def main(args): fts.index('fts_index', Word.fts, DBSession.bind) DBSession.execute("CREATE EXTENSION IF NOT EXISTS unaccent WITH SCHEMA public;") data = Data() dataset = common.Dataset( id=dictionaria.__name__, name="Dictionaria", description="The Dictionary Journal", published=date(2017, 3, 30), contact='*****@*****.**', domain='dictionaria.clld.org', publisher_name="Max Planck Institute for the Science of Human History", publisher_place="Jena", publisher_url="https://shh.mpg.de", license="http://creativecommons.org/licenses/by/4.0/", jsondata={ 'license_icon': 'cc-by.png', 'license_name': 'Creative Commons Attribution 4.0 International License'}) for i, (id_, name) in enumerate([ ('haspelmathmartin', 'Martin Haspelmath'), ('moselulrike', 'Ulrike Mosel'), ('stiebelsbarbara', 'Barbara Stiebels') ]): ed = data.add(common.Contributor, id_, id=id_, name=name) common.Editor(dataset=dataset, contributor=ed, ord=i + 1) DBSession.add(dataset) for id_, name in LGR_ABBRS.items(): DBSession.add(common.GlossAbbreviation(id=id_, name=name)) comparison_meanings = {} print('loading concepts ...') glosses = set() concepticon = Concepticon( REPOS.joinpath('..', '..', 'concepticon', 'concepticon-data')) if not args.no_concepts: for conceptset in concepticon.conceptsets.values(): if conceptset.gloss in glosses: continue glosses.add(conceptset.gloss) cm = data.add( ComparisonMeaning, conceptset.id, id=conceptset.id, name=conceptset.gloss.lower(), description=conceptset.definition, concepticon_url='http://concepticon.clld.org/parameters/%s' % conceptset.id) comparison_meanings[cm.id] = cm DBSession.flush() print('... done') comparison_meanings = {k: v.pk for k, v in comparison_meanings.items()} submissions = [] for submission in REPOS.joinpath( 'submissions-internal' if args.internal else 'submissions').glob('*'): if not submission.is_dir(): continue try: submission = Submission(submission) except ValueError: continue md = submission.md if md is None: continue if not md['date_published']: continue id_ = submission.id if args.dict and args.dict != id_ and args.dict != 'all': continue lmd = md['language'] props = md.get('properties', {}) props.setdefault('custom_fields', []) props['metalanguage_styles'] = {} for v, s in zip(props.get('metalanguages', {}).values(), ['success', 'info', 'warning', 'important']): props['metalanguage_styles'][v] = s props['custom_fields'] = ['lang-' + f if f in props['metalanguage_styles'] else f for f in props['custom_fields']] language = data['Variety'].get(lmd['glottocode']) if not language: language = data.add( Variety, lmd['glottocode'], id=lmd['glottocode'], name=lmd['name']) md['date_published'] = md['date_published'] or date.today().isoformat() if '-' not in md['date_published']: md['date_published'] = md['date_published'] + '-01-01' dictionary = data.add( Dictionary, id_, id=id_, number=md.get('number'), name=props.get('title', lmd['name'] + ' dictionary'), description=submission.description, language=language, published=date(*map(int, md['date_published'].split('-'))), jsondata=props) for i, spec in enumerate(md['authors']): if not isinstance(spec, dict): cname, address = spec, None spec = {} else: cname, address = spec['name'], spec.get('affiliation') name = HumanName(cname) cid = slug('%s%s' % (name.last, name.first)) contrib = data['Contributor'].get(cid) if not contrib: contrib = data.add( common.Contributor, cid, id=cid, name=cname, address=address, url=spec.get('url'), email=spec.get('email')) DBSession.add(common.ContributionContributor( ord=i + 1, primary=True, contributor=contrib, contribution=dictionary)) submissions.append((dictionary.id, language.id, submission)) transaction.commit() for did, lid, submission in submissions: #if submission.id != 'sidaama': # continue transaction.begin() print('loading %s ...' % submission.id) dictdata = Data() lang = Variety.get(lid) submission.load_examples(Dictionary.get(did), dictdata, lang) submission.dictionary.load( submission, dictdata, Dictionary.get(did), lang, comparison_meanings, OrderedDict(submission.md.get('properties', {}).get('labels', []))) transaction.commit() print('... done') transaction.begin() load_families( Data(), [v for v in DBSession.query(Variety) if re.match('[a-z]{4}[0-9]{4}', v.id)], glottolog_repos='../../glottolog3/glottolog')
"TD": "time depth/ proximality marker", "TELIC": "telic", "TEMPRY": "temporary", "TH": "thematic suffix", "THM": "theme (i.e. the semantic role)", "TOD.PST": "today past", "TRASL": "traslative", "TRI": "trial", "UNSP": "unspecified", "VBLZ": "verbalizer", "VENT": "ventive", "VIS": "visual evidential", "VP": "verb phrase", } for k, v in LGR_ABBRS.items(): ABBRS.setdefault(k, v) def get_source(id): # pragma: no cover """retrieve a source record from wals_refdb """ field_map = { "onlineversion": "url", "gbs_id": "google_book_search_id", "doi": "jsondata", "cited": "jsondata", "conference": "jsondata", "iso_code": "jsondata", "olac_field": "jsondata", "wals_code": "jsondata",
def main(args): data = Data() files_dir.rmtree() files_dir.mkdir() editors = OrderedDict() editors['Susanne Maria Michaelis'] = None editors['Philippe Maurer'] = None editors['Martin Haspelmath'] = None editors['Magnus Huber'] = None for row in read('People'): name = row['First name'] + ' ' if row['First name'] else '' name += row['Last name'] kw = dict( name=name, id=slug('%(Last name)s%(First name)s' % row), url=row['Contact Website'].split()[0] if row['Contact Website'] else None, address=row['Comments on database'], ) contrib = data.add(common.Contributor, row['Author ID'], **kw) if kw['name'] in editors: editors[kw['name']] = contrib DBSession.flush() dataset = common.Dataset( id='apics', name='APiCS Online', description='Atlas of Pidgin and Creole Language Structures Online', domain='apics-online.info', published=date(2013, 8, 15), # # TODO: switch license! # license='http://creativecommons.org/licenses/by/3.0/', contact='*****@*****.**', jsondata={ 'license_icon': 'cc-by.png', 'license_name': 'Creative Commons Attribution 3.0 Unported License'}) DBSession.add(dataset) for i, editor in enumerate(editors.values()): common.Editor(dataset=dataset, contributor=editor, ord=i + 1) colors = dict((row['ID'], row['RGB_code']) for row in read('Colours')) abbrs = {} for id_, name in LGR_ABBRS.items(): DBSession.add(common.GlossAbbreviation(id=id_, name=name)) abbrs[id_] = 1 for id_, name in { 'C**T': 'clitic', 'IMPF': 'imperfect', 'INTERM': 'intermediate', 'NCOMPL': 'noncompletive', 'NONFUT': 'nonfuture', 'NPROX': 'nonproximal', 'NSG': 'nonsingular', 'PP': 'past participle', 'PROP': 'proprietive', 'TMA': 'tense-mood-aspect', }.items(): DBSession.add(common.GlossAbbreviation(id=id_, name=name)) abbrs[id_] = 1 with open(data_dir.joinpath('non-lgr-gloss-abbrs.csv'), 'rb') as csvfile: for row in csv.reader(csvfile): for match in GLOSS_ABBR_PATTERN.finditer(row[1]): if match.group('abbr') not in abbrs: abbrs[match.group('abbr')] = 1 DBSession.add( common.GlossAbbreviation(id=match.group('abbr'), name=row[0])) non_bibs = {} for row in read('References', 'Reference_ID'): if row['Reference_type'] == 'Non-bib': non_bibs[row['Reference_ID']] = row['Reference_name'] continue if isinstance(row['Year'], int): year_int = row['Year'] year = str(row['Year']) elif row['Year']: year_int = None for m in re.finditer('(?P<year>(1|2)[0-9]{3})', row['Year']): year_int = int(m.group('year')) break year = row['Year'] else: year, year_int = None, None title = row['Article_title'] or row['Book_title'] attrs = {} jsondata = {} for attr, field in { 'Additional_information': 'note', 'Article_title': 'title', 'Book_title': 'booktitle', 'City': 'address', 'Editors': 'editor', 'Full_reference': None, 'Issue': None, 'Journal': 'journal', 'Language_codes': None, 'LaTeX_cite_key': None, 'Pages': 'pages', 'Publisher': 'publisher', 'Reference_type': 'type', 'School': 'school', 'Series_title': 'series', 'URL': 'url', 'Volume': 'volume', }.items(): value = row.get(attr) if not isinstance(value, int): value = (value or '').strip() if attr == 'Issue' and value: try: value = str(int(value)) except ValueError: pass if value: if field: attrs[field] = value else: jsondata[attr] = value p = data.add( common.Source, row['Reference_ID'], id=row['Reference_ID'], name=row['Reference_name'], description=title, author=row['Authors'], year=year, year_int=year_int, bibtex_type=getattr(EntryType, row['BibTeX_type'] or 'misc'), jsondata=jsondata, **attrs) if p.bibtex_type.value == 'misc' and not p.description: p.description = p.note DBSession.flush() DBSession.flush() gt = {} p = re.compile('[0-9]+\_(?P<name>[^\_]+)\_(GT|Text)') for d in data_dir.joinpath('gt').files(): m = p.search(unicode(d.basename())) if m: for part in m.group('name').split('&'): # make sure we prefer files named "Text_for_soundfile" if slug(unicode(part)) not in gt or 'Text_for_' in d.basename(): gt[slug(unicode(part))] = d gt_audio = {} p = re.compile('(?P<name>[^\.]+)\.mp3') for d in data_dir.joinpath('gt', 'audio').files(): m = p.search(unicode(d.basename())) assert m for part in m.group('name').split('&'): gt_audio[slug(unicode(part))] = d with open(args.data_file('infobox.json')) as fp: infobox = json.load(fp) for row in read('Languages', 'Order_number'): lon, lat = [float(c.strip()) for c in row['map_coordinates'].split(',')] kw = dict( name=row['Language_name'], id=str(row['Order_number']), latitude=lat, longitude=lon, region=row['Category_region'], #base_language=row['Category_base_language'], ) lect = data.add(models.Lect, row['Language_ID'], **kw) DBSession.flush() for i, item in enumerate(infobox[lect.id]): DBSession.add(common.Language_data( object_pk=lect.pk, ord=i, key=item[0], value=item[1])) if row["Languages_contribution_documentation::Lect_description_checked_status"] == "Checked": desc = row.get('Languages_contribution_documentation::Lect description', '') else: desc = '' c = data.add( models.ApicsContribution, row['Language_ID'], id=row['Order_number'], name=row['Language_name'], description=desc, survey_reference=data['Source'][row['Survey_reference_ID']], language=lect) if slug(row['Language_name']) in gt: f = common.Contribution_files( object=c, id='%s-gt.pdf' % c.id, name='Glossed text', mime_type='application/pdf') f.create(files_dir, file(gt[slug(row['Language_name'])]).read()) else: print '--- no glossed text for:', row['Language_name'] if slug(row['Language_name']) in gt_audio: f = common.Contribution_files( object=c, id='%s-gt.mp3' % c.id, name='Glossed text audio', mime_type='audio/mpeg') f.create(files_dir, file(gt_audio[slug(row['Language_name'])]).read()) else: print '--- no audio for:', row['Language_name'] # # TODO: for michif, 75, add link http://www.youtube.com/watch?v=f0C4cODsSyE # iso = None if row['ISO_code'] and len(row['ISO_code']) == 3: iso = row['ISO_code'].lower() if 'iso:%s' % row['ISO_code'] not in data['Identifier']: data.add( common.Identifier, 'iso:%s' % row['ISO_code'], id=row['ISO_code'].lower(), name=row['ISO_code'].lower(), type='iso639-3') DBSession.add(common.LanguageIdentifier( language=data['Lect'][row['Language_ID']], identifier=data['Identifier']['iso:%s' % row['ISO_code']])) if row['Language_name_ethnologue']: if row['Language_name_ethnologue'] not in data['Identifier']: data.add( common.Identifier, row['Language_name_ethnologue'], id=iso or 'ethnologue:%s' % row['Language_name_ethnologue'], name=row['Language_name_ethnologue'], type='ethnologue') DBSession.add(common.LanguageIdentifier( language=data['Lect'][row['Language_ID']], identifier=data['Identifier'][row['Language_name_ethnologue']])) example_count = {} soundfiles = {} for p in data_dir.joinpath('Soundfiles_Examples').files(): soundfiles[p.namebase] = p for row in read('Examples', 'Order_number'): assert row['Language_ID'] lang = data['Lect'][row['Language_ID']] id_ = '%(Language_ID)s-%(Example_number)s' % row atext, gloss = igt(row) example_count[row['Language_ID']] = max([example_count.get(row['Language_ID'], 1), row['Example_number']]) p = data.add( common.Sentence, id_, id='%s-%s' % (lang.id, row['Example_number']), name=row['Text'] or row['Analyzed_text'], description=row['Translation'], type=row['Type'].strip().lower() if row['Type'] else None, comment=row['Comments'], gloss=gloss, analyzed=atext, markup_text=normalize_markup(row['z_calc_Text_CSS']), markup_gloss=normalize_markup(row['z_calc_Gloss_CSS']), markup_comment=normalize_markup(row['z_calc_Comments_CSS']), markup_analyzed=normalize_markup(row['z_calc_Analyzed_text_CSS']), original_script=row['Original_script'], jsondata={'sort': row['Order_number']}, language=lang) if id_ in soundfiles: #print '---> sound', id_ f = common.Sentence_files( object=p, id='%s.mp3' % p.id, name='Audio', mime_type='audio/mpeg') f.create(files_dir, file(soundfiles[id_]).read()) if row['Reference_ID']: if row['Reference_ID'] in data['Source']: source = data['Source'][row['Reference_ID']] DBSession.add(common.SentenceReference( sentence=p, source=source, key=source.id, description=row['Reference_pages'], )) else: p.source = non_bibs[row['Reference_ID']] DBSession.flush() for row in read('Language_references'): if row['Reference_ID'] not in data['Source']: assert row['Reference_ID'] in non_bibs continue assert row['Language_ID'] in data['ApicsContribution'] source = data['Source'][row['Reference_ID']] DBSession.add(common.ContributionReference( contribution=data['ApicsContribution'][row['Language_ID']], source=source, description=row['Pages'], key=source.id)) # # global counter for features - across feature types # feature_count = 0 for row in read('Features', 'Feature_number'): id_ = str(row['Feature_number']) if int(id_) > feature_count: feature_count = int(id_) wals_id = None if row['WALS_match'] == 'Total': if isinstance(row['WALS_No.'], int): wals_id = row['WALS_No.'] else: wals_id = int(row['WALS_No.'].split('.')[0].strip()) p = data.add( models.Feature, row['Feature_code'], name=row['Feature_name'], id=id_, description=row['Feature_annotation_publication'], markup_description=normalize_markup(row['z_calc_Feature_annotation_publication_CSS']), feature_type='primary', multivalued=row['Value_relation_type'] != 'Single', area=row['Feature_area'], wals_id=wals_id) names = {} for i in range(1, 10): if not row['Value%s_publication' % i] or not row['Value%s_publication' % i].strip(): continue name = row['Value%s_publication' % i].strip() if name in names: name += ' (%s)' % i names[name] = 1 de = data.add( common.DomainElement, '%s-%s' % (row['Feature_code'], i), id='%s-%s' % (id_, i), name=name, parameter=p, abbr=row['Value%s_for_book_maps' % i] if p.id != '0' else name, number=int(row['Value%s_value_number_for_publication' % i]), jsondata={'color': colors[row['Value_%s_colour_ID' % i]]}, ) if row['Authors_FeatureArticles']: authors, _ = row['Authors_FeatureArticles'].split('and the APiCS') authors = authors.strip() if authors.endswith(','): authors = authors[:-1].strip() for i, name in enumerate(authors.split(',')): assert name.strip() in editors p._authors.append(models.FeatureAuthor( ord=i + 1, contributor=editors[name.strip()])) DBSession.flush() primary_to_segment = {123: 63, 126: 35, 128: 45, 130: 41} segment_to_primary = dict(zip( primary_to_segment.values(), primary_to_segment.keys())) number_map = {} names = {} for row in read('Segment_features', 'Order_number'): symbol = row['Segment_symbol'] if row['Segment_name'] == 'voiceless dental/alveolar sibilant affricate': symbol = 't\u0361s' truth = lambda s: s and s.strip().lower() == 'yes' name = '%s - %s' % (symbol, row['Segment_name']) if name in names: number_map[row['Segment_feature_number']] = names[name] continue number_map[row['Segment_feature_number']] = row['Segment_feature_number'] names[name] = row['Segment_feature_number'] feature_count += 1 if row['Segment_feature_number'] in segment_to_primary: primary_to_segment[segment_to_primary[row['Segment_feature_number']]] = str(feature_count) p = data.add( models.Feature, row['Segment_feature_number'], name=name, id=str(feature_count), feature_type='segment', area='Vowels' if truth(row['Vowel']) else ( 'Obstruent consonants' if truth(row['Obstruent']) else 'Sonorant consonants'), jsondata=dict( number=int(row['Segment_feature_number']), vowel=truth(row['Vowel']), consonant=truth(row['Consonant']), obstruent=truth(row['Obstruent']), core_list=truth(row['Core_list_segment']), symbol=symbol, )) for i, spec in SEGMENT_VALUES.items(): data.add( common.DomainElement, '%s-%s' % (row['Segment_feature_number'], spec[0]), id='%s-%s' % (p.id, i), name=spec[0], parameter=p, jsondata={'color': spec[1]}, number=i) print '--> remapped:', primary_to_segment DBSession.flush() for row in read('Sociolinguistic_features', 'Sociolinguistic_feature_number'): feature_count += 1 p = data.add( models.Feature, row['Sociolinguistic_feature_code'], name=row['Sociolinguistic_feature_name'], id='%s' % feature_count, area='Sociolinguistic', feature_type='sociolinguistic') names = {} for i in range(1, 7): id_ = '%s-%s' % (row['Sociolinguistic_feature_code'], i) if row['Value%s' % i] and row['Value%s' % i].strip(): name = row['Value%s' % i].strip() if name in names: name += ' (%s)' % i names[name] = 1 else: name = '%s - %s' % (row['Sociolinguistic_feature_name'], i) kw = dict(id='%s-%s' % (p.id, i), name=name, parameter=p, number=i) de = data.add( common.DomainElement, id_, id='%s-%s' % (p.id, i), name=name, parameter=p, number=i, jsondata={'color': colors.values()[i]}) sd = {} soundfiles = {} for p in data_dir.joinpath('Soundfiles_Segments').files(): soundfiles[p.namebase] = p for row in read('Segment_data'): if row['Segment_feature_number'] not in number_map: continue number = number_map[row['Segment_feature_number']] #Language_ID,Segment_feature_number,Comments,Audio_file_name,Example_word, #Example_word_gloss,Presence_in_the_language,Refers_to_references_Reference_ID if not row['Presence_in_the_language']: continue lang = data['Lect'][row['Language_ID']] param = data['Feature'][number] id_ = '%s-%s' % (lang.id, param.id) if id_ in sd: assert row['c_Record_is_a_duplicate'] == 'Yes' continue sd[id_] = 1 valueset = data.add( common.ValueSet, id_, id=id_, parameter=param, language=lang, contribution=data['ApicsContribution'][row['Language_ID']], description=row['Comments'], markup_description=normalize_markup(row['z_calc_Comments_CSS']), ) v = data.add( common.Value, id_, id=id_, frequency=float(100), valueset=valueset, domainelement=data['DomainElement']['%s-%s' % ( number, row['Presence_in_the_language'])], ) if row['Example_word'] and row['Example_word_gloss']: example_count[row['Language_ID']] += 1 p = data.add( common.Sentence, '%s-p%s' % (lang.id, data['Feature'][number].id), id='%s-%s' % (lang.id, example_count[row['Language_ID']]), name=row['Example_word'], description=row['Example_word_gloss'], language=lang) sid = '%(Language_ID)s-%(Segment_feature_number)s' % row if sid in soundfiles: print '---> sound', sid f = common.Sentence_files( object=p, id='%s.mp3' % p.id, name='Audio', mime_type='audio/mpeg') f.create(files_dir, file(soundfiles[sid]).read()) DBSession.add(common.ValueSentence(value=v, sentence=p)) source = data['Source'].get(row['Refers_to_references_Reference_ID']) if source: DBSession.add(common.ValueSetReference( valueset=valueset, source=source, key=source.id)) elif row['Refers_to_references_Reference_ID'] in non_bibs: valueset.source = non_bibs[row['Refers_to_references_Reference_ID']] lects = defaultdict(lambda: 1) lect_map = {} records = {} false_values = {} no_values = {} wals_value_number = {} for row in read('wals'): if row['z_calc_WALS_value_number']: wals_value_number[row['Data_record_id']] = row['z_calc_WALS_value_number'] def prefix(attr, _prefix): if _prefix: return '%s_%s' % (_prefix, attr) return attr.capitalize() for _prefix, abbr, num_values in [ ('', '', 10), ('Sociolinguistic', 'sl', 7), ]: for row in read(prefix('data', _prefix)): if not row[prefix('feature_code', _prefix)]: print 'no associated feature for', prefix('data', _prefix), row[prefix('data_record_id', _prefix)] continue lid = row['Language_ID'] lect_attr = row.get('Lect_attribute', 'my default lect').lower() if lect_attr != 'my default lect': if (row['Language_ID'], row['Lect_attribute']) in lect_map: lid = lect_map[(row['Language_ID'], row['Lect_attribute'])] else: lang = data['Lect'][row['Language_ID']] c = lects[row['Language_ID']] lid = '%s-%s' % (row['Language_ID'], c) kw = dict( name='%s (%s)' % (lang.name, row['Lect_attribute']), id='%s' % (1000 + 10 * int(lang.id) + c), latitude=lang.latitude, longitude=lang.longitude, description=row['Lect_attribute'], language=lang, ) data.add(models.Lect, lid, **kw) lects[row['Language_ID']] += 1 lect_map[(row['Language_ID'], row['Lect_attribute'])] = lid id_ = abbr + str(row[prefix('data_record_id', _prefix)]) assert id_ not in records records[id_] = 1 assert row[prefix('feature_code', _prefix)] in data['Feature'] #if row[prefix('feature_code', _prefix)] not in data['Feature']: # print row[prefix('feature_code', _prefix)] # print str(row[prefix('data_record_id', _prefix)]) # raise ValueError language = data['Lect'][lid] parameter = data['Feature'][row[prefix('feature_code', _prefix)]] valueset = common.ValueSet( id='%s-%s' % (language.id, parameter.id), description=row['Comments_on_value_assignment'], markup_description=normalize_markup(row.get('z_calc_Comments_on_value_assignment_CSS')), ) values_found = {} for i in range(1, num_values): if not row['Value%s_true_false' % i]: continue if row['Value%s_true_false' % i].strip().lower() != 'true': assert row['Value%s_true_false' % i].strip().lower() == 'false' false_values[row[prefix('data_record_id', _prefix)]] = 1 continue values_found['%s-%s' % (id_, i)] = dict( id='%s-%s' % (valueset.id, i), #valueset=valueset, domainelement=data['DomainElement']['%s-%s' % ( row[prefix('feature_code', _prefix)], i)], confidence=row['Value%s_confidence' % i], frequency=float(row['c_V%s_frequency_normalised' % i]) if _prefix == '' else 100) if values_found: if row[prefix('data_record_id', _prefix)] in wals_value_number: valueset.jsondata = {'wals_value_number': wals_value_number.pop(row[prefix('data_record_id', _prefix)])} valueset.parameter = parameter valueset.language = language valueset.contribution = data['ApicsContribution'][row['Language_ID']] valueset = data.add(common.ValueSet, id_, _obj=valueset) for i, item in enumerate(values_found.items()): if i > 0 and not parameter.multivalued: print 'multiple values for single-valued parameter: %s' % id_ break id_, kw = item kw['valueset'] = valueset value = data.add(common.Value, id_, **kw) # # store references to additional data for segments which should be reused # for corresponding primary features! # if int(parameter.id) in primary_to_segment: assert len(values_found) == 1 seg_id = '%s-%s' % (language.id, primary_to_segment[int(parameter.id)]) seg_valueset = data['ValueSet'][seg_id] seg_value = data['Value'][seg_id] if not valueset.description and seg_valueset.description: valueset.description = seg_valueset.description for s in seg_value.sentence_assocs: DBSession.add(common.ValueSentence(value=value, sentence=s.sentence)) for r in seg_valueset.references: DBSession.add(common.ValueSetReference( valueset=valueset, source=r.source, key=r.key)) if not valueset.source and seg_valueset.source: valueset.source = seg_valueset.source DBSession.flush() else: no_values[id_] = 1 DBSession.flush() for prefix, abbr, num_values in [ ('D', '', 10), ('Sociolinguistic_d', 'sl', 7), ]: for row in read(prefix + 'ata_references'): assert row['Reference_ID'] in data['Source'] or row['Reference_ID'] in non_bibs try: vs = data['ValueSet'][abbr + str(row[prefix + 'ata_record_id'])] if row['Reference_ID'] in data['Source']: source = data['Source'][row['Reference_ID']] DBSession.add(common.ValueSetReference( valueset=vs, source=source, key=source.id, description=row['Pages'], )) else: if vs.source: vs.source += '; ' + non_bibs[row['Reference_ID']] else: vs.source = non_bibs[row['Reference_ID']] except KeyError: print('Reference for unknown dataset: %s' % row[prefix + 'ata_record_id']) continue DBSession.flush() missing = 0 for row in read('Value_examples'): try: DBSession.add(common.ValueSentence( value=data['Value']['%(Data_record_id)s-%(Value_number)s' % row], sentence=data['Sentence']['%(Language_ID)s-%(Example_number)s' % row], description=row['Notes'], )) except KeyError: missing += 1 print('%s Value_examples are missing data' % missing) print('%s data sets with false values' % len(false_values)) print('%s data sets without values' % len(no_values)) for k, v in wals_value_number.items(): print 'unclaimed wals value number:', k, v for i, row in enumerate(read('Contributors')): kw = dict( contribution=data['ApicsContribution'][row['Language ID']], contributor=data['Contributor'][row['Author ID']] ) if row['Order_of_appearance']: kw['ord'] = int(float(row['Order_of_appearance'])) data.add(common.ContributionContributor, i, **kw) DBSession.flush()
def main(args): fts.index('fts_index', Word.fts, DBSession.bind) DBSession.execute("CREATE EXTENSION IF NOT EXISTS unaccent WITH SCHEMA public;") if DBSession.bind.dialect.name == 'postgresql': Index('ducet', collkey(common.Unit.name)).create(DBSession.bind) data = Data() dataset = common.Dataset( id=dictionaria.__name__, name="Dictionaria", description="The Dictionary Journal", published=date(2017, 3, 30), contact='*****@*****.**', domain='dictionaria.clld.org', publisher_name="Max Planck Institute for the Science of Human History", publisher_place="Jena", publisher_url="https://shh.mpg.de", license="http://creativecommons.org/licenses/by/4.0/", jsondata={ 'license_icon': 'cc-by.png', 'license_name': 'Creative Commons Attribution 4.0 International License'}) for i, (id_, name) in enumerate([ ('haspelmathmartin', 'Martin Haspelmath'), ('stiebelsbarbara', 'Barbara Stiebels') ]): ed = data.add(common.Contributor, id_, id=id_, name=name) common.Editor(dataset=dataset, contributor=ed, ord=i + 1) DBSession.add(dataset) for id_, name in LGR_ABBRS.items(): DBSession.add(common.GlossAbbreviation(id=id_, name=name)) comparison_meanings = {} print('loading concepts ...') glosses = set() concepticon = Concepticon( REPOS.joinpath('..', '..', 'concepticon', 'concepticon-data')) if not args.no_concepts: for conceptset in concepticon.conceptsets.values(): if conceptset.gloss in glosses: continue glosses.add(conceptset.gloss) cm = data.add( ComparisonMeaning, conceptset.id, id=conceptset.id, name=conceptset.gloss.lower(), description=conceptset.definition, concepticon_url='http://concepticon.clld.org/parameters/%s' % conceptset.id) comparison_meanings[cm.id] = cm DBSession.flush() print('... done') comparison_meanings = {k: v.pk for k, v in comparison_meanings.items()} submissions = [] for submission in REPOS.joinpath( 'submissions-internal' if args.internal else 'submissions').glob('*'): if not submission.is_dir(): continue try: submission = Submission(submission) except ValueError: continue md = submission.md if md is None: print('no md', submission.id) continue if not md['date_published']: print('no date', submission.id) continue id_ = submission.id if args.dict and args.dict != id_ and args.dict != 'all': print('not selected', submission.id) continue lmd = md['language'] props = md.get('properties', {}) props.setdefault('custom_fields', []) props['metalanguage_styles'] = {} for v, s in zip(props.get('metalanguages', {}).values(), ['success', 'info', 'warning', 'important']): props['metalanguage_styles'][v] = s props['custom_fields'] = ['lang-' + f if f in props['metalanguage_styles'] else f for f in props['custom_fields']] props.setdefault('choices', {}) language = data['Variety'].get(lmd['glottocode']) if not language: language = data.add( Variety, lmd['glottocode'], id=lmd['glottocode'], name=lmd['name']) md['date_published'] = md['date_published'] or date.today().isoformat() if '-' not in md['date_published']: md['date_published'] = md['date_published'] + '-01-01' dictionary = data.add( Dictionary, id_, id=id_, number=md.get('number'), name=props.get('title', lmd['name'] + ' dictionary'), description=submission.description, language=language, published=date(*map(int, md['date_published'].split('-'))), doi=md.get('doi'), jsondata=props) for i, spec in enumerate(md['authors']): if not isinstance(spec, dict): cname, address = spec, None spec = {} else: cname, address = spec['name'], spec.get('affiliation') name = HumanName(cname) cid = slug('%s%s' % (name.last, name.first)) contrib = data['Contributor'].get(cid) if not contrib: contrib = data.add( common.Contributor, cid, id=cid, name=cname, address=address, url=spec.get('url'), email=spec.get('email')) DBSession.add(common.ContributionContributor( ord=i + 1, primary=spec.get('primary', True), contributor=contrib, contribution=dictionary)) submissions.append((dictionary.id, language.id, submission)) transaction.commit() for did, lid, submission in submissions: transaction.begin() print('loading %s ...' % submission.id) dictdata = Data() lang = Variety.get(lid) submission.load_sources(Dictionary.get(did), dictdata) submission.load_examples(Dictionary.get(did), dictdata, lang) submission.dictionary.load( submission, dictdata, Dictionary.get(did), lang, comparison_meanings, OrderedDict(submission.md.get('properties', {}).get('labels', []))) transaction.commit() print('... done') transaction.begin() load_families( Data(), [v for v in DBSession.query(Variety) if re.match('[a-z]{4}[0-9]{4}', v.id)], glottolog_repos='../../glottolog/glottolog')
"TD": "time depth/ proximality marker", "TELIC": "telic", "TEMPRY": "temporary", "TH": "thematic suffix", "THM": "theme (i.e. the semantic role)", "TOD.PST": "today past", "TRASL": "traslative", "TRI": "trial", "UNSP": "unspecified", "VBLZ": "verbalizer", "VENT": "ventive", "VIS": "visual evidential", "VP": "verb phrase", } for k, v in LGR_ABBRS.items(): ABBRS.setdefault(k, v) def get_source(id): # pragma: no cover """retrieve a source record from wals_refdb """ field_map = { 'onlineversion': 'url', 'gbs_id': 'google_book_search_id', 'doi': 'jsondata', 'cited': 'jsondata', 'conference': 'jsondata', 'iso_code': 'jsondata', 'olac_field': 'jsondata', 'wals_code': 'jsondata',
def main(args): data = Data() editors = OrderedDict() editors['Susanne Maria Michaelis'] = None editors['Philippe Maurer'] = None editors['Martin Haspelmath'] = None editors['Magnus Huber'] = None for row in read(args, 'People'): name = row['First name'] + ' ' if row['First name'] else '' name += row['Last name'] kw = dict( name=name, id=slug('%(Last name)s%(First name)s' % row), url=row['Contact Website'].split()[0] if row['Contact Website'] else None, address=row['Comments on database'], ) contrib = data.add(common.Contributor, row['Author ID'], **kw) if kw['name'] in editors: editors[kw['name']] = contrib DBSession.flush() dataset = common.Dataset( id='apics', name='APiCS Online', description='Atlas of Pidgin and Creole Language Structures Online', domain='apics-online.info', published=date(2013, 11, 4), license='http://creativecommons.org/licenses/by/3.0/', contact='*****@*****.**', jsondata={ 'license_icon': 'cc-by.png', 'license_name': 'Creative Commons Attribution 3.0 Unported License' }) DBSession.add(dataset) for i, editor in enumerate(editors.values()): common.Editor(dataset=dataset, contributor=editor, ord=i + 1) colors = dict( (row['ID'], row['RGB_code']) for row in read(args, 'Colours')) abbrs = {} for id_, name in LGR_ABBRS.items(): DBSession.add(common.GlossAbbreviation(id=id_, name=name)) abbrs[id_] = 1 for id_, name in { 'C**T': 'clitic', 'IMPF': 'imperfect', 'INTERM': 'intermediate', 'NCOMPL': 'noncompletive', 'NONFUT': 'nonfuture', 'NPROX': 'nonproximal', 'NSG': 'nonsingular', 'PP': 'past participle', 'PROP': 'proprietive', 'TMA': 'tense-mood-aspect', }.items(): DBSession.add(common.GlossAbbreviation(id=id_, name=name)) abbrs[id_] = 1 for row in reader(args.data_file('non-lgr-gloss-abbrs.csv'), delimiter=',', namedtuples=True): for match in GLOSS_ABBR_PATTERN.finditer(row.standard): if match.group('abbr') not in abbrs: abbrs[match.group('abbr')] = 1 DBSession.add( common.GlossAbbreviation(id=match.group('abbr'), name=row.meaning)) non_bibs = {} for row in read(args, 'References', 'Reference_ID'): if row['Reference_type'] == 'Non-bib': non_bibs[row['Reference_ID']] = row['Reference_name'] continue if isinstance(row['Year'], int): year_int = row['Year'] year = str(row['Year']) elif row['Year']: year_int = None for m in re.finditer('(?P<year>(1|2)[0-9]{3})', row['Year']): year_int = int(m.group('year')) break year = row['Year'] else: year, year_int = None, None title = row['Article_title'] or row['Book_title'] attrs = {} jsondata = {} for attr, field in { 'Additional_information': 'note', 'Article_title': 'title', 'Book_title': 'booktitle', 'City': 'address', 'Editors': 'editor', 'Full_reference': None, 'Issue': None, 'Journal': 'journal', 'Language_codes': None, 'LaTeX_cite_key': None, 'Pages': 'pages', 'Publisher': 'publisher', 'Reference_type': 'type', 'School': 'school', 'Series_title': 'series', 'URL': 'url', 'Volume': 'volume', }.items(): value = row.get(attr) if not isinstance(value, int): value = (value or '').strip() if attr == 'Issue' and value: try: value = str(int(value)) except ValueError: pass if value: if field: attrs[field] = value else: jsondata[attr] = value p = data.add(common.Source, row['Reference_ID'], id=str(row['Reference_ID']), name=row['Reference_name'], description=title, author=row['Authors'], year=year, year_int=year_int, bibtex_type=getattr(EntryType, row['BibTeX_type'] or 'misc'), jsondata=jsondata, **attrs) if p.bibtex_type.value == 'misc' and not p.description: p.description = p.note DBSession.flush() DBSession.flush() infobox = jsonload(args.data_file('infobox.json')) glottocodes = jsonload(args.data_file('glottocodes.json')) for row in read(args, 'Languages', 'Order_number'): lon, lat = [ float(c.strip()) for c in row['map_coordinates'].split(',') ] kw = dict( name=row['Language_name'], id=str(row['Order_number']), latitude=lat, longitude=lon, region=row['Category_region'], ) lect = data.add(models.Lect, row['Language_ID'], **kw) DBSession.flush() for i, item in enumerate(infobox[lect.id]): DBSession.add( common.Language_data(object_pk=lect.pk, ord=i, key=item[0], value=item[1])) if row["Languages_contribution_documentation::Lect_description_checked_status"] \ != "Checked": print 'unchecked! ---', row['Language_name'] desc = row.get( 'Languages_contribution_documentation::Lect description', '') markup_desc = normalize_markup(row[ 'Languages_contribution_documentation::z_calc_GetAsCSS_Lect_description'] ) c = data.add( models.ApicsContribution, row['Language_ID'], id=str(row['Order_number']), name=row['Language_name'], description=desc, markup_description=markup_desc, survey_reference=data['Source'][row['Survey_reference_ID']], language=lect) for ext, label, mtype in [ ('pdf', 'Glossed text', 'application/pdf'), ('mp3', 'Glossed text audio', 'audio/mpeg'), ]: fid = '%s-gt.%s' % (c.id, ext) if args.data_file('files', 'contribution', c.id, fid).exists(): common.Contribution_files(object=c, id=fid, name=label, mime_type=mtype) else: print label, 'missing for:', row['Language_name'] # # TODO: for michif, 75, add link http://www.youtube.com/watch?v=f0C4cODsSyE # iso = None if row['ISO_code'] and len(row['ISO_code']) == 3: iso = row['ISO_code'].lower() if 'iso:%s' % row['ISO_code'] not in data['Identifier']: data.add(common.Identifier, 'iso:%s' % row['ISO_code'], id=row['ISO_code'].lower(), name=row['ISO_code'].lower(), type=common.IdentifierType.iso.value) DBSession.add( common.LanguageIdentifier( language=data['Lect'][row['Language_ID']], identifier=data['Identifier']['iso:%s' % row['ISO_code']])) if lect.id in glottocodes: identifier = data.add(common.Identifier, 'gc:%s' % glottocodes[lect.id], id=glottocodes[lect.id], name=glottocodes[lect.id], type=common.IdentifierType.glottolog.value) DBSession.add( common.LanguageIdentifier( language=data['Lect'][row['Language_ID']], identifier=identifier)) if row['Language_name_ethnologue']: if row['Language_name_ethnologue'] not in data['Identifier']: data.add(common.Identifier, row['Language_name_ethnologue'], id=iso or 'ethnologue:%s' % row['Language_name_ethnologue'], name=row['Language_name_ethnologue'], type='ethnologue') DBSession.add( common.LanguageIdentifier( language=data['Lect'][row['Language_ID']], identifier=data['Identifier'][ row['Language_name_ethnologue']])) example_count = {} for row in read(args, 'Examples', 'Order_number'): assert row['Language_ID'] lang = data['Lect'][row['Language_ID']] id_ = '%(Language_ID)s-%(Example_number)s' % row atext, gloss = igt(row) example_count[row['Language_ID']] = max( [example_count.get(row['Language_ID'], 1), row['Example_number']]) p = add_sentence( args, data, id_, id='%s-%s' % (lang.id, row['Example_number']), name=row['Text'] or row['Analyzed_text'], description=row['Translation'], type=row['Type'].strip().lower() if row['Type'] else None, comment=row['Comments'], gloss=gloss, analyzed=atext, markup_text=normalize_markup(row['z_calc_Text_CSS']), markup_gloss=normalize_markup(row['z_calc_Gloss_CSS']), markup_comment=normalize_markup(row['z_calc_Comments_CSS']), markup_analyzed=normalize_markup(row['z_calc_Analyzed_text_CSS']), original_script=row['Original_script'], jsondata={ 'sort': row['Order_number'], 'alt_translation': (row['Translation_other'] or '').strip() or None }, language=lang) if row['Reference_ID']: if row['Reference_ID'] in data['Source']: source = data['Source'][row['Reference_ID']] DBSession.add( common.SentenceReference( sentence=p, source=source, key=source.id, description=row['Reference_pages'])) else: p.source = non_bibs[row['Reference_ID']] DBSession.flush() for row in read(args, 'Language_references'): if row['Reference_ID'] not in data['Source']: assert row['Reference_ID'] in non_bibs continue assert row['Language_ID'] in data['ApicsContribution'] source = data['Source'][row['Reference_ID']] DBSession.add( common.ContributionReference( contribution=data['ApicsContribution'][row['Language_ID']], source=source, description=row['Pages'], key=source.id)) # # global counter for features - across feature types # feature_count = 0 for row in read(args, 'Features', 'Feature_number'): id_ = str(row['Feature_number']) if int(id_) > feature_count: feature_count = int(id_) wals_id = None desc = row['Feature_annotation_publication'] if row['WALS_match'] == 'Total': if isinstance(row['WALS_No.'], int): wals_id = row['WALS_No.'] else: wals_id = int(row['WALS_No.'].split('.')[0].strip()) p = data.add(models.Feature, row['Feature_code'], name=row['Feature_name'], id=id_, description=desc, markup_description=normalize_markup( row['z_calc_Feature_annotation_publication_CSS']), feature_type='primary', multivalued=row['Value_relation_type'] != 'Single', area=row['Feature_area'], wals_id=wals_id) names = {} for i in range(1, 10): if not row['Value%s_publication' % i] \ or not row['Value%s_publication' % i].strip(): continue name = row['Value%s_publication' % i].strip() if name in names: name += ' (%s)' % i names[name] = 1 de = data.add( common.DomainElement, '%s-%s' % (row['Feature_code'], i), id='%s-%s' % (id_, i), name=name, parameter=p, abbr=row['Value%s_for_book_maps' % i] if p.id != '0' else name, number=int(row['Value%s_value_number_for_publication' % i]), jsondata={'color': colors[row['Value_%s_colour_ID' % i]]}, ) assert de if row['Authors_FeatureArticles']: authors, _ = row['Authors_FeatureArticles'].split('and the APiCS') authors = authors.strip() if authors.endswith(','): authors = authors[:-1].strip() for i, name in enumerate(authors.split(',')): assert name.strip() in editors p._authors.append( models.FeatureAuthor(ord=i + 1, contributor=editors[name.strip()])) DBSession.flush() primary_to_segment = {123: 63, 126: 35, 128: 45, 130: 41} segment_to_primary = dict( zip(primary_to_segment.values(), primary_to_segment.keys())) number_map = {} names = {} for row in read(args, 'Segment_features', 'Order_number'): symbol = row['Segment_symbol'] if row['Segment_name'] == 'voiceless dental/alveolar sibilant affricate': symbol = 't\u0361s' truth = lambda s: s and s.strip().lower() == 'yes' name = '%s - %s' % (symbol, row['Segment_name']) if name in names: number_map[row['Segment_feature_number']] = names[name] continue number_map[ row['Segment_feature_number']] = row['Segment_feature_number'] names[name] = row['Segment_feature_number'] feature_count += 1 if row['Segment_feature_number'] in segment_to_primary: primary_to_segment[segment_to_primary[row['Segment_feature_number']]]\ = str(feature_count) p = data.add(models.Feature, row['Segment_feature_number'], name=name, id=str(feature_count), feature_type='segment', area='Vowels' if truth(row['Vowel']) else ('Obstruent consonants' if truth(row['Obstruent']) else 'Sonorant consonants'), jsondata=dict( number=int(row['Segment_feature_number']), vowel=truth(row['Vowel']), consonant=truth(row['Consonant']), obstruent=truth(row['Obstruent']), core_list=truth(row['Core_list_segment']), symbol=symbol, )) for i, spec in SEGMENT_VALUES.items(): data.add(common.DomainElement, '%s-%s' % (row['Segment_feature_number'], spec[0]), id='%s-%s' % (p.id, i), name=spec[0], parameter=p, jsondata={'color': spec[1]}, number=i) print '--> remapped:', primary_to_segment DBSession.flush() for row in read(args, 'Sociolinguistic_features', 'Sociolinguistic_feature_number'): feature_count += 1 p = data.add(models.Feature, row['Sociolinguistic_feature_code'], name=row['Sociolinguistic_feature_name'], id='%s' % feature_count, description=row['Sociolinguistic_feature_annotation'], area='Sociolinguistic', feature_type='sociolinguistic') names = {} for i in range(1, 10): id_ = '%s-%s' % (row['Sociolinguistic_feature_code'], i) if row.get('Value%s' % i) and row['Value%s' % i].strip(): name = row['Value%s' % i].strip() if name in names: name += ' (%s)' % i names[name] = 1 else: continue kw = dict(id='%s-%s' % (p.id, i), name=name, parameter=p, number=i) data.add(common.DomainElement, id_, id='%s-%s' % (p.id, i), name=name, parameter=p, number=i, jsondata={ 'color': colors.get(row['Value%s_colour_ID' % i], colors.values()[i]) }) sd = {} for row in read(args, 'Segment_data'): if row['Segment_feature_number'] not in number_map: continue number = number_map[row['Segment_feature_number']] if not row['Presence_in_the_language']: continue lang = data['Lect'][row['Language_ID']] param = data['Feature'][number] id_ = '%s-%s' % (lang.id, param.id) if id_ in sd: assert row['c_Record_is_a_duplicate'] == 'Yes' continue sd[id_] = 1 valueset = data.add( common.ValueSet, id_, id=id_, parameter=param, language=lang, contribution=data['ApicsContribution'][row['Language_ID']], description=row['Comments'], markup_description=normalize_markup(row['z_calc_Comments_CSS']), ) v = data.add( common.Value, id_, id=id_, frequency=float(100), valueset=valueset, domainelement=data['DomainElement'][ '%s-%s' % (number, row['Presence_in_the_language'])], ) if row['Example_word'] and row['Example_word_gloss']: example_count[row['Language_ID']] += 1 p = add_sentence(args, data, '%s-p%s' % (lang.id, data['Feature'][number].id), id='%s-%s' % (lang.id, example_count[row['Language_ID']]), name=row['Example_word'], description=row['Example_word_gloss'], language=lang) DBSession.add(common.ValueSentence(value=v, sentence=p)) source = data['Source'].get(row['Refers_to_references_Reference_ID']) if source: DBSession.add( common.ValueSetReference(valueset=valueset, source=source, key=source.id)) elif row['Refers_to_references_Reference_ID'] in non_bibs: valueset.source = non_bibs[ row['Refers_to_references_Reference_ID']] lects = defaultdict(lambda: 1) lect_map = {} records = {} false_values = {} no_values = {} wals_value_number = {} for row in read(args, 'wals'): if row['z_calc_WALS_value_number']: wals_value_number[ row['Data_record_id']] = row['z_calc_WALS_value_number'] def prefix(attr, _prefix): if _prefix: return '%s_%s' % (_prefix, attr) return attr.capitalize() for _prefix, abbr in [('', ''), ('Sociolinguistic', 'sl')]: num_values = 10 for row in read(args, prefix('data', _prefix)): if not row[prefix('feature_code', _prefix)]: print('no associated feature for', prefix('data', _prefix), row[prefix('data_record_id', _prefix)]) continue lid = row['Language_ID'] lect_attr = row.get('Lect_attribute', 'my default lect').lower() if lect_attr != 'my default lect': if (row['Language_ID'], row['Lect_attribute']) in lect_map: lid = lect_map[(row['Language_ID'], row['Lect_attribute'])] else: lang = data['Lect'][row['Language_ID']] c = lects[row['Language_ID']] lid = '%s-%s' % (row['Language_ID'], c) kw = dict( name='%s (%s)' % (lang.name, row['Lect_attribute']), id='%s' % (1000 + 10 * int(lang.id) + c), latitude=lang.latitude, longitude=lang.longitude, description=row['Lect_attribute'], language=lang, ) data.add(models.Lect, lid, **kw) lects[row['Language_ID']] += 1 lect_map[(row['Language_ID'], row['Lect_attribute'])] = lid id_ = abbr + str(row[prefix('data_record_id', _prefix)]) assert id_ not in records records[id_] = 1 assert row[prefix('feature_code', _prefix)] in data['Feature'] language = data['Lect'][lid] parameter = data['Feature'][row[prefix('feature_code', _prefix)]] valueset = common.ValueSet( id='%s-%s' % (language.id, parameter.id), description=row['Comments_on_value_assignment'], markup_description=normalize_markup( row.get('z_calc_Comments_on_value_assignment_CSS')), ) values_found = {} for i in range(1, num_values): if not row['Value%s_true_false' % i]: continue if row['Value%s_true_false' % i].strip().lower() != 'true': assert row['Value%s_true_false' % i].strip().lower() == 'false' false_values[row[prefix('data_record_id', _prefix)]] = 1 continue iid = '%s-%s' % (row[prefix('feature_code', _prefix)], i) if iid not in data['DomainElement']: print(iid, row[prefix('data_record_id', _prefix)], '--> no domainelement!') continue values_found['%s-%s' % (id_, i)] = dict( id='%s-%s' % (valueset.id, i), domainelement=data['DomainElement']['%s-%s' % (row[prefix( 'feature_code', _prefix)], i)], confidence=row['Value%s_confidence' % i], frequency=float(row['c_V%s_frequency_normalised' % i]) if _prefix == '' else 100) if values_found: if row[prefix('data_record_id', _prefix)] in wals_value_number: valueset.jsondata = { 'wals_value_number': wals_value_number.pop(row[prefix( 'data_record_id', _prefix)]) } valueset.parameter = parameter valueset.language = language valueset.contribution = data['ApicsContribution'][ row['Language_ID']] valueset = data.add(common.ValueSet, id_, _obj=valueset) for i, item in enumerate(values_found.items()): if i > 0 and not parameter.multivalued: print 'multiple values for single-valued parameter: %s' % id_ break id_, kw = item kw['valueset'] = valueset value = data.add(common.Value, id_, **kw) # # store references to additional data for segments which should be reused # for corresponding primary features! # if int(parameter.id) in primary_to_segment: assert len(values_found) == 1 seg_id = '%s-%s' % (language.id, primary_to_segment[int( parameter.id)]) seg_valueset = data['ValueSet'][seg_id] seg_value = data['Value'][seg_id] if not valueset.description and seg_valueset.description: valueset.description = seg_valueset.description for s in seg_value.sentence_assocs: DBSession.add( common.ValueSentence(value=value, sentence=s.sentence)) for r in seg_valueset.references: DBSession.add( common.ValueSetReference(valueset=valueset, source=r.source, key=r.key)) if not valueset.source and seg_valueset.source: valueset.source = seg_valueset.source DBSession.flush() else: no_values[id_] = 1 DBSession.flush() for prefix, abbr, num_values in [ ('D', '', 10), ('Sociolinguistic_d', 'sl', 7), ]: for row in read(args, prefix + 'ata_references'): assert row['Reference_ID'] in data['Source'] \ or row['Reference_ID'] in non_bibs try: vs = data['ValueSet'][abbr + str(row[prefix + 'ata_record_id'])] if row['Reference_ID'] in data['Source']: source = data['Source'][row['Reference_ID']] DBSession.add( common.ValueSetReference( valueset=vs, source=source, key=source.id, description=row['Pages'], )) else: if vs.source: vs.source += '; ' + non_bibs[row['Reference_ID']] else: vs.source = non_bibs[row['Reference_ID']] except KeyError: continue DBSession.flush() missing = 0 for row in read(args, 'Value_examples'): try: DBSession.add( common.ValueSentence( value=data['Value']['%(Data_record_id)s-%(Value_number)s' % row], sentence=data['Sentence'][ '%(Language_ID)s-%(Example_number)s' % row], description=row['Notes'], )) except KeyError: missing += 1 print('%s Value_examples are missing data' % missing) print('%s data sets with false values' % len(false_values)) print('%s data sets without values' % len(no_values)) for k, v in wals_value_number.items(): print 'unclaimed wals value number:', k, v for i, row in enumerate(read(args, 'Contributors')): kw = dict(contribution=data['ApicsContribution'][row['Language ID']], contributor=data['Contributor'][row['Author ID']]) if row['Order_of_appearance']: kw['ord'] = int(float(row['Order_of_appearance'])) data.add(common.ContributionContributor, i, **kw) DBSession.flush()
def main(args): data = Data() dataset = common.Dataset( id=dictionaria.__name__, name="Dictionaria", description="The Dictionary Journal", published=date(2015, 10, 1), contact='*****@*****.**', domain='dictionaria.clld.org', license="http://creativecommons.org/licenses/by/4.0/", jsondata={ 'license_icon': 'cc-by.png', 'license_name': 'Creative Commons Attribution 4.0 International License'}) ed = data.add( common.Contributor, 'hartmanniren', id='hartmanniren', name='Iren Hartmann') common.Editor(dataset=dataset, contributor=ed) DBSession.add(dataset) for id_, name in LGR_ABBRS.items(): DBSession.add(common.GlossAbbreviation(id=id_, name=name)) comparison_meanings = {} comparison_meanings_alt_labels = {} print('loading concepts ...') concepticon = Concepticon() for i, concept_set in enumerate(concepticon.resources('parameter').members): concept_set = concepticon.resource(concept_set) cm = ComparisonMeaning( id=concept_set.id, name=concept_set.name.lower(), description=concept_set.description, concepticon_url='%s' % concept_set.uriref) DBSession.add(cm) comparison_meanings[cm.name] = cm for label in concept_set.alt_labels: comparison_meanings_alt_labels.setdefault(label.lower(), cm) DBSession.flush() print('... done') comparison_meanings = {k: v.pk for k, v in comparison_meanings.items()} comparison_meanings_alt_labels = { k: v.pk for k, v in comparison_meanings_alt_labels.items()} submissions = [] for submission in REPOS.joinpath('submissions').glob('*'): if not submission.is_dir(): continue try: submission = Submission(submission) except ValueError: continue md = submission.md id_ = submission.id lmd = md['language'] language = data['Variety'].get(lmd['glottocode']) if not language: language = data.add( Variety, lmd['glottocode'], id=lmd['glottocode'], name=lmd['name']) dictionary = data.add( Dictionary, id_, id=id_, name=lmd['name'] + ' Dictionary', language=language, published=date(*map(int, md['published'].split('-')))) for i, cname in enumerate(md['authors']): name = HumanName(cname) cid = slug('%s%s' % (name.last, name.first)) contrib = data['Contributor'].get(cid) if not contrib: contrib = data.add(common.Contributor, cid, id=cid, name=cname) DBSession.add(common.ContributionContributor( ord=i + 1, primary=True, contributor=contrib, contribution=dictionary)) submissions.append((dictionary.id, language.id, submission)) transaction.commit() for did, lid, submission in submissions: try: mod = __import__( 'dictionaria.loader.' + submission.id, fromlist=['MARKER_MAP']) marker_map = mod.MARKER_MAP except ImportError: marker_map = {} transaction.begin() print('loading %s ...' % submission.id) submission.load( did, lid, comparison_meanings, comparison_meanings_alt_labels, marker_map) transaction.commit() print('... done') #('hoocak', 'Hooca\u0328k', 43.5, -88.5, [('hartmanniren', 'Iren Hartmann')]), #('yakkha', 'Yakkha', 27.37, 87.93, [('schackowdiana', 'Diana Schackow')]), #('palula', 'Palula', 35.51, 71.84, [('liljegrenhenrik', 'Henrik Liljegren')], {}), #('daakaka', 'Daakaka', -16.27, 168.01, [('vonprincekilu', 'Kilu von Prince')], # {'published': date(2015, 9, 30), 'iso': 'bpa', 'glottocode': 'daka1243'}), #('teop', 'Teop', -5.67, 154.97, [('moselulrike', 'Ulrike Mosel')], # {'published': date(2015, 9, 30), 'iso': 'tio', 'glottocode': 'teop1238', 'encoding': 'latin1'}), transaction.begin() load_families(Data(), DBSession.query(Variety))