コード例 #1
0
    # turn into predictions
    with open('submission.csv') as fh:
        lines = fh.readlines()[1:] # ignore first line
    preds = [line.strip().split(',')[1] for line in lines]
    return preds

# pickle function and write to appropriate location
s = six.StringIO()
c = CloudPickler(s, 2)
c.dump(libffm)
serialized_prediction_function = s.getvalue()
filepath = 'docker/lib/func.pkl'
with open(filepath, 'w') as fh:
    fh.write(serialized_prediction_function)

# refresh creds
os.system('gcloud container clusters get-credentials redis-cluster')
os.system('kubectl cluster-info')

clipper_conn = ClipperConnection(KubernetesContainerManager(clipper_ip, useInternalIP=True))
clipper_conn.connect()

# Build model and deploy to clipper
version = int(time.time())
clipper_conn.build_and_deploy_model('ffm', version, 'strings', 'docker/lib', 'clipper/python-closure-container:develop', container_registry='ryanhoque')
# Uncomment the following if first time
#clipper_conn.link_model_to_app(app_name="testbed", model_name="ffm") 

# finally deploy new version of model to clipper (set version as timestamp)
print('Successfully deployed model ffm version ' + str(version) + ' to Clipper.')
コード例 #2
0
import sys
sys.path.insert(0,
                '/Users/xunzhang/Desktop/2018/github/clipper/clipper_admin/')
import tensorflow as tf
from clipper_admin import ClipperConnection, DockerContainerManager
from clipper_admin.deployers.tensorflow import deploy_tensorflow_model

cur_dir = os.path.dirname(os.path.abspath(__file__))

app_name = "tf-lr-app"
model_name = "tf-lr-model"

if __name__ == "__main__":
    clipper_conn = ClipperConnection(DockerContainerManager())
    clipper_conn.stop_all()
    clipper_conn.start_clipper()
    clipper_conn.register_application(name=app_name,
                                      input_type="integers",
                                      default_output="rabbit",
                                      slo_micros=100000)
    print(os.path.abspath("data"))
    clipper_conn.build_and_deploy_model(
        name=model_name,
        version=1,
        input_type="integers",
        model_data_path=os.path.abspath("data"),
        base_image="xunzhang/tf_lr_container:latest",
        num_replicas=1)
    clipper_conn.link_model_to_app(app_name, model_name)
    print(clipper_conn.get_clipper_logs())