コード例 #1
0
 def test_missing_column_names(self):
     column_names = [
         'given name', 'surname', 'email address', 'join date',
         'account type'
     ]  # missing 'age'
     msg = 'Expected missing column name to throw FormatError.'
     with self.assertRaises(FormatError, msg=msg):
         validate_header(self.fields, column_names)
コード例 #2
0
 def test_invalid_column_names(self):
     column_names = [
         'given name', 'surname', 'email address', 'age', 'join date',
         'nonexistent field'
     ]
     msg = 'Expected invalid column name to throw FormatError.'
     with self.assertRaises(FormatError, msg=msg):
         validate_header(self.fields, column_names)
コード例 #3
0
ファイル: clk.py プロジェクト: hardbyte/clkhash
def generate_clk_from_csv(
        input_f,  # type: TextIO
        keys,  # type: Tuple[AnyStr, AnyStr]
        schema,  # type: Schema
        validate=True,  # type: bool
        header=True,  # type: Union[bool, AnyStr]
        progress_bar=True  # type: bool
):
    # type: (...) -> List[str]
    """ Generate Bloom filters from CSV file, then serialise them.

        This function also computes and outputs the Hamming weight
        (a.k.a popcount -- the number of bits set to high) of the
        generated Bloom filters.

        :param input_f: A file-like object of csv data to hash.
        :param keys: A tuple of two lists of secret keys.
        :param schema: Schema specifying the record formats and
            hashing settings.
        :param validate: Set to `False` to disable validation of
            data against the schema. Note that this will silence
            warnings whose aim is to keep the hashes consistent between
            data sources; this may affect linkage accuracy.
        :param header: Set to `False` if the CSV file does not have
            a header. Set to `'ignore'` if the CSV file does have a
            header but it should not be checked against the schema.
        :param bool progress_bar: Set to `False` to disable the progress
            bar.
        :return: A list of serialized Bloom filters and a list of
            corresponding popcounts.
    """
    if header not in {False, True, 'ignore'}:
        raise ValueError(
            "header must be False, True or 'ignore' but is {}.".format(header))

    log.info("Hashing data")

    # Read from CSV file
    reader = unicode_reader(input_f)

    if header:
        column_names = next(reader)
        if header != 'ignore':
            validate_header(schema.fields, column_names)

    start_time = time.time()

    # Read the lines in CSV file and add it to PII
    pii_data = []
    for line in reader:
        pii_data.append(tuple(element.strip() for element in line))

    validate_row_lengths(schema.fields, pii_data)

    if progress_bar:
        stats = OnlineMeanVariance()
        with tqdm(desc="generating CLKs",
                  total=len(pii_data),
                  unit='clk',
                  unit_scale=True,
                  postfix={
                      'mean': stats.mean(),
                      'std': stats.std()
                  }) as pbar:

            def callback(tics, clk_stats):
                stats.update(clk_stats)
                pbar.set_postfix(mean=stats.mean(),
                                 std=stats.std(),
                                 refresh=False)
                pbar.update(tics)

            results = generate_clks(pii_data,
                                    schema,
                                    keys,
                                    validate=validate,
                                    callback=callback)
    else:
        results = generate_clks(pii_data, schema, keys, validate=validate)

    log.info("Hashing took {:.2f} seconds".format(time.time() - start_time))
    return results
コード例 #4
0
 def test_good_column_names(self):
     column_names = [
         'given name', 'surname', 'email address', 'age', 'join date',
         'account type'
     ]
     validate_header(self.fields, column_names)  # This should not throw