コード例 #1
0
def main(options):

    # Read json
    model_options = argparse.Namespace()
    json_path = path.join(options.model_path, "commandline_cnn.json")
    model_options = read_json(model_options, json_path=json_path)
    num_cnn = compute_num_cnn(options.input_dir,
                              options.tsv_path,
                              model_options,
                              data="test")

    # Load test data
    if options.diagnoses is None:
        options.diagnoses = model_options.diagnoses

    test_df = load_data_test(options.tsv_path, options.diagnoses)
    transformations = get_transforms(model_options.mode,
                                     model_options.minmaxnormalization)
    criterion = torch.nn.CrossEntropyLoss()

    # Loop on all folds trained
    best_model_dir = os.path.join(options.model_path, 'best_model_dir')
    folds_dir = os.listdir(best_model_dir)

    # Loop on folds
    for fold_dir in folds_dir:
        split = int(fold_dir[-1])
        print("Fold %i" % split)

        for cnn_index in range(num_cnn):
            dataset = return_dataset(model_options.mode,
                                     options.input_dir,
                                     test_df,
                                     options.preprocessing,
                                     transformations,
                                     options,
                                     cnn_index=cnn_index)

            test_loader = DataLoader(dataset,
                                     batch_size=options.batch_size,
                                     shuffle=False,
                                     num_workers=options.num_workers,
                                     pin_memory=True)

            test_cnn(options.model_path, test_loader, options.dataset, split,
                     criterion, cnn_index, model_options, options.gpu)

        for selection in ['best_acc', 'best_loss']:
            soft_voting_to_tsvs(
                options.model_path,
                split,
                selection,
                mode=options.mode,
                dataset=options.dataset,
                num_cnn=num_cnn,
                selection_threshold=model_options.selection_threshold)
コード例 #2
0
def test_cnn(output_dir,
             data_loader,
             subset_name,
             split,
             criterion,
             model_options,
             gpu=False,
             multiclass=False):

    for selection in ["best_balanced_accuracy", "best_loss"]:
        # load the best trained model during the training
        model = create_model(model_options.model,
                             gpu,
                             dropout=model_options.dropout)
        model, best_epoch = load_model(model,
                                       os.path.join(output_dir,
                                                    'fold-%i' % split,
                                                    'models', selection),
                                       gpu=gpu,
                                       filename='model_best.pth.tar')

        results_df, metrics = test(model, data_loader, gpu, criterion,
                                   model_options.mode, multiclass)
        print("%s level balanced accuracy is %f" %
              (model_options.mode, metrics['balanced_accuracy']))

        mode_level_to_tsvs(output_dir,
                           results_df,
                           metrics,
                           split,
                           selection,
                           model_options.mode,
                           dataset=subset_name)

        # Soft voting
        if model_options.mode in ["patch", "roi", "slice"]:
            soft_voting_to_tsvs(
                output_dir,
                split,
                selection=selection,
                mode=model_options.mode,
                dataset=subset_name,
                selection_threshold=model_options.selection_threshold)
コード例 #3
0
                                        model_options.preprocessing,
                                        transformations,
                                        model_options,
                                        cnn_index=cnn_index)

            train_loader = DataLoader(data_train,
                                      batch_size=options.batch_size,
                                      shuffle=False,
                                      num_workers=options.num_workers,
                                      pin_memory=True)
            valid_loader = DataLoader(data_valid,
                                      batch_size=options.batch_size,
                                      shuffle=False,
                                      num_workers=options.num_workers,
                                      pin_memory=True)

            test_cnn(options.model_path, train_loader, "train", split,
                     criterion, cnn_index, model_options, options.gpu)
            test_cnn(options.model_path, valid_loader, "validation", split,
                     criterion, cnn_index, model_options, options.gpu)

        for selection in ['best_acc', 'best_loss']:
            soft_voting_to_tsvs(
                options.model_path,
                split,
                selection,
                mode=options.mode,
                dataset=options.dataset,
                num_cnn=num_cnn,
                selection_threshold=model_options.selection_threshold)
コード例 #4
0
def inference_from_model(caps_dir,
                         tsv_path,
                         model_path=None,
                         json_file=None,
                         prefix=None,
                         no_labels=False,
                         gpu=True,
                         prepare_dl=False):
    """
    Inference from previously trained model.

    This functions uses a previously trained model to classify the input(s).
    The model is stored in the variable model_path and it assumes the folder
    structure given by the training stage. Particullary to have a prediction at
    image level, it assumes that results of the validation set are stored in
    the model_path folder in order to perform soft-voiting at the slice/patch
    level and also for multicnn.

    Args:

    caps_dir: folder containing the tensor files (.pt version of MRI)
    tsv_path: file with the name of the MRIs to process (single or multiple)
    model_path: file with the model (pth format).
    json_file: file containing the training parameters.
    output_dir_arg: folder where results are stored. If None it uses current
    structure.
    no_labels: by default is false. In that case, output writes a file named
    measurements.tsv
    gpu: if true, it uses gpu.
    prepare_dl: if true, uses extracted patches/slices otherwise extract them
    on-the-fly.

    Returns:

    Files written in the output folder with prediction results and metrics. By
    default the output folder is named cnn_classification and it is inside the
    model_folder.

    Raises:


    """
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("model_path",
                        type=str,
                        help="Path to the trained model folder.")
    options = parser.parse_args([model_path])
    options = read_json(options, json_path=json_file)
    num_cnn = compute_num_cnn(caps_dir, tsv_path, options, "classify")
    print("Load model with these options:")
    print(options)

    # Overwrite options with user input
    options.use_cpu = not gpu
    options.prepare_dl = prepare_dl
    # Define the path
    currentDirectory = pathlib.Path(model_path)
    # Search for 'fold-*' pattern
    currentPattern = "fold-*"

    best_model = {
        'best_acc': 'best_balanced_accuracy',
        'best_loss': 'best_loss'
    }

    # loop depending the number of folds found in the model folder
    for fold_dir in currentDirectory.glob(currentPattern):
        fold = int(str(fold_dir).split("-")[-1])
        fold_path = join(model_path, fold_dir)
        model_path = join(fold_path, 'models')

        if options.mode_task == 'multicnn':
            for cnn_dir in listdir(model_path):
                if not exists(
                        join(model_path, cnn_dir, best_model['best_acc'],
                             'model_best.pth.tar')):
                    raise FileNotFoundError(
                        errno.ENOENT, strerror(errno.ENOENT),
                        join(model_path, cnn_dir, best_model['best_acc'],
                             'model_best.pth.tar'))

        else:
            full_model_path = join(model_path, best_model['best_acc'])
            if not exists(join(full_model_path, 'model_best.pth.tar')):
                raise FileNotFoundError(
                    errno.ENOENT, strerror(errno.ENOENT),
                    join(full_model_path, 'model_best.pth.tar'))

        performance_dir = join(fold_path, 'cnn_classification',
                               best_model['best_acc'])
        if not exists(performance_dir):
            makedirs(performance_dir)

        # It launch the corresponding function, depending on the mode.
        infered_classes, metrics = inference_from_model_generic(
            caps_dir, tsv_path, model_path, options, num_cnn=num_cnn)

        # Prepare outputs
        usr_prefix = str(prefix)

        # Write output files at %mode level
        print("Prediction results and metrics are written in the "
              "following folder: %s" % performance_dir)

        mode_level_to_tsvs(currentDirectory,
                           infered_classes,
                           metrics,
                           fold,
                           best_model['best_acc'],
                           options.mode,
                           dataset=usr_prefix)

        # Soft voting
        if hasattr(options, 'selection_threshold'):
            selection_thresh = options.selection_threshold
        else:
            selection_thresh = 0.8

        # Write files at the image level (for patch, roi and slice).
        # It assumes the existance of validation files to perform soft-voting
        if options.mode in ["patch", "roi", "slice"]:
            soft_voting_to_tsvs(currentDirectory,
                                fold,
                                best_model["best_acc"],
                                options.mode,
                                usr_prefix,
                                num_cnn=num_cnn,
                                selection_threshold=selection_thresh)
コード例 #5
0
def inference_from_model(caps_dir,
                         tsv_path,
                         model_path=None,
                         json_file=None,
                         prefix=None,
                         labels=True,
                         gpu=True,
                         num_workers=0,
                         batch_size=1,
                         prepare_dl=False,
                         selection_metrics=None,
                         diagnoses=None,
                         logger=None):
    """
    Inference from previously trained model.

    This functions uses a previously trained model to classify the input(s).
    The model is stored in the variable model_path and it assumes the folder
    structure given by the training stage. Particullary to have a prediction at
    image level, it assumes that results of the validation set are stored in
    the model_path folder in order to perform soft-voiting at the slice/patch
    level and also for multicnn.

    Args:
        caps_dir: folder containing the tensor files (.pt version of MRI)
        tsv_path: file with the name of the MRIs to process (single or multiple)
        model_path: file with the model (pth format).
        json_file: file containing the training parameters.
        prefix: prefix of all classification outputs.
        labels: by default is True. If False no metrics tsv files will be written.
        measurements.tsv
        gpu: if true, it uses gpu.
        num_workers: num_workers used in DataLoader
        batch_size: batch size of the DataLoader
        prepare_dl: if true, uses extracted patches/slices otherwise extract them
        on-the-fly.
        selection_metrics: list of metrics to find best models to be evaluated.
        diagnoses: list of diagnoses to be tested if tsv_path is a folder.
        logger: Logger instance.

    Returns:
        Files written in the output folder with prediction results and metrics. By
        default the output folder is named cnn_classification and it is inside the
        model_folder.

    Raises:


    """
    import argparse
    import logging

    if logger is None:
        logger = logging

    parser = argparse.ArgumentParser()
    parser.add_argument("model_path",
                        type=str,
                        help="Path to the trained model folder.")
    options = parser.parse_args([model_path])
    options = read_json(options, json_path=json_file)

    logger.debug("Load model with these options:")
    logger.debug(options)

    # Overwrite options with user input
    options.use_cpu = not gpu
    options.nproc = num_workers
    options.batch_size = batch_size
    options.prepare_dl = prepare_dl
    if diagnoses is not None:
        options.diagnoses = diagnoses

    options = translate_parameters(options)

    if options.mode_task == "multicnn":
        num_cnn = compute_num_cnn(caps_dir, tsv_path, options, "test")
    else:
        num_cnn = None
    # Define the path
    currentDirectory = pathlib.Path(model_path)
    # Search for 'fold-*' pattern
    currentPattern = "fold-*"

    # loop depending the number of folds found in the model folder
    for fold_dir in currentDirectory.glob(currentPattern):
        fold = int(str(fold_dir).split("-")[-1])
        fold_path = join(model_path, fold_dir)
        model_path = join(fold_path, 'models')

        for selection_metric in selection_metrics:

            if options.mode_task == 'multicnn':
                for cnn_dir in listdir(model_path):
                    if not exists(
                            join(model_path, cnn_dir, "best_%s" %
                                 selection_metric, 'model_best.pth.tar')):
                        raise FileNotFoundError(
                            errno.ENOENT, strerror(errno.ENOENT),
                            join(model_path, cnn_dir,
                                 "best_%s" % selection_metric,
                                 'model_best.pth.tar'))

            else:
                full_model_path = join(model_path,
                                       "best_%s" % selection_metric)
                if not exists(join(full_model_path, 'model_best.pth.tar')):
                    raise FileNotFoundError(
                        errno.ENOENT, strerror(errno.ENOENT),
                        join(full_model_path, 'model_best.pth.tar'))

            performance_dir = join(fold_path, 'cnn_classification',
                                   'best_%s' % selection_metric)

            makedirs(performance_dir, exist_ok=True)

            # It launch the corresponding function, depending on the mode.
            inference_from_model_generic(caps_dir,
                                         tsv_path,
                                         model_path,
                                         options,
                                         prefix,
                                         currentDirectory,
                                         fold,
                                         "best_%s" % selection_metric,
                                         labels=labels,
                                         num_cnn=num_cnn,
                                         logger=logger)

            # Soft voting
            if hasattr(options, 'selection_threshold'):
                selection_thresh = options.selection_threshold
            else:
                selection_thresh = 0.8

            # Write files at the image level (for patch, roi and slice).
            # It assumes the existance of validation files to perform soft-voting
            if options.mode in ["patch", "roi", "slice"]:
                soft_voting_to_tsvs(currentDirectory,
                                    fold,
                                    "best_%s" % selection_metric,
                                    options.mode,
                                    prefix,
                                    num_cnn=num_cnn,
                                    selection_threshold=selection_thresh,
                                    use_labels=labels,
                                    logger=logger)

            logger.info("Prediction results and metrics are written in the "
                        "following folder: %s" % performance_dir)
コード例 #6
0
def test_cnn(output_dir,
             data_loader,
             subset_name,
             split,
             criterion,
             model_options,
             gpu=False,
             train_begin_time=None):
    metric_dict = {}
    for selection in ["best_balanced_accuracy", "best_loss"]:
        # load the best trained model during the training
        if model_options.model == 'UNet3D':
            print('********** init UNet3D model for test! **********')
            model = create_model(model_options.model,
                                 gpu=model_options.gpu,
                                 dropout=model_options.dropout,
                                 device_index=model_options.device,
                                 in_channels=model_options.in_channels,
                                 out_channels=model_options.out_channels,
                                 f_maps=model_options.f_maps,
                                 layer_order=model_options.layer_order,
                                 num_groups=model_options.num_groups,
                                 num_levels=model_options.num_levels)
        elif model_options.model == 'ResidualUNet3D':
            print('********** init ResidualUNet3D model for test! **********')
            model = create_model(model_options.model,
                                 gpu=model_options.gpu,
                                 dropout=model_options.dropout,
                                 device_index=model_options.device,
                                 in_channels=model_options.in_channels,
                                 out_channels=model_options.out_channels,
                                 f_maps=model_options.f_maps,
                                 layer_order=model_options.layer_order,
                                 num_groups=model_options.num_groups,
                                 num_levels=model_options.num_levels)
        elif model_options.model == 'UNet3D_add_more_fc':
            print(
                '********** init UNet3D_add_more_fc model for test! **********'
            )
            model = create_model(model_options.model,
                                 gpu=model_options.gpu,
                                 dropout=model_options.dropout,
                                 device_index=model_options.device,
                                 in_channels=model_options.in_channels,
                                 out_channels=model_options.out_channels,
                                 f_maps=model_options.f_maps,
                                 layer_order=model_options.layer_order,
                                 num_groups=model_options.num_groups,
                                 num_levels=model_options.num_levels)
        elif model_options.model == 'ResidualUNet3D_add_more_fc':
            print(
                '********** init ResidualUNet3D_add_more_fc model for test! **********'
            )
            model = create_model(model_options.model,
                                 gpu=model_options.gpu,
                                 dropout=model_options.dropout,
                                 device_index=model_options.device,
                                 in_channels=model_options.in_channels,
                                 out_channels=model_options.out_channels,
                                 f_maps=model_options.f_maps,
                                 layer_order=model_options.layer_order,
                                 num_groups=model_options.num_groups,
                                 num_levels=model_options.num_levels)
        elif model_options.model == 'VoxCNN':
            print('********** init VoxCNN model for test! **********')
            model = create_model(model_options.model,
                                 gpu=model_options.gpu,
                                 device_index=model_options.device)
        elif model_options.model == 'ConvNet3D':
            print('********** init ConvNet3D model for test! **********')
            model = create_model(model_options.model,
                                 gpu=model_options.gpu,
                                 device_index=model_options.device)
        elif 'gcn' in model_options.model:
            print('********** init {}-{} model for test! **********'.format(
                model_options.model, model_options.gnn_type))
            model = create_model(
                model_options.model,
                gpu=model_options.gpu,
                device_index=model_options.device,
                gnn_type=model_options.gnn_type,
                gnn_dropout=model_options.gnn_dropout,
                gnn_dropout_adj=model_options.gnn_dropout_adj,
                gnn_non_linear=model_options.gnn_non_linear,
                gnn_undirected=model_options.gnn_undirected,
                gnn_self_loop=model_options.gnn_self_loop,
                gnn_threshold=model_options.gnn_threshold,
            )
        elif model_options.model == 'ROI_GCN':
            print('********** init ROI_GCN model for test! **********')
            model = create_model(
                model_options.model,
                gpu=model_options.gpu,
                device_index=model_options.device,
                gnn_type=model_options.gnn_type,
                gnn_dropout=model_options.gnn_dropout,
                gnn_dropout_adj=model_options.gnn_dropout_adj,
                gnn_non_linear=model_options.gnn_non_linear,
                gnn_undirected=model_options.gnn_undirected,
                gnn_self_loop=model_options.gnn_self_loop,
                gnn_threshold=model_options.gnn_threshold,
                nodel_vetor_layer=model_options.nodel_vetor_layer,
                classify_layer=model_options.classify_layer,
                num_node_features=model_options.num_node_features,
                num_class=model_options.num_class,
                roi_size=model_options.roi_size,
                num_nodes=model_options.num_nodes,
                gnn_pooling_layers=model_options.gnn_pooling_layers,
                global_sort_pool_k=model_options.global_sort_pool_k,
                layers=model_options.layers,
                shortcut_type=model_options.shortcut_type,
                use_nl=model_options.use_nl,
                dropout=model_options.dropout,
                device=model_options.device)
        elif model_options.model == 'SwinTransformer3d':
            print(
                '********** init SwinTransformer3d model for test! **********')
            model = create_model(
                model_options.model,
                gpu=model_options.gpu,
                dropout=model_options.dropout,
                device_index=model_options.device,
                sw_patch_size=model_options.sw_patch_size,
                window_size=model_options.window_size,
                mlp_ratio=model_options.mlp_ratio,
                drop_rate=model_options.drop_rate,
                attn_drop_rate=model_options.attn_drop_rate,
                drop_path_rate=model_options.drop_path_rate,
                qk_scale=model_options.qk_scale,
                embed_dim=model_options.embed_dim,
                depths=model_options.depths,
                num_heads=model_options.num_heads,
                qkv_bias=model_options.qkv_bias,
                ape=model_options.ape,
                patch_norm=model_options.patch_norm,
            )
        else:
            print('********** init model for test! **********')
            model = create_model(model_options.model,
                                 gpu=model_options.gpu,
                                 dropout=model_options.dropout,
                                 device_index=model_options.device)
        model, best_epoch = load_model(model,
                                       os.path.join(output_dir,
                                                    'fold-%i' % split,
                                                    'models', selection),
                                       gpu=gpu,
                                       filename='model_best.pth.tar',
                                       device_index=model_options.device)
        results_df, metrics = test(model,
                                   data_loader,
                                   gpu,
                                   criterion,
                                   model_options.mode,
                                   device_index=model_options.device,
                                   train_begin_time=train_begin_time,
                                   model_options=model_options,
                                   fi=split)
        print("[%s]: %s level balanced accuracy is %f" %
              (timeSince(train_begin_time), model_options.mode,
               metrics['balanced_accuracy']))
        print('[{}]: {}_{}_result_df:'.format(timeSince(train_begin_time),
                                              subset_name, selection))
        print(results_df)
        print('[{}]: {}_{}_metrics:\n{}'.format(timeSince(train_begin_time),
                                                subset_name, selection,
                                                metrics))
        wandb.log({
            '{}_accuracy_{}_singel_model'.format(subset_name, selection):
            metrics['accuracy'],
            '{}_balanced_accuracy_{}_singel_model'.format(
                subset_name, selection):
            metrics['balanced_accuracy'],
            '{}_sensitivity_{}_singel_model'.format(subset_name, selection):
            metrics['sensitivity'],
            '{}_specificity_{}_singel_model'.format(subset_name, selection):
            metrics['specificity'],
            '{}_ppv_{}_singel_model'.format(subset_name, selection):
            metrics['ppv'],
            '{}_npv_{}_singel_model'.format(subset_name, selection):
            metrics['npv'],
            '{}_total_loss_{}_singel_model'.format(subset_name, selection):
            metrics['total_loss'],
        })

        mode_level_to_tsvs(output_dir,
                           results_df,
                           metrics,
                           split,
                           selection,
                           model_options.mode,
                           dataset=subset_name)

        # Soft voting
        if model_options.mode in ["patch", "roi", "slice"]:
            soft_voting_to_tsvs(
                output_dir,
                split,
                selection=selection,
                mode=model_options.mode,
                dataset=subset_name,
                selection_threshold=model_options.selection_threshold)
        # return metric dict
        metric_temp_dict = {
            '{}_accuracy_{}_singel_model'.format(subset_name, selection):
            metrics['accuracy'],
            '{}_balanced_accuracy_{}_singel_model'.format(
                subset_name, selection):
            metrics['balanced_accuracy'],
            '{}_sensitivity_{}_singel_model'.format(subset_name, selection):
            metrics['sensitivity'],
            '{}_specificity_{}_singel_model'.format(subset_name, selection):
            metrics['specificity'],
            '{}_ppv_{}_singel_model'.format(subset_name, selection):
            metrics['ppv'],
            '{}_npv_{}_singel_model'.format(subset_name, selection):
            metrics['npv'],
            '{}_total_loss_{}_singel_model'.format(subset_name, selection):
            metrics['total_loss'],
        }
        metric_dict.update(metric_temp_dict)
    return metric_dict