFrame(columns=fields_bids)

    for i in range(0, len(field_location)):
        # If the i-th field is available
        if (not pd.isnull(field_location[i])) and path.exists(
                path.join(clinical_data_dir, field_location[i].split('/')[0])):
            # Load the file
            tmp = field_location[i].split('/')
            location = tmp[0]
            if location != previous_location:
                previous_location = location
                file_to_read_path = path.join(clinical_data_dir, location)
                cprint('\tReading clinical data file : ' + location)
                file_to_read = pd.read_csv(file_to_read_path, dtype=str)

                for r in range(0, len(file_to_read.values)):
                    row = file_to_read.iloc[r]

                    # Depending of the file that needs to be open, identify and
                    # do needed preprocessing on the column that contains the
                    # subjects ids
                    if location == 'ADNIMERGE.csv':
                        id_ref = 'PTID'
                        # What was the meaning of this line ?
                        # subj_id = row[id_ref.decode('utf-8')]
                        subj_id = row[id_ref]
                        subj_id = bids.remove_space_and_symbols(subj_id)
                    else:
                        id_ref = 'RID'
                        rid = str(row[id_ref])

                        # Fill the rid with the needed number of zero
                        if 4 - len(rid) > 0:
                            zeros_to_add = 4 - len(rid)
                            subj_id = '0' * zeros_to_add + rid
                        else:
                            subj_id = rid

                    # Extract the BIDS subject id related with the original
                    # subject id
                    subj_bids = [s for s in bids_ids if subj_id in s]

                    if len(subj_bids) == 0:
                        pass
                    elif len(subj_bids) > 1:
                        raise (
                            'Error: multiple subjects found for the same RID')
                    else:
                        subj_bids = subj_bids[0]
                        for j in range(0, len(sessions_fields)):
                            # If the i-th field is available
                            if not pd.isnull(sessions_fields[j]):
                                # Extract only the fields related to the current file opened
                                if location in field_location[i]:
                                    if location == 'ADAS_ADNIGO2.csv' or location == 'DXSUM_PDXCONV_ADNIALL.csv' \
                                            or location == 'CDR.csv' or location == 'NEUROBAT.csv':
                                        if type(row['VISCODE2']) == float:
                                            continue
                                        visit_id = row['VISCODE2']
                                        # Convert sc to bl
                                        if visit_id == 'sc':
                                            visit_id = 'bl'
                                    else:
                                        visit_id = row['VISCODE']
                                    try:
                                        field_value = row[sessions_fields[j]]
                                        bids_field_name = sessions_fields_bids[
                                            j]

                                        # Calculating age from ADNIMERGE
                                        if (sessions_fields[j] == "AGE") and (
                                                visit_id != "bl"):
                                            examdate = datetime.strptime(
                                                row["EXAMDATE"], "%Y-%m-%d")
                                            examdate_bl = datetime.strptime(
                                                row["EXAMDATE_bl"], "%Y-%m-%d")
                                            delta = examdate - examdate_bl

                                            # Adding time passed since bl to patient's age in current visit
                                            field_value = round(
                                                float(field_value) +
                                                (delta.days / 365.25), 1)

                                        sessions_dict = update_sessions_dict(
                                            sessions_dict, subj_bids, visit_id,
                                            field_value, bids_field_name)
                                    except KeyError:
                                        pass
                                        # cprint('Field value ' + Fore.RED + sessions_fields[j] + Fore.RESET +
                                        # ' could not be added to sessions.tsv')
            else:
                continue

    # Write the sessions dictionary created in several tsv files
    write_adni_sessions_tsv(sessions_dict, fields_bids, bids_subjs_paths)
コード例 #3
0
def generate_subject_files(subj, images, dest_dir, mod_to_update):
    import clinica.iotools.bids_utils as bids
    import clinica.iotools.converters.adni_to_bids.adni_utils as adni_utils
    from clinica.utils.stream import cprint
    import subprocess
    import os
    import shutil
    from os import path
    from glob import glob

    global counter
    alpha_id = bids.remove_space_and_symbols(subj)
    bids_id = 'sub-ADNI' + alpha_id
    # Extract the list of sessions available from the dwi paths files, removing the duplicates
    sess_list = images[(images['Subject_ID'] == subj)]['VISCODE'].unique()

    if not os.path.exists(path.join(dest_dir, bids_id)):
        os.mkdir(path.join(dest_dir, bids_id))

    # For each session available, create the folder if doesn't exist and convert the files
    for ses in sess_list:
        with counter.get_lock():
            counter.value += 1
        cprint('[DWI] Processing subject ' + str(subj) + ' - session ' + ses +
               ', ' + str(counter.value) + ' / ' + str(len(images)))
        ses_bids = adni_utils.viscode_to_session(ses)
        bids_ses_id = 'ses-' + ses_bids
        bids_file_name = bids_id + '_ses-' + ses_bids
        ses_path = path.join(dest_dir, bids_id, bids_ses_id)

        if mod_to_update:
            if os.path.exists(path.join(ses_path, 'dwi')):
                shutil.rmtree(path.join(ses_path, 'dwi'))

        if not os.path.exists(ses_path):
            os.mkdir(ses_path)

        dwi_info = images[(images['Subject_ID'] == subj)
                          & (images['VISCODE'] == ses)]

        # For the same subject, same session there could be multiple dwi with different acq label
        for j in range(len(dwi_info)):
            dwi_subj = dwi_info.iloc[j]
            if type(dwi_subj['Path']) != float and dwi_subj['Path'] != '':
                if not os.path.exists(path.join(ses_path, 'dwi')):
                    os.mkdir(path.join(ses_path, 'dwi'))
                dwi_path = dwi_subj['Path']

                bids_name = bids_file_name + '_acq-axial_dwi'

                bids_dest_dir = path.join(ses_path, 'dwi')

                if not os.path.exists(bids_dest_dir):
                    os.mkdir(dest_dir)
                command = 'dcm2niix -b n -z y -o ' + bids_dest_dir + ' -f ' + bids_name + ' ' + dwi_path
                subprocess.run(command,
                               shell=True,
                               stdout=subprocess.DEVNULL,
                               stderr=subprocess.DEVNULL)

                # Removing ADC images
                adc_image = path.join(bids_dest_dir, bids_name + '_ADC.nii.gz')
                if os.path.exists(adc_image):
                    os.remove(adc_image)

                # If dcm2niix didn't work use dcm2nii
                # print path.join(dest_dir, bids_name + '.nii.gz')
                if not os.path.exists(
                        path.join(bids_dest_dir, bids_name + '.nii.gz')
                ) or not os.path.exists(
                        path.join(bids_dest_dir, bids_name + '.bvec')
                        or not os.path.exists(
                            path.join(bids_dest_dir, bids_name + '.bval'))):
                    cprint(
                        '\tConversion with dcm2niix failed, trying with dcm2nii'
                    )

                    # Find all the files eventually created by dcm2niix and remove them
                    dwi_dcm2niix = glob(
                        path.join(bids_dest_dir, bids_name + '*'))

                    for d in dwi_dcm2niix:
                        # print 'Removing the old', d
                        os.remove(d)

                    command = 'dcm2nii -a n -d n -e n -i y -g y -p n -m n -r n -x n -o %s %s' \
                              % (bids_dest_dir, dwi_path)
                    subprocess.run(command,
                                   shell=True,
                                   stdout=subprocess.DEVNULL,
                                   stderr=subprocess.DEVNULL)
                    nii_file = path.join(bids_dest_dir,
                                         subj.replace('_', '') + '.nii.gz')
                    bvec_file = path.join(bids_dest_dir,
                                          subj.replace('_', '') + '.bvec')
                    bval_file = path.join(bids_dest_dir,
                                          subj.replace('_', '') + '.bval')

                    if os.path.exists(bvec_file) and os.path.exists(bval_file):
                        os.rename(
                            bvec_file,
                            path.join(bids_dest_dir, bids_name + '.bvec'))
                        os.rename(
                            bval_file,
                            path.join(bids_dest_dir, bids_name + '.bval'))
                    else:
                        cprint(
                            'WARNING: bvec and bval not generated by dcm2nii' +
                            ' for subject ' + subj + ' and session ' + ses)

                    if os.path.exists(nii_file):
                        os.rename(
                            nii_file,
                            path.join(bids_dest_dir, bids_name + '.nii.gz'))
                    else:
                        cprint('WARNING: CONVERSION FAILED...' +
                               ' for subject ' + subj + ' and session ' + ses)
コード例 #4
0
ファイル: adni_dwi.py プロジェクト: rmaatoug/clinica
def dwi_paths_to_bids(images, dest_dir, mod_to_update=False):
    """
    Convert DWI images

    Args:
        images: dataframe returned by the method compute_dwi_paths
        dest_dir: path to the destination directory
        mod_to_update: if is true and an image is already existing it will overwrite the old version

    """
    import clinica.iotools.bids_utils as bids
    import clinica.iotools.converters.adni_to_bids.adni_utils as adni_utils
    from os import path
    import os
    from glob import glob
    import shutil
    from clinica.utils.stream import cprint

    subjs_list = images['Subject_ID'].unique()

    for i in range(0, len(subjs_list)):
        # print '--Converting dwi for subject ', subjs_list[i], '--'
        alpha_id = bids.remove_space_and_symbols(subjs_list[i])
        bids_id = 'sub-ADNI' + alpha_id
        # Extract the list of sessions available from the dwi paths files, removing the duplicates
        sess_list = images[(
            images['Subject_ID'] == subjs_list[i])]['VISCODE'].unique()

        if not os.path.exists(path.join(dest_dir, bids_id)):
            os.mkdir(path.join(dest_dir, bids_id))

        # For each session available, create the folder if doesn't exist and convert the files
        for ses in sess_list:

            ses_bids = adni_utils.viscode_to_session(ses)
            bids_ses_id = 'ses-' + ses_bids
            bids_file_name = bids_id + '_ses-' + ses_bids
            ses_path = path.join(dest_dir, bids_id, bids_ses_id)

            if mod_to_update:
                if os.path.exists(path.join(ses_path, 'dwi')):
                    shutil.rmtree(path.join(ses_path, 'dwi'))

            if not os.path.exists(ses_path):
                os.mkdir(ses_path)

            dwi_info = images[(images['Subject_ID'] == subjs_list[i])
                              & (images['VISCODE'] == ses)]

            # For the same subject, same session there could be multiple dwi with different acq label
            for j in range(0, len(dwi_info)):
                dwi_subj = dwi_info.iloc[j]
                # TODO For now in CLINICA we ignore Enhanced DWI.
                if dwi_subj['Enhanced']:
                    continue
                if type(dwi_subj['Path']) != float and dwi_subj['Path'] != '':
                    if not os.path.exists(path.join(ses_path, 'dwi')):
                        os.mkdir(path.join(ses_path, 'dwi'))
                    dwi_path = dwi_subj['Path']

                    bids_name = bids_file_name + '_acq-' + (
                        'axialEnhanced'
                        if dwi_subj['Enhanced'] else 'axial') + '_dwi'
                    # bids.dcm_to_nii(dwi_path, path.join(ses_path, 'dwi'), bids_name)

                    bids_dest_dir = path.join(ses_path, 'dwi')

                    if not os.path.exists(bids_dest_dir):
                        os.mkdir(dest_dir)
                    os.system('dcm2niix -b n -z y -o ' + bids_dest_dir +
                              ' -f ' + bids_name + ' ' + dwi_path)

                    # If dcm2niix didn't work use dcm2nii
                    # print path.join(dest_dir, bids_name + '.nii.gz')
                    if not os.path.exists(
                            path.join(bids_dest_dir, bids_name + '.nii.gz')
                    ) or not os.path.exists(
                            path.join(bids_dest_dir, bids_name + '.bvec')
                            or not os.path.exists(
                                path.join(bids_dest_dir,
                                          bids_name + '.bval'))):
                        cprint(
                            '\nConversion with dcm2niix failed, trying with dcm2nii'
                        )

                        # Find all the files eventually created by dcm2niix and remove them
                        dwi_dcm2niix = glob(
                            path.join(bids_dest_dir, bids_name + '*'))

                        for d in dwi_dcm2niix:
                            # print 'Removing the old', d
                            os.remove(d)

                        os.system(
                            'dcm2nii -a n -d n -e n -i y -g y -p n -m n -r n -x n -o '
                            + bids_dest_dir + ' ' + dwi_path)
                        nii_file = path.join(
                            bids_dest_dir,
                            subjs_list[i].replace('_', '') + '.nii.gz')
                        bvec_file = path.join(
                            bids_dest_dir,
                            subjs_list[i].replace('_', '') + '.bvec')
                        bval_file = path.join(
                            bids_dest_dir,
                            subjs_list[i].replace('_', '') + '.bval')

                        if os.path.exists(bvec_file) and os.path.exists(
                                bval_file):
                            os.rename(
                                bvec_file,
                                path.join(bids_dest_dir, bids_name + '.bvec'))
                            os.rename(
                                bval_file,
                                path.join(bids_dest_dir, bids_name + '.bval'))
                        else:
                            cprint(
                                'WARNING: bvec and bval not generated by dcm2nii'
                            )

                        if os.path.exists(nii_file):
                            os.rename(
                                nii_file,
                                path.join(bids_dest_dir,
                                          bids_name + '.nii.gz'))
                        else:
                            cprint('WARNING: CONVERSION FAILED...')
コード例 #5
0
def create_adni_sessions_dict(bids_ids, clinic_specs_path, clinical_data_dir,
                              bids_subjs_paths):
    """Extract all the data required for the sessions files and organize them in a dictionary.

    Args:
        bids_ids:
        clinic_specs_path: path to the specifications for converting the clinical data
        clinical_data_dir: path to the clinical data folder
        bids_subjs_paths: a list with the path to all the BIDS subjects
    """
    from datetime import datetime
    from os import path

    import pandas as pd

    import clinica.iotools.bids_utils as bids
    from clinica.utils.stream import cprint

    # Load data
    sessions = pd.read_excel(clinic_specs_path, sheet_name="sessions.tsv")
    sessions_fields = sessions["ADNI"]
    field_location = sessions["ADNI location"]
    sessions_fields_bids = sessions["BIDS CLINICA"]
    fields_dataset = []
    previous_location = ""
    fields_bids = []
    sessions_dict = {}

    for i in range(0, len(sessions_fields)):
        if not pd.isnull(sessions_fields[i]):
            fields_bids.append(sessions_fields_bids[i])
            fields_dataset.append(sessions_fields[i])

    sessions_df = pd.DataFrame(columns=fields_bids)

    for i in range(0, len(field_location)):
        # If the i-th field is available
        if (not pd.isnull(field_location[i])) and path.exists(
                path.join(clinical_data_dir, field_location[i].split("/")[0])):
            # Load the file
            tmp = field_location[i].split("/")
            location = tmp[0]
            if location != previous_location:
                previous_location = location
                file_to_read_path = path.join(clinical_data_dir, location)
                cprint(f"\tReading clinical data file: {location}")
                file_to_read = pd.read_csv(file_to_read_path, dtype=str)

                for r in range(0, len(file_to_read.values)):
                    row = file_to_read.iloc[r]

                    # Depending of the file that needs to be open, identify and
                    # do needed preprocessing on the column that contains the
                    # subjects ids
                    if location == "ADNIMERGE.csv":
                        id_ref = "PTID"
                        # What was the meaning of this line ?
                        # subj_id = row[id_ref.decode('utf-8')]
                        subj_id = row[id_ref]
                        subj_id = bids.remove_space_and_symbols(subj_id)
                    else:
                        id_ref = "RID"
                        rid = str(row[id_ref])

                        # Fill the rid with the needed number of zero
                        if 4 - len(rid) > 0:
                            zeros_to_add = 4 - len(rid)
                            subj_id = "0" * zeros_to_add + rid
                        else:
                            subj_id = rid

                    # Extract the BIDS subject id related with the original
                    # subject id
                    subj_bids = [s for s in bids_ids if subj_id in s]

                    if len(subj_bids) == 0:
                        pass
                    elif len(subj_bids) > 1:
                        raise (
                            "Error: multiple subjects found for the same RID")
                    else:
                        subj_bids = subj_bids[0]
                        for j in range(0, len(sessions_fields)):
                            # If the i-th field is available
                            if not pd.isnull(sessions_fields[j]):
                                # Extract only the fields related to the current file opened
                                if location in field_location[i]:
                                    if location in [
                                            "ADAS_ADNIGO2.csv",
                                            "DXSUM_PDXCONV_ADNIALL.csv",
                                            "CDR.csv",
                                            "NEUROBAT.csv",
                                            "GDSCALE.csv",
                                            "MODHACH.csv",
                                            "MOCA.csv",
                                            "NPIQ.csv",
                                            "MEDHIST.csv",
                                            "VITALS.csv",
                                            "UWNPSYCHSUM_03_07_19.csv",
                                            "ECOGPT.csv",
                                            "ECOGSP.csv",
                                            "FCI.csv",
                                            "CCI.csv",
                                            "NPIQ.csv",
                                            "NPI.csv",
                                    ]:
                                        if (pd.isnull(row["VISCODE2"])
                                                or row["VISCODE2"] == "f"):
                                            continue
                                        visit_id = row["VISCODE2"]
                                        # Convert sc to bl
                                        if visit_id == "sc":
                                            visit_id = "bl"
                                    elif location in [
                                            "BHR_EVERYDAY_COGNITION.csv",
                                            "BHR_BASELINE_QUESTIONNAIRE.csv",
                                            "BHR_LONGITUDINAL_QUESTIONNAIRE.csv",
                                    ]:
                                        visit_id = row["Timepoint"]
                                    else:
                                        visit_id = row["VISCODE"]
                                    try:
                                        field_value = row[sessions_fields[j]]
                                        bids_field_name = sessions_fields_bids[
                                            j]

                                        # Calculating age from ADNIMERGE
                                        if (sessions_fields[j] == "AGE") and (
                                                visit_id != "bl"):
                                            examdate = datetime.strptime(
                                                row["EXAMDATE"], "%Y-%m-%d")
                                            examdate_bl = datetime.strptime(
                                                row["EXAMDATE_bl"], "%Y-%m-%d")
                                            delta = examdate - examdate_bl

                                            # Adding time passed since bl to patient's age in current visit
                                            field_value = round(
                                                float(field_value) +
                                                (delta.days / 365.25),
                                                1,
                                            )

                                        sessions_dict = update_sessions_dict(
                                            sessions_dict,
                                            subj_bids,
                                            visit_id,
                                            field_value,
                                            bids_field_name,
                                        )
                                    except KeyError:
                                        pass
                                        # cprint('Field value ' + Fore.RED + sessions_fields[j] + Fore.RESET +
                                        # ' could not be added to sessions.tsv')
            else:
                continue

    # Write the sessions dictionary created in several tsv files
    write_adni_sessions_tsv(sessions_dict, fields_bids, bids_subjs_paths)
コード例 #6
0
ファイル: adni_utils.py プロジェクト: EuroPOND/clinica
def create_adni_sessions_dict(bids_ids, clinic_specs_path, clinical_data_dir,
                              bids_subjs_paths):
    """
    Extract all the data required for the sessions files and organize them in a dictionary

    Args:
        bids_ids:
        clinic_specs_path: path to the specifications for converting the clinical data
        clinical_data_dir: path to the clinical data folder
        bids_subjs_paths: a list with the path to all the BIDS subjects

    Returns:

    """
    import pandas as pd
    from os import path
    import clinica.iotools.bids_utils as bids

    # Load data
    sessions = pd.read_excel(clinic_specs_path, sheetname='sessions.tsv')
    sessions_fields = sessions['ADNI']
    field_location = sessions['ADNI location']
    sessions_fields_bids = sessions['BIDS CLINICA']
    fields_dataset = []
    previous_location = ''
    fields_bids = []
    sessions_dict = {}

    for i in range(0, len(sessions_fields)):
        if not pd.isnull(sessions_fields[i]):
            fields_bids.append(sessions_fields_bids[i])
            fields_dataset.append(sessions_fields[i])

    sessions_df = pd.DataFrame(columns=fields_bids)

    for i in range(0, len(field_location)):
        # If the i-th field is available
        if not pd.isnull(field_location[i]):
            # Load the file
            tmp = field_location[i].split('/')
            location = tmp[0]
            if location != previous_location:
                previous_location = location
                file_to_read_path = path.join(clinical_data_dir, location)
                file_to_read = pd.read_csv(file_to_read_path, dtype=str)

                for r in range(0, len(file_to_read.values)):
                    row = file_to_read.iloc[r]

                    # Depending of the file that needs to be open, identify and do needed preprocessing on the column
                    #  that contains the subjects ids
                    if location == 'ADNIMERGE.csv':
                        id_ref = 'PTID'
                        subj_id = row[id_ref.decode('utf-8')]
                        subj_id = bids.remove_space_and_symbols(subj_id)
                    else:
                        id_ref = 'RID'
                        rid = str(row[id_ref.decode('utf-8')])

                        # Fill the rid with the needed number of zero
                        if 4 - len(rid) > 0:
                            zeros_to_add = 4 - len(rid)
                            subj_id = '0' * zeros_to_add + rid
                        else:
                            subj_id = rid

                    # Extract the BIDS subject id related with the original subject id
                    subj_bids = [s for s in bids_ids if subj_id in s]

                    if len(subj_bids) == 0:
                        pass
                    elif len(subj_bids) > 1:
                        raise 'Error: multiple subjects found for the same RID'
                    else:
                        subj_bids = subj_bids[0]
                        for i in range(0, len(sessions_fields)):
                            # If the i-th field is available
                            if not pd.isnull(sessions_fields[i]):
                                # Extract only the fields related to the current file opened
                                if location in field_location[i]:
                                    if location == 'ADAS_ADNIGO2.csv' or location == 'DXSUM_PDXCONV_ADNIALL.csv' or location == 'CDR.csv' or location == 'NEUROBAT.csv':
                                        if type(row['VISCODE2']) == float:
                                            continue
                                        visit_id = row['VISCODE2']
                                        # Convert sc to bl
                                        if visit_id == 'sc':
                                            visit_id = 'bl'
                                    else:
                                        visit_id = row['VISCODE']

                                    field_value = row[sessions_fields[i]]
                                    bids_field_name = sessions_fields_bids[i]

                                    sessions_dict = update_sessions_dict(
                                        sessions_dict, subj_bids, visit_id,
                                        field_value, bids_field_name)

            else:
                continue

    # Write the sessions dictionary created in several tsv files
    write_adni_sessions_tsv(sessions_dict, fields_bids, bids_subjs_paths)
コード例 #7
0
ファイル: adni_flair.py プロジェクト: salma1601/clinica
def generate_subject_files(subj, images, dest_dir, mod_to_update):
    import clinica.iotools.bids_utils as bids
    import clinica.iotools.converters.adni_to_bids.adni_utils as adni_utils
    from clinica.utils.stream import cprint
    import subprocess
    import os
    import shutil
    from os import path
    from glob import glob

    alpha_id = bids.remove_space_and_symbols(subj)
    bids_id = 'sub-ADNI' + alpha_id
    # Extract the list of sessions available from the flair paths files, removing the duplicates
    sess_list = images[(images['Subject_ID'] == subj)]['VISCODE'].unique()

    if not os.path.exists(path.join(dest_dir, bids_id)):
        os.mkdir(path.join(dest_dir, bids_id))

    # For each session available, create the folder if doesn't exist and convert the files
    for ses in sess_list:
        with counter.get_lock():
            counter.value += 1
        cprint('[FLAIR] Processing subject ' + str(subj) + ' - session ' +
               ses + ', ' + str(counter.value) + ' / ' + str(len(images)))
        ses_bids = adni_utils.viscode_to_session(ses)
        bids_ses_id = 'ses-' + ses_bids
        bids_file_name = bids_id + '_ses-' + ses_bids
        ses_path = path.join(dest_dir, bids_id, bids_ses_id)
        if mod_to_update:
            if os.path.exists(path.join(ses_path, 'FLAIR')):
                shutil.rmtree(path.join(ses_path, 'FLAIR'))
        if not os.path.exists(ses_path):
            os.mkdir(ses_path)
        flair_info = images[(images['Subject_ID'] == subj)
                            & (images['VISCODE'] == ses)]
        # For the same subject, same session there could be multiple flar with different acq label
        for j in range(len(flair_info)):
            flair_subj = flair_info.iloc[j]
            # TODO For now in CLINICA we ignore Enhanced FLAIR.
            if flair_subj['Enhanced']:
                continue
            if type(flair_subj['Path']) != float and flair_subj['Path'] != '':
                if not os.path.exists(path.join(ses_path, 'FLAIR')):
                    os.mkdir(path.join(ses_path, 'FLAIR'))
                flair_path = flair_subj['Path']

                bids_name = bids_file_name + '_FLAIR'
                # bids.dcm_to_nii(dwi_path, path.join(ses_path, 'dwi'), bids_name)

                bids_dest_dir = path.join(ses_path, 'FLAIR')

                if not os.path.exists(bids_dest_dir):
                    os.mkdir(dest_dir)
                command = 'dcm2niix -b y -z y -o ' + bids_dest_dir + ' -f ' + bids_name + ' ' + flair_path
                subprocess.run(command,
                               shell=True,
                               stderr=subprocess.DEVNULL,
                               stdout=subprocess.DEVNULL)

                # If dcm2niix didn't work use dcm2nii
                # print path.join(dest_dir, bids_name + '.nii.gz')
                if not os.path.exists(
                        path.join(bids_dest_dir, bids_name + '.nii.gz')):
                    cprint(
                        '\tConversion with dcm2niix failed, trying with dcm2nii'
                    )

                    # Find all the files eventually created by dcm2niix and remove them
                    flair_dcm2niix = glob(
                        path.join(bids_dest_dir, bids_name + '*'))
                    for d in flair_dcm2niix:
                        os.remove(d)

                    command = 'dcm2nii -a n -d n -e n -i y -g y -p n -m n -r n -x n -o ' + bids_dest_dir + ' ' + flair_path
                    subprocess.run(command,
                                   shell=True,
                                   stdout=subprocess.DEVNULL,
                                   stderr=subprocess.DEVNULL)
                    nii_file = path.join(bids_dest_dir,
                                         subj.replace('_', '') + '.nii.gz')
                    if os.path.exists(nii_file):
                        os.rename(
                            nii_file,
                            path.join(bids_dest_dir, bids_name + '.nii.gz'))
                    else:
                        cprint('WARNING: CONVERSION FAILED...')