コード例 #1
0
ファイル: test_models.py プロジェクト: hyjkim/immunobrowser
    def test_recombinations_have_these_required_fields(self):
        # deletions should be optional here
        data = {
            'nucleotide': 'TGTGCTCCCGAAGCGATGGGCGGATCTGAAAAGCTGGTCTTT',
            'v_gene_name': 'TRBV25-1',
            'v_ties': 'TRBV25-1,TRBV28',
            'd_gene_name': 'TRBD2',
            'd_ties': None,
            'j_gene_name': 'TRBJ1-1',
            'j_ties': None,
            'v_deletion': None,
            'd5_deletion': None,
            'd3_deletion': None,
            'j_deletion': None,
            'vd_insertion': 0,
            'dj_insertion': 27,
            'v_end': 4,
            'd_start': 5,
            'd_end': 9,
            'j_start': 37,
            'sequence_status': 'Productive',
            'cdr3_length': 42,
        }
        r = Recombination()
        for key, value in data.items():
            setattr(r, key, value)
        r.save()

        r_in_db = Recombination.objects.get()

        for key, value in data.items():
            self.assertEqual(
                value, getattr(r_in_db, key), 'key value %s not equal' % key)
コード例 #2
0
ファイル: models.py プロジェクト: hyjkim/immunobrowser
    def vj_freq(self):
        '''
        Returns a list of lists containing frequences of each
        v_family-j_gene pair and the clonofilter id
        '''
        clonofilters = sorted(self.clonofilters_all())
        vj_counts_dict_dict= dict([(clonofilter.id, clonofilter.vj_counts_dict())
                        for clonofilter in clonofilters])

        v_list = sorted(Recombination.v_gene_names())
        j_list = sorted(Recombination.j_gene_names())

        data = []

        # Counts for the scatter plot
        for clonofilter_id, vj_counts_dict in vj_counts_dict_dict.iteritems():
            for v_index, v_family in enumerate(v_list):
                for j_index, j_gene in enumerate(j_list):
                    data_point = []
                    data_point.append(v_list[v_index])
                    data_point.append(j_list[j_index])
                    if vj_counts_dict[v_family][j_gene]:
                        data_point.append(vj_counts_dict[v_family][j_gene])
                    else:
                        data_point.append(0)
                    # Append sample id
                    data_point.append(clonofilter_id);
                    if data_point[2] > 0:
                        data.append(data_point)

        return data
コード例 #3
0
ファイル: views.py プロジェクト: hyjkim/immunobrowser
def d3_test(request, comparison_id):
    '''
    This is a test of the d3 library.
    '''
    from clonotypes.models import Recombination
    from django.utils import simplejson as json
    from matplotlib.colors import rgb2hex
    comparison = Comparison.objects.get(id=comparison_id)
    clonofilters = sorted(comparison.clonofilters_all())
    sample_names = dict([(clonofilter.id,str(clonofilter.sample)) for clonofilter in clonofilters])
    vj_counts_dict_dict= dict([(clonofilter.id, clonofilter.vj_counts_dict())
                      for clonofilter in clonofilters])
    clonofilter_colors = comparison.colors()

    v_list = sorted(Recombination.v_family_names())
    j_list = sorted(Recombination.j_gene_names())

    data = []

    # Counts for the scatter plot
    for clonofilter_id, vj_counts_dict in vj_counts_dict_dict.iteritems():
        for v_index, v_family in enumerate(v_list):
            for j_index, j_gene in enumerate(j_list):
                data_point = []
                data_point.append(v_list[v_index])
                data_point.append(j_list[j_index])
                if vj_counts_dict[v_family][j_gene]:
                    data_point.append(vj_counts_dict[v_family][j_gene])
                else:
                    data_point.append(0)
                # Append sample id
                data_point.append(clonofilter_id);
                if data_point[2] > 0:
                    data.append(data_point)

    # Functionality stats
    comp_functionality = []
    for cf in clonofilters:
        cf_functionality = {}
        values = {}
        for key, value in cf.functionality_dict().iteritems():
            values[key] = value
        cf_functionality['key'] = cf.id
        cf_functionality['values'] = values
        comp_functionality.append(cf_functionality)

    context = {'data': json.dumps(data),
               'v_list': json.dumps(v_list),
               'j_list': json.dumps(j_list),
               'sample_names': json.dumps(sample_names),
               'sample_colors': json.dumps(clonofilter_colors),
               'comparison_id': comparison_id,
               'functionality': json.dumps(comp_functionality),
               }

    return render(request, 'd3_test.html', context)
コード例 #4
0
ファイル: views.py プロジェクト: hyjkim/immunobrowser
def vj_freq_ajax(request, comparison_id):
    comparison = Comparison.objects.get(id=comparison_id)

    sample_names = comparison.sample_names()

    data = {'vjFreq': comparison.vj_freq(),
            'vList': sorted(Recombination.v_gene_names()),
            'jList': sorted(Recombination.j_gene_names()),
            'sampleNames': sample_names,
            }
    return HttpResponse(json.dumps(data), mimetype='application/json')
コード例 #5
0
def scatter_nav_tag(comparison):
    from clonotypes.models import Recombination
    import json
    clonofilters = sorted(comparison.clonofilters_all())
    vj_counts_dict_dict= dict([(clonofilter.id, clonofilter.vj_counts_dict())
                      for clonofilter in clonofilters])

    v_list = sorted(Recombination.v_gene_names())
    j_list = sorted(Recombination.j_gene_names())

    data = []

    # Counts for the scatter plot
    for clonofilter_id, vj_counts_dict in vj_counts_dict_dict.iteritems():
        for v_index, v_family in enumerate(v_list):
            for j_index, j_gene in enumerate(j_list):
                data_point = []
                data_point.append(v_list[v_index])
                data_point.append(j_list[j_index])
                if vj_counts_dict[v_family][j_gene]:
                    data_point.append(vj_counts_dict[v_family][j_gene])
                else:
                    data_point.append(0)
                # Append sample id
                data_point.append(clonofilter_id);
                if data_point[2] > 0:
                    data.append(data_point)

    # Functionality stats
    comp_functionality = []
    for cf in clonofilters:
        cf_functionality = {}
        values = {}
        for key, value in cf.functionality_dict().iteritems():
            values[key] = value
        cf_functionality['key'] = cf.id
        cf_functionality['values'] = values
        comp_functionality.append(cf_functionality)

    context = {'data': json.dumps(data),
               'v_list': json.dumps(v_list),
               'j_list': json.dumps(j_list),
               'sample_names': json.dumps(comparison.sample_names()),
               'sample_colors': json.dumps(comparison.colors()),
               'comparison_id': comparison.id,
               'functionality': json.dumps(comp_functionality),
               }

    return context
コード例 #6
0
ファイル: views.py プロジェクト: hyjkim/immunobrowser
def j_usage_graph(request, clonofilter_id):
    '''
    Returns a PNG of j usage as a line graph
    '''
    from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
    import matplotlib.pyplot as plt
    response = HttpResponse(content_type='image/png')
    fig, ax = plt.subplots()
    canvas = FigureCanvas(fig)

    # variables which will contain data to be plotted
    usage = []
    gene_index = []

    # Retreive the clonofilter
    cf = ClonoFilter.objects.get(id=clonofilter_id)

    # Get v usage data
    j_usage_dict = cf.j_usage_dict()

    # Get a list of v family names
    j_gene_names = sorted(Recombination.j_gene_names())

    # Convert v usage dict into two lists for plotting
    for j_index, j_gene in enumerate(j_gene_names):
        if j_gene in j_usage_dict:
            usage.append(j_usage_dict[j_gene])
        else:
            usage.append(0)
        gene_index.append(j_index)

    # Generate the image
    ax.plot(gene_index, usage, '-', marker='o')

    # Axes labels and title
    ax.set_title('%s J Usage' % cf.sample)
    ax.set_xlabel('J Gene Family')
    ax.set_ylabel('Usage')

    xtickNames = plt.setp(ax, xticklabels=j_gene_names)
    plt.setp(xtickNames, rotation=90, fontsize=9)
    ax.xaxis.set_ticks(range(len(j_gene_names)))

    canvas.print_png(response)


    return response
コード例 #7
0
ファイル: test_models.py プロジェクト: hyjkim/immunobrowser
 def test_j_gene_names_returns_list_of_distinct_j_gene_names(self):
     make_fake_patient_with_3_clonotypes()
     self.assertIsInstance(Recombination.j_gene_names(), list)
     self.assertEqual(
         [u'TRBJ1-1', u'TRBJ2-4'], Recombination.j_gene_names())
コード例 #8
0
ファイル: test_models.py プロジェクト: hyjkim/immunobrowser
 def test_functionality_states_returns_list_of_all_functionality_states_in_db(self):
     make_fake_patient_with_3_clonotypes()
     self.assertIsInstance(Recombination.functionality_states(), list)
     self.assertEqual([u'Productive', u'Out of frame'],
                      Recombination.functionality_states())
コード例 #9
0
ファイル: test_models.py プロジェクト: hyjkim/immunobrowser
 def test_vj_counts_returns_an_empty_2d_list_with_dimensions_len_vfam_by_jgene(self):
     v_family_names = Recombination.v_gene_names()
     j_gene_names = Recombination.j_gene_names()
     vj_counts = self.f.vj_counts()
     self.assertEqual(len(v_family_names), len(vj_counts))
     self.assertEqual(len(j_gene_names), len(vj_counts[0]))
コード例 #10
0
ファイル: views.py プロジェクト: hyjkim/immunobrowser
def bubble(request, clonofilter):
    ''' Takes in a filter and returns a bubble image generated by matplolib '''
#    from matplotlib.figure import Figure
    from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
    import matplotlib.pyplot as plt
    import numpy as np
    from math import sqrt
    from mpl_toolkits.axes_grid1 import make_axes_locatable
    import pylab

# Initialize required stuff for plotting
    response = HttpResponse(content_type='image/png')
#    fig = Figure()
#    ax = fig.add_subplot(111)
    fig, ax = plt.subplots()
    canvas = FigureCanvas(fig)

# Initialize empty data variables
    x = []
    y = []
    color = []
    data = []
    area = []

    vj_counts_dict = clonofilter.vj_counts_dict()

    # Calculate the plotting area by finding the number of v's and j's
    v_list = sorted(Recombination.v_gene_names())
    j_list = sorted(Recombination.j_gene_names())
    width = len(v_list)
    height = len(j_list)

    for v_index, v_family in enumerate(v_list):
        for j_index, j_gene in enumerate(j_list):
            x.append(v_index)
            y.append(j_index)
            if vj_counts_dict[v_family][j_gene]:
                color.append(vj_counts_dict[v_family][j_gene])
                data.append(vj_counts_dict[v_family][j_gene])
            else:
                color.append(0)
                data.append(0)

    # Normalize bubble areas
    if data:
        # Scales the area of a v-j junction by the size of the plot
        # and the maximum data value
        area_norm_factor = (2.0 / max(data)) * width * height
        area = [datapoint * area_norm_factor for datapoint in data]

# Use big outlines
#    sct = ax.scatter(x, y, c=color, s=area, linewidths=2, edgecolor='w')
# Use small
    sct = ax.scatter(
        x, y, c=color, s=area, linewidths=1, edgecolor='lightgrey', alpha=.5)
#    sct.set_alpha(0.5)

# Labels, legends, titles etc
    # Set titles
    ax.set_title('%s V-J Usage Bubbleplot' % clonofilter.sample)
    ax.set_xlabel('V Gene Family')
    ax.set_ylabel('J Gene')
    # Add a grid
    ax.yaxis.grid(True, linestyle='-', which='both', color='lightgrey',
                  alpha=0.5)
    ax.xaxis.grid(True, linestyle='-', which='both', color='lightgrey',
                  alpha=0.5)

    # Set the axes and plotting area
    ax.set_xlim(-1, width)
    ax.set_ylim(-1, height)
    xtickNames = plt.setp(ax, xticklabels=v_list)
    plt.setp(xtickNames, rotation=90, fontsize=9)
    ax.xaxis.set_ticks(range(len(v_list)))
    ytickNames = plt.setp(ax, yticklabels=j_list)
    plt.setp(ytickNames, fontsize=9)
    ax.yaxis.set_ticks(range(len(j_list)))

    # Shrink the plot to make room for legends
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])

    # Draw the bubble size legend
    max_data = max(data)
    bubbles = []
    bubble_labels = []

    # Exponentially decreasing areas from max_data to max_data * 2^-8
    for bubble_area in [max_data * 1.35 ** (-exp) for exp in range(0, 15)]:
        # Determine marker size
        marker_size = sqrt(
            bubble_area / max_data * (len(j_list) * len(v_list * 2)))
        # Determine marker color. np.nextafter() is used because pylab.cm.jet
        # function is looking for a range from [0,1)
        marker_color = pylab.cm.jet(np.nextafter(bubble_area / max_data, -1))
        bubbles.append(plt.Line2D(range(1), range(1), marker='o', markersize=marker_size, color=marker_color, linewidth=0, markeredgecolor="lightgrey", alpha=0.5))
        bubble_labels.append('%g' % bubble_area)

    # Draw the legend
    #ax.legend(bubbles, bubble_labels, numpoints=1, loc='center left', bbox_to_anchor=(1.175, .5), prop={'size': 10})
    ax.legend(bubbles, bubble_labels, numpoints=1, loc='center left', bbox_to_anchor=(1.175, .5), labelspacing=1.5, prop={'size': 10}, title="Counts")

    # Colorbar
    # Make the colorbar a bit smaller
    divider = make_axes_locatable(ax)
    cax = divider.append_axes("right", size="2%", pad=0.05)
    cb = plt.colorbar(sct, cax=cax)
    # Old way
#    cb = plt.colorbar(sct, ax=ax)
    cb.set_label("Counts")

    # Print the png and return
    canvas.print_png(response)
    return response
コード例 #11
0
ファイル: views.py プロジェクト: hyjkim/immunobrowser
def bubble(request, comparison_id):
    '''
    Takes in a comparison id and generates a bubble plot such that
    each clonofilter within the comparison instance gets its own color
    '''
    from matplotlib.figure import Figure
    from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
    import matplotlib.pyplot as plt
    from clonotypes.models import Recombination
    from math import sqrt
    import pylab
    import numpy as np

    comparison = Comparison.objects.get(id=comparison_id)
    clonofilters = sorted(comparison.clonofilters_all())
    response = HttpResponse(content_type='image/png')
    fig = Figure()
    canvas = FigureCanvas(fig)
    ax = fig.add_subplot(111)

    clonofilter_colors = comparison.colors_list()

    x = []
    y = []
    color = []
    data = []
    area = []

    # Calculate the plotting area by finding the number of v's and j's
    v_list = sorted(Recombination.v_gene_names())
    j_list = sorted(Recombination.j_gene_names())
    width = len(v_list)
    height = len(j_list)

    # get a list of vj_counts
    vj_counts_dict_list = [clonofilter.vj_counts_dict()
                      for clonofilter in clonofilters]

    for clonofilter_index, vj_counts_dict in enumerate(vj_counts_dict_list):
        for v_index, v_family in enumerate(v_list):
            for j_index, j_gene in enumerate(j_list):
                x.append(v_index)
                y.append(j_index)
                color.append(clonofilter_colors[clonofilter_index])
                if vj_counts_dict[v_family][j_gene]:
                    data.append(vj_counts_dict[v_family][j_gene])
                else:
                    data.append(0)


    # Normalize area by the median and plot area
    #area_norm_factor = (1.0/median(data)) * width * height

    if data:
        area_norm_factor = (2.0/max(data)) * width * height
        area = [datapoint * area_norm_factor for datapoint in data]

    sct = ax.scatter(x, y, c=color, s=area, linewidths=2, edgecolor='w')
    sct.set_alpha(0.4)

# Labels, legends, titles etc
    # Set titles
    ax.set_title('V-J Usage Comparison')
    ax.set_xlabel('V Gene Family')
    ax.set_ylabel('J Gene')
    # Add a grid
    ax.yaxis.grid(True, linestyle='-', which='both', color='lightgrey',
                  alpha=0.5)
    ax.xaxis.grid(True, linestyle='-', which='both', color='lightgrey',
                  alpha=0.5)

    # Set the axes and plotting area
    ax.set_xlim(-1, width)
    ax.set_ylim(-1, height)
    xtickNames = plt.setp(ax, xticklabels=v_list)
    plt.setp(xtickNames, rotation=90, fontsize=9)
    ax.xaxis.set_ticks(range(len(v_list)))
    ytickNames = plt.setp(ax, yticklabels=j_list)
    plt.setp(ytickNames, fontsize=9)
    ax.yaxis.set_ticks(range(len(j_list)))

    # Shrink the plot to make room for legends
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])

    # Draw the bubble size legend
    max_data = max(data)
    bubbles = []
    bubble_labels = []

    # Labels for exponentially decreasing bubble sizes
    for bubble_area in [max_data * 1.45 ** (-exp) for exp in range(0, 10)]:
        # Determine marker size
        marker_size = sqrt(
            bubble_area / max_data * (len(j_list) * len(v_list * 2)))
        marker_color = 'lightgrey'
        bubbles.append(plt.Line2D(range(1), range(1), marker='o', markersize=marker_size, color=marker_color, linewidth=0, markeredgecolor="lightgrey", alpha=0.5))
        bubble_labels.append('%g' % bubble_area)

    # Labels for sample colors
    for index, clonofilter in enumerate(clonofilters):
        marker_size = sqrt(width * height/ 1.5)
        marker_color = clonofilter_colors[index]
        bubbles.append(plt.Line2D(range(1), range(1), marker='o', markersize=marker_size, color=marker_color, linewidth=0, markeredgecolor="lightgrey", alpha=0.5))
        bubble_labels.append('%s' % clonofilter.sample)


    ax.legend(bubbles, bubble_labels, numpoints=1, loc='center left', bbox_to_anchor=(1., .5), labelspacing=1.5, prop={'size': 10}, title="Counts")

    canvas.print_png(response)
    return response