コード例 #1
0
ファイル: scorer.py プロジェクト: Vanova/seld-dcase2019
def main(argv):
    task_id = '1' if len(argv) < 2 else argv[1]
    params = parameter.get_params(task_id)

    train_splits, val_splits, test_splits = None, None, None
    if params['mode'] == 'dev':
        # test_splits = [1, 2, 3, 4]
        # val_splits = [2, 3, 4, 1]
        # train_splits = [[3, 4], [4, 1], [1, 2], [2, 3]]
        # TODO for debug only
        test_splits = [1]
        val_splits = [1]
        train_splits = [[1, 1]]

        # SUGGESTION: Considering the long training time, major tuning of the method can be done on the first split.
        # Once you finlaize the method you can evaluate its performance on the complete cross-validation splits
        # test_splits = [1]
        # val_splits = [2]
        # train_splits = [[3, 4]]

    elif params['mode'] == 'eval':
        test_splits = [0]
        val_splits = [1]
        train_splits = [[2, 3, 4]]

    # ------------------  Calculate metric scores for unseen test split ---------------------------------
    print('Loading testing dataset:')
    data_gen_test = cls_data_generator.DataGenerator(
        dataset=params['dataset'],
        split=split,
        batch_size=params['batch_size'],
        seq_len=params['sequence_length'],
        feat_label_dir=params['feat_label_dir'],
        shuffle=False,
        per_file=params['dcase_output'],
        is_eval=True if params['mode'] is 'eval' else False)

    # print('\nLoading the best model and predicting results on the testing split')
    # model = load_model('{}_model.h5'.format(unique_name))
    # pred_test = model.predict_generator(
    #     generator=data_gen_test.generate(),
    #     steps=2 if params['quick_test'] else data_gen_test.get_total_batches_in_data(),
    #     verbose=2
    # )

    test_sed_pred = evaluation_metrics.reshape_3Dto2D(pred_test[0]) > 0.5
    test_doa_pred = evaluation_metrics.reshape_3Dto2D(pred_test[1])

    # rescaling the elevation data from [-180 180] to [-def_elevation def_elevation] for scoring purpose
    test_doa_pred[:, nb_classes:] = test_doa_pred[:, nb_classes:] / (
        180. / def_elevation)

    if params['dcase_output']:
        # Dump results in DCASE output format for calculating final scores
        dcase_dump_folder = os.path.join(
            params['dcase_dir'], '{}_{}_{}'.format(task_id, params['dataset'],
                                                   params['mode']))
        cls_feature_class.create_folder(dcase_dump_folder)
        print(
            'Dumping recording-wise results in: {}'.format(dcase_dump_folder))

        test_filelist = data_gen_test.get_filelist()
        # Number of frames for a 60 second audio with 20ms hop length = 3000 frames
        max_frames_with_content = data_gen_test.get_nb_frames()

        # Number of frames in one batch (batch_size* sequence_length) consists of all the 3000 frames above with
        # zero padding in the remaining frames
        frames_per_file = data_gen_test.get_frame_per_file()

        for file_cnt in range(test_sed_pred.shape[0] // frames_per_file):
            output_file = os.path.join(
                dcase_dump_folder,
                test_filelist[file_cnt].replace('.npy', '.csv'))
            dc = file_cnt * frames_per_file
            output_dict = evaluation_metrics.regression_label_format_to_output_format(
                data_gen_test,
                test_sed_pred[dc:dc + max_frames_with_content, :],
                test_doa_pred[dc:dc + max_frames_with_content, :] * 180 /
                np.pi)
            evaluation_metrics.write_output_format_file(
                output_file, output_dict)

    if params['mode'] is 'dev':
        _, _, test_data_out = data_gen_test.get_data_sizes()
        test_gt = collect_test_labels(data_gen_test, test_data_out,
                                      params['quick_test'])
        test_sed_gt = evaluation_metrics.reshape_3Dto2D(test_gt[0])
        test_doa_gt = evaluation_metrics.reshape_3Dto2D(test_gt[1])
        # rescaling the reference elevation from [-180 180] to [-def_elevation def_elevation] for scoring purpose
        test_doa_gt[:, nb_classes:] = test_doa_gt[:, nb_classes:] / (
            180. / def_elevation)

        test_sed_loss = evaluation_metrics.compute_sed_scores(
            test_sed_pred, test_sed_gt, data_gen_test.nb_frames_1s())
        test_doa_loss = evaluation_metrics.compute_doa_scores_regr(
            test_doa_pred, test_doa_gt, test_sed_pred, test_sed_gt)
        test_metric_loss = evaluation_metrics.compute_seld_metric(
            test_sed_loss, test_doa_loss)

        avg_scores_test.append([
            test_sed_loss[0], test_sed_loss[1], test_doa_loss[0],
            test_doa_loss[1], test_metric_loss
        ])
        print('Results on test split:')
        print('\tSELD_score: {},  '.format(test_metric_loss))
        print('\tDOA Metrics: DOA_error: {}, frame_recall: {}'.format(
            test_doa_loss[0], test_doa_loss[1]))
        print('\tSED Metrics: ER_overall: {}, F1_overall: {}\n'.format(
            test_sed_loss[0], test_sed_loss[1]))
コード例 #2
0
ファイル: seld.py プロジェクト: yhgon/seld-dcase2019
def main(argv):
    """
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: task_id - (optional) To chose the system configuration in parameters.py.
                                (default) 1 - uses default parameters
        second input: job_id - (optional) all the output files will be uniquely represented with this.
                              (default) 1

    """
    if len(argv) != 3:
        print('\n\n')
        print(
            '-------------------------------------------------------------------------------------------------------'
        )
        print('The code expected two optional inputs')
        print('\t>> python seld.py <task-id> <job-id>')
        print(
            '\t\t<task-id> is used to choose the user-defined parameter set from parameter.py'
        )
        print('Using default inputs for now')
        print(
            '\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
            'You can use any number or string for this.')
        print(
            '-------------------------------------------------------------------------------------------------------'
        )
        print('\n\n')

    # use parameter set defined by user
    task_id = '1' if len(argv) < 2 else argv[1]
    params = parameter.get_params(task_id)

    job_id = 1 if len(argv) < 3 else argv[-1]

    train_splits, val_splits, test_splits = None, None, None
    if params['mode'] == 'dev':
        test_splits = [1, 2, 3, 4]
        val_splits = [2, 3, 4, 1]
        train_splits = [[3, 4], [4, 1], [1, 2], [2, 3]]

        # SUGGESTION: Considering the long training time, major tuning of the method can be done on the first split.
        # Once you finlaize the method you can evaluate its performance on the complete cross-validation splits
        # test_splits = [1]
        # val_splits = [2]
        # train_splits = [[3, 4]]

    elif params['mode'] == 'eval':
        test_splits = [0]
        val_splits = [1]
        train_splits = [[2, 3, 4]]

    avg_scores_val = []
    avg_scores_test = []
    for split_cnt, split in enumerate(test_splits):
        print(
            '\n\n---------------------------------------------------------------------------------------------------'
        )
        print(
            '------------------------------------      SPLIT {}   -----------------------------------------------'
            .format(split))
        print(
            '---------------------------------------------------------------------------------------------------'
        )

        # Unique name for the run
        cls_feature_class.create_folder(params['model_dir'])
        unique_name = '{}_{}_{}_{}_split{}'.format(task_id, job_id,
                                                   params['dataset'],
                                                   params['mode'], split)
        unique_name = os.path.join(params['model_dir'], unique_name)
        model_name = '{}_model.h5'.format(unique_name)
        print("unique_name: {}\n".format(unique_name))

        # Load train and validation data
        print('Loading training dataset:')
        data_gen_train = cls_data_generator.DataGenerator(
            dataset=params['dataset'],
            split=train_splits[split_cnt],
            batch_size=params['batch_size'],
            seq_len=params['sequence_length'],
            feat_label_dir=params['feat_label_dir'])

        print('Loading validation dataset:')
        data_gen_val = cls_data_generator.DataGenerator(
            dataset=params['dataset'],
            split=val_splits[split_cnt],
            batch_size=params['batch_size'],
            seq_len=params['sequence_length'],
            feat_label_dir=params['feat_label_dir'],
            shuffle=False)

        # Collect the reference labels for validation data
        data_in, data_out = data_gen_train.get_data_sizes()
        print('FEATURES:\n\tdata_in: {}\n\tdata_out: {}\n'.format(
            data_in, data_out))

        gt = collect_test_labels(data_gen_val, data_out, params['quick_test'])
        sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
        doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

        # rescaling the reference elevation data from [-180 180] to [-def_elevation def_elevation] for scoring purpose
        nb_classes = data_gen_train.get_nb_classes()
        def_elevation = data_gen_train.get_default_elevation()
        doa_gt[:,
               nb_classes:] = doa_gt[:, nb_classes:] / (180. / def_elevation)

        print(
            'MODEL:\n\tdropout_rate: {}\n\tCNN: nb_cnn_filt: {}, pool_size{}\n\trnn_size: {}, fnn_size: {}\n'
            .format(params['dropout_rate'], params['nb_cnn2d_filt'],
                    params['pool_size'], params['rnn_size'],
                    params['fnn_size']))

        model = keras_model.get_model(data_in=data_in,
                                      data_out=data_out,
                                      dropout_rate=params['dropout_rate'],
                                      nb_cnn2d_filt=params['nb_cnn2d_filt'],
                                      pool_size=params['pool_size'],
                                      rnn_size=params['rnn_size'],
                                      fnn_size=params['fnn_size'],
                                      weights=params['loss_weights'])
        best_seld_metric = 99999
        best_epoch = -1
        patience_cnt = 0
        seld_metric = np.zeros(params['nb_epochs'])
        tr_loss = np.zeros(params['nb_epochs'])
        val_loss = np.zeros(params['nb_epochs'])
        doa_metric = np.zeros((params['nb_epochs'], 6))
        sed_metric = np.zeros((params['nb_epochs'], 2))
        nb_epoch = 2 if params['quick_test'] else params['nb_epochs']

        # start training
        for epoch_cnt in range(nb_epoch):
            start = time.time()

            # train once per epoch
            hist = model.fit_generator(
                generator=data_gen_train.generate(),
                steps_per_epoch=2 if params['quick_test'] else
                data_gen_train.get_total_batches_in_data(),
                validation_data=data_gen_val.generate(),
                validation_steps=2 if params['quick_test'] else
                data_gen_val.get_total_batches_in_data(),
                epochs=params['epochs_per_fit'],
                verbose=2)
            tr_loss[epoch_cnt] = hist.history.get('loss')[-1]
            val_loss[epoch_cnt] = hist.history.get('val_loss')[-1]

            # predict once per peoch
            pred = model.predict_generator(
                generator=data_gen_val.generate(),
                steps=2 if params['quick_test'] else
                data_gen_val.get_total_batches_in_data(),
                verbose=2)

            # Calculate the metrics
            sed_pred = evaluation_metrics.reshape_3Dto2D(pred[0]) > 0.5
            doa_pred = evaluation_metrics.reshape_3Dto2D(pred[1])

            # rescaling the elevation data from [-180 180] to [-def_elevation def_elevation] for scoring purpose
            doa_pred[:,
                     nb_classes:] = doa_pred[:, nb_classes:] / (180. /
                                                                def_elevation)

            sed_metric[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(
                sed_pred, sed_gt, data_gen_val.nb_frames_1s())
            doa_metric[
                epoch_cnt, :] = evaluation_metrics.compute_doa_scores_regr(
                    doa_pred, doa_gt, sed_pred, sed_gt)
            seld_metric[epoch_cnt] = evaluation_metrics.compute_seld_metric(
                sed_metric[epoch_cnt, :], doa_metric[epoch_cnt, :])

            # Visualize the metrics with respect to epochs
            plot_functions(unique_name, tr_loss, val_loss, sed_metric,
                           doa_metric, seld_metric)

            patience_cnt += 1
            if seld_metric[epoch_cnt] < best_seld_metric:
                best_seld_metric = seld_metric[epoch_cnt]
                best_epoch = epoch_cnt
                model.save(model_name)
                patience_cnt = 0

            print(
                'epoch_cnt: %d, time: %.2fs, tr_loss: %.2f, val_loss: %.2f, '
                'ER_overall: %.2f, F1_overall: %.2f, '
                'doa_error_pred: %.2f, good_pks_ratio:%.2f, '
                'seld_score: %.2f, best_seld_score: %.2f, best_epoch : %d\n' %
                (epoch_cnt, time.time() - start, tr_loss[epoch_cnt],
                 val_loss[epoch_cnt], sed_metric[epoch_cnt,
                                                 0], sed_metric[epoch_cnt, 1],
                 doa_metric[epoch_cnt, 0], doa_metric[epoch_cnt, 1],
                 seld_metric[epoch_cnt], best_seld_metric, best_epoch))
            if patience_cnt > params['patience']:
                break

        avg_scores_val.append([
            sed_metric[best_epoch, 0], sed_metric[best_epoch, 1],
            doa_metric[best_epoch, 0], doa_metric[best_epoch,
                                                  1], best_seld_metric
        ])
        print('\nResults on validation split:')
        print('\tUnique_name: {} '.format(unique_name))
        print('\tSaved model for the best_epoch: {}'.format(best_epoch))
        print('\tSELD_score: {}'.format(best_seld_metric))
        print('\tDOA Metrics: DOA_error: {}, frame_recall: {}'.format(
            doa_metric[best_epoch, 0], doa_metric[best_epoch, 1]))
        print('\tSED Metrics: ER_overall: {}, F1_overall: {}\n'.format(
            sed_metric[best_epoch, 0], sed_metric[best_epoch, 1]))

        # ------------------  Calculate metric scores for unseen test split ---------------------------------
        print('Loading testing dataset:')
        data_gen_test = cls_data_generator.DataGenerator(
            dataset=params['dataset'],
            split=split,
            batch_size=params['batch_size'],
            seq_len=params['sequence_length'],
            feat_label_dir=params['feat_label_dir'],
            shuffle=False,
            per_file=params['dcase_output'],
            is_eval=True if params['mode'] is 'eval' else False)

        print(
            '\nLoading the best model and predicting results on the testing split'
        )
        model = load_model('{}_model.h5'.format(unique_name))
        pred_test = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=2 if params['quick_test'] else
            data_gen_test.get_total_batches_in_data(),
            verbose=2)

        test_sed_pred = evaluation_metrics.reshape_3Dto2D(pred_test[0]) > 0.5
        test_doa_pred = evaluation_metrics.reshape_3Dto2D(pred_test[1])

        # rescaling the elevation data from [-180 180] to [-def_elevation def_elevation] for scoring purpose
        test_doa_pred[:, nb_classes:] = test_doa_pred[:, nb_classes:] / (
            180. / def_elevation)

        if params['dcase_output']:
            # Dump results in DCASE output format for calculating final scores
            dcase_dump_folder = os.path.join(
                params['dcase_dir'],
                '{}_{}_{}'.format(task_id, params['dataset'], params['mode']))
            cls_feature_class.create_folder(dcase_dump_folder)
            print('Dumping recording-wise results in: {}'.format(
                dcase_dump_folder))

            test_filelist = data_gen_test.get_filelist()
            # Number of frames for a 60 second audio with 20ms hop length = 3000 frames
            max_frames_with_content = data_gen_test.get_nb_frames()

            # Number of frames in one batch (batch_size* sequence_length) consists of all the 3000 frames above with
            # zero padding in the remaining frames
            frames_per_file = data_gen_test.get_frame_per_file()

            for file_cnt in range(test_sed_pred.shape[0] // frames_per_file):
                output_file = os.path.join(
                    dcase_dump_folder,
                    test_filelist[file_cnt].replace('.npy', '.csv'))
                dc = file_cnt * frames_per_file
                output_dict = evaluation_metrics.regression_label_format_to_output_format(
                    data_gen_test,
                    test_sed_pred[dc:dc + max_frames_with_content, :],
                    test_doa_pred[dc:dc + max_frames_with_content, :] * 180 /
                    np.pi)
                evaluation_metrics.write_output_format_file(
                    output_file, output_dict)

        if params['mode'] is 'dev':
            test_data_in, test_data_out = data_gen_test.get_data_sizes()
            test_gt = collect_test_labels(data_gen_test, test_data_out,
                                          params['quick_test'])
            test_sed_gt = evaluation_metrics.reshape_3Dto2D(test_gt[0])
            test_doa_gt = evaluation_metrics.reshape_3Dto2D(test_gt[1])
            # rescaling the reference elevation from [-180 180] to [-def_elevation def_elevation] for scoring purpose
            test_doa_gt[:, nb_classes:] = test_doa_gt[:, nb_classes:] / (
                180. / def_elevation)

            test_sed_loss = evaluation_metrics.compute_sed_scores(
                test_sed_pred, test_sed_gt, data_gen_test.nb_frames_1s())
            test_doa_loss = evaluation_metrics.compute_doa_scores_regr(
                test_doa_pred, test_doa_gt, test_sed_pred, test_sed_gt)
            test_metric_loss = evaluation_metrics.compute_seld_metric(
                test_sed_loss, test_doa_loss)

            avg_scores_test.append([
                test_sed_loss[0], test_sed_loss[1], test_doa_loss[0],
                test_doa_loss[1], test_metric_loss
            ])
            print('Results on test split:')
            print('\tSELD_score: {},  '.format(test_metric_loss))
            print('\tDOA Metrics: DOA_error: {}, frame_recall: {}'.format(
                test_doa_loss[0], test_doa_loss[1]))
            print('\tSED Metrics: ER_overall: {}, F1_overall: {}\n'.format(
                test_sed_loss[0], test_sed_loss[1]))

    print('\n\nValidation split scores per fold:\n')
    for cnt in range(len(val_splits)):
        print(
            '\tSplit {} - SED ER: {} F1: {}; DOA error: {} frame recall: {}; SELD score: {}'
            .format(cnt, avg_scores_val[cnt][0], avg_scores_val[cnt][1],
                    avg_scores_val[cnt][2], avg_scores_val[cnt][3],
                    avg_scores_val[cnt][4]))

    if params['mode'] is 'dev':
        print('\n\nTesting split scores per fold:\n')
        for cnt in range(len(val_splits)):
            print(
                '\tSplit {} - SED ER: {} F1: {}; DOA error: {} frame recall: {}; SELD score: {}'
                .format(cnt, avg_scores_test[cnt][0], avg_scores_test[cnt][1],
                        avg_scores_test[cnt][2], avg_scores_test[cnt][3],
                        avg_scores_test[cnt][4]))
コード例 #3
0
def main(args):
    '''
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: task_id - (optional) To chose the system configuration in parameters.py. (default) 1 - uses default parameters
        second input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1
    '''
    # use parameter set defined by user
    dataset, mode, task_id, job_id = args.dataset, args.mode, args.name, args.job_id
    task = 'sed'
    feat_type = 'mel'
    nb_ch = 4
    doa_type = None
    params, model_params = parameter.get_params(dataset=dataset,
                                                mode=mode,
                                                task_id=task_id,
                                                feat_type=feat_type,
                                                doa=doa_type)

    train_splits, val_splits, test_splits = None, None, None
    if params['mode'] == 'dev':
        test_splits = [1, 2, 3, 4]
        val_splits = [2, 3, 4, 1]
        train_splits = [[3, 4], [4, 1], [1, 2], [2, 3]]

    avg_scores_val = []
    avg_scores_test = []
    for split_cnt, split in enumerate(test_splits):
        print('\nThis is split {}'.format(split_cnt))

        # Unique name for the run
        model_dir_prefix = os.path.join(
            params['model_dir'], task) if task == 'sed' else os.path.join(
                params['model_dir'], 'doa_reg')
        cls_feature_class.create_folder(model_dir_prefix)
        #model_id = int(job_id) + split_cnt
        unique_name = '{}{}_{}_{}_sed_dev_split{}'.format(
            task_id, str(job_id), params['dataset'], params['feat_type'],
            split_cnt + 1)
        unique_name = os.path.join(model_dir_prefix, unique_name)
        model_name = '{}_model.h5'.format(unique_name)
        print('\tmodel unique name: {}\n'.format(unique_name))

        # Load train and validation data
        print('Loading training dataset:')
        data_gen_train = cls_data_generator.DataGenerator(
            dataset=params['dataset'],
            split=train_splits[split_cnt],
            batch_size=params['batch_size'],
            seq_len=params['seq_length'],
            feat_label_dir=params['feat_label_dir'],
            feat_type=feat_type,
            doa=doa_type)

        print('Loading validation dataset:')
        data_gen_val = cls_data_generator.DataGenerator(
            dataset=params['dataset'],
            split=val_splits[split_cnt],
            batch_size=params['batch_size'],
            seq_len=3000,
            per_file=True,
            feat_label_dir=params['feat_label_dir'],
            shuffle=False,
            feat_type=feat_type,
            doa=doa_type)

        # Collect the reference labels for validation data
        data_in, data_out = data_gen_train.get_data_sizes()
        print('FEATURES:\n\tdata_in: {}\n\tdata_out: {}\n'.format(
            data_in, data_out))

        gt = collect_test_labels_3000(data_gen_val)
        sed_gt = evaluation_metrics.reshape_3Dto2D(gt)  # [3000*100, 11]
        nb_classes = data_gen_train.get_nb_classes()
        def_elevation = data_gen_train.get_default_elevation()
        if task_id == 'crnn':
            model = CUDA(CRNN_SED(data_in, data_out[0]))
        elif task_id == 'mcrnn':
            model = CUDA(MCRNN_SED(data_in, data_out[0]))
        model.apply(kaiming_init)

        total_num = sum(param.numel() for param in model.parameters())
        print('==========================================')
        print('Total parameter number for {}: {}'.format(
            model_params['method'], total_num))
        print('==========================================')

        # Pytorch optimizer
        optimizer = optim.Adam(params=model.parameters(), lr=0.001)
        feat_torch = CUDA(
            Variable(
                torch.FloatTensor(params['batch_size'], nb_ch,
                                  params['seq_length'], params['feat_dim'])))
        label_sed = CUDA(
            Variable(
                torch.FloatTensor(params['batch_size'], params['seq_length'],
                                  11)))
        best_seld_metric = 99999
        best_sed_metric = 99999
        best_epoch = -1
        patience_cnt = 0
        seld_metric = np.zeros(params['nb_epochs'])
        tr_loss = np.zeros(params['nb_epochs'])
        sed_val_loss = np.zeros(params['nb_epochs'])
        sed_metric = np.zeros((params['nb_epochs'], 2))
        nb_epoch = params['nb_epochs']

        # start training
        pbar_epoch = tqdm(total=nb_epoch, desc='[Epoch]')
        for epoch_cnt in range(nb_epoch):
            # train stage
            model.train()
            iter_cnt = 0
            for feat, label in data_gen_train.generate():
                feat_torch.resize_(params['batch_size'], nb_ch,
                                   params['seq_length'], params['feat_dim'])
                feat_torch.data.copy_(torch.from_numpy(feat))

                label_sed.resize_(params['batch_size'], params['seq_length'],
                                  11)
                label_sed.data.copy_(torch.from_numpy(label[0]))
                sed = model(feat_torch)

                sed_loss = bce_loss(sed, label_sed)
                doa_loss = 0.0

                total_loss = sed_loss + doa_loss

                optimizer.zero_grad()
                total_loss.backward()
                optimizer.step()

                if iter_cnt % params['print_iter'] == 0:
                    pbar_epoch.write(
                        'Iteration: {:3d}, sed_loss: {:.4f}, doa_loss: {:.4f}, total_loss: {:.4f}'
                        .format(iter_cnt, sed_loss, doa_loss, total_loss))

                #pbar_iteration.update(1)
                iter_cnt += 1
                if iter_cnt >= data_gen_train.get_total_batches_in_data():
                    break
            iter_cnt = 0
            sed_validation_loss = 0
            entire_pred_sed = np.zeros(
                (data_gen_val._batch_size *
                 data_gen_val.get_total_batches_in_data(), 3000, 11))
            model.eval()
            with torch.no_grad():
                for feat, label in data_gen_val.generate():
                    batch_size = feat.shape[0]

                    feat_torch.resize_(batch_size, nb_ch, 3000,
                                       params['feat_dim'])
                    feat_torch.data.copy_(torch.from_numpy(feat))
                    label_sed.resize_(batch_size, 3000, 11)
                    label_sed.copy_(torch.from_numpy(label[0]))

                    sed = model(feat_torch)
                    sed_loss = bce_loss(sed, label_sed)
                    sed_validation_loss += sed_loss

                    # concat all predictions
                    entire_pred_sed[
                        iter_cnt * batch_size:(iter_cnt + 1) *
                        batch_size, :] = sed.detach().cpu().numpy()
                    iter_cnt += 1
                    if iter_cnt >= data_gen_val.get_total_batches_in_data():
                        break
            sed_validation_loss = sed_validation_loss / data_gen_val.get_total_batches_in_data(
            )

            tr_loss[epoch_cnt] = total_loss
            sed_val_loss[epoch_cnt] = sed_validation_loss

            # Calculate the metrics
            sed_pred = evaluation_metrics.reshape_3Dto2D(
                entire_pred_sed) > params[
                    'threshold']  # compared with threshold
            sed_metric[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(
                sed_pred, sed_gt, data_gen_val.nb_frames_1s())

            patience_cnt += 1
            if sed_metric[epoch_cnt, 0] < best_sed_metric:
                best_sed_metric = sed_metric[epoch_cnt, 0]
                best_epoch = epoch_cnt
                save_model(model, model_name)
                patience_cnt = 0

            pbar_epoch.update(1)

            pbar_epoch.write(
                'epoch_cnt: %d, sed_tr_loss: %.4f, sed_val_loss: %.4f, ER_overall: %.2f, F1_overall: %.2f, best_sed_ER: %.4f, best_epoch : %d\n'
                % (epoch_cnt, tr_loss[epoch_cnt], sed_val_loss[epoch_cnt],
                   sed_metric[epoch_cnt, 0], sed_metric[epoch_cnt, 1],
                   best_sed_metric, best_epoch))

            if patience_cnt >= params['patience']:
                break

        pbar_epoch.close()

        avg_scores_val.append(
            [sed_metric[best_epoch, 0], sed_metric[best_epoch, 1]]
        )  #, doa_metric[best_epoch, 0], doa_metric[best_epoch, 1], best_seld_metric])
        print('\nResults on validation split:')
        print('\tUnique_name: {} '.format(unique_name))
        print('\tSaved model for the best_epoch: {}'.format(best_epoch))
        print('\tSED Metrics: ER_overall: {}, F1_overall: {}\n'.format(
            sed_metric[best_epoch, 0], sed_metric[best_epoch, 1]))

        # ------------------  Calculate metric scores for unseen test split ---------------------------------
        print('Loading testing dataset:')
        data_gen_test = cls_data_generator.DataGenerator(
            dataset=params['dataset'],
            split=split,
            batch_size=params['batch_size'],
            seq_len=3000,
            feat_label_dir=params['feat_label_dir'],
            shuffle=False,
            per_file=True,
            is_eval=True if params['mode'] is 'eval' else False,  #False
            feat_type=feat_type,
            doa=doa_type)
        test_batch_size = data_gen_test._batch_size

        print(
            '\nLoading the best model and predicting results on the testing split'
        )
        model = load_model(model, '{}_model.h5'.format(unique_name))
        model.eval()

        # test stage
        total_test_batches = data_gen_test.get_total_batches_in_data()
        pbar_test = tqdm(total=total_test_batches, desc='[Testing]')
        iter_cnt = 0
        entire_test_sed = np.zeros((100, 3000, 11))
        with torch.no_grad():
            if params['mode'] == 'dev':
                for feat, label in data_gen_test.generate():
                    batch_size = feat.shape[0]

                    feat_torch.data.resize_(batch_size, nb_ch, 3000,
                                            params['feat_dim'])
                    feat_torch.data.copy_(torch.from_numpy(feat))

                    sed = model(feat_torch)
                    # concat all predictions
                    entire_test_sed[
                        iter_cnt * test_batch_size:(iter_cnt + 1) *
                        test_batch_size, :] = sed.detach().cpu().numpy()
                    pbar_test.update(1)
                    iter_cnt += 1
                    if iter_cnt >= data_gen_test.get_total_batches_in_data():
                        break
        print('the test batch_size is{}'.format(batch_size))
        pbar_test.close()

        test_sed_pred = evaluation_metrics.reshape_3Dto2D(
            entire_test_sed) > params['threshold']
        if params['mode'] == 'dev':
            _, test_data_out = data_gen_test.get_data_sizes()
            test_gt = collect_test_labels_3000(data_gen_test)
            test_sed_gt = evaluation_metrics.reshape_3Dto2D(test_gt)
            test_sed_loss = evaluation_metrics.compute_sed_scores(
                test_sed_pred, test_sed_gt, data_gen_test.nb_frames_1s())
            avg_scores_test.append([test_sed_loss[0], test_sed_loss[1]])
            print('Results on test split:')
            print('\tSED Metrics: ER_overall: {}, F1_overall: {}\n'.format(
                test_sed_loss[0], test_sed_loss[1]))

    print('\n\nValidation split scores per fold:\n')
    for cnt in range(len(val_splits)):
        print('\t Split {} - SED ER: {} F1: {}'.format(val_splits[cnt],
                                                       avg_scores_val[cnt][0],
                                                       avg_scores_val[cnt][1]))

    if params['mode'] == 'dev':
        print('\n\nTesting split scores per fold:\n')
        for cnt in range(len(val_splits)):
            print('\t Split {} - SED ER: {} F1: {}'.format(
                test_splits[cnt], avg_scores_test[cnt][0],
                avg_scores_test[cnt][1]))
コード例 #4
0
ファイル: seld.py プロジェクト: orhaim/Enhanced-SELDnet
def main(argv):
    """
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1
        second input: task_id - (optional) To chose the system configuration in parameters.py. 
                                (default) uses default parameters
    """
    if len(argv) != 3:
        print('\n\n')
        print('-------------------------------------------------------------------------------------------------------')
        print('The code expected two inputs')
        print('\t>> python seld.py <job-id> <task-id>')
        print('\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
              'You can use any number or string for this.')
        print('\t\t<task-id> is used to choose the user-defined parameter set from parameter.py')
        print('Using default inputs for now')
        print('-------------------------------------------------------------------------------------------------------')
        print('\n\n')
    # use parameter set defined by user
    task_id = '1' if len(argv) < 3 else argv[-1]
    params = parameter.get_params(task_id)

    job_id = 1 if len(argv) < 2 else argv[1]

    model_dir = 'models/'
    utils.create_folder(model_dir)
    unique_name = '{}_ov{}_split{}_{}{}_3d{}_{}'.format(
        params['dataset'], params['overlap'], params['split'], params['mode'], params['weakness'],
        int(params['cnn_3d']), job_id
    )
    unique_name = os.path.join(model_dir, unique_name)
    print("unique_name: {}\n".format(unique_name))

    data_gen_train = cls_data_generator.DataGenerator(
        dataset=params['dataset'], ov=params['overlap'], split=params['split'], db=params['db'], nfft=params['nfft'],
        batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'],
        weakness=params['weakness'], datagen_mode='train', cnn3d=params['cnn_3d'], xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only']
    )

    data_gen_test = cls_data_generator.DataGenerator(
        dataset=params['dataset'], ov=params['overlap'], split=params['split'], db=params['db'], nfft=params['nfft'],
        batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'],
        weakness=params['weakness'], datagen_mode='test', cnn3d=params['cnn_3d'], xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only'], shuffle=False
    )

    data_in, data_out = data_gen_train.get_data_sizes()
    print(
        'FEATURES:\n'
        '\tdata_in: {}\n'
        '\tdata_out: {}\n'.format(
            data_in, data_out
        )
    )

    gt = collect_test_labels(data_gen_test, data_out, params['mode'], params['quick_test'])
    sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
    doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

    print(
        'MODEL:\n'
        '\tdropout_rate: {}\n'
        '\tCNN: nb_cnn_filt: {}, pool_size{}\n'
        '\trnn_size: {}, fnn_size: {}\n'.format(
            params['dropout_rate'],
            params['nb_cnn3d_filt'] if params['cnn_3d'] else params['nb_cnn2d_filt'], params['pool_size'],
            params['rnn_size'], params['fnn_size']
        )
    )

    model = keras_model.get_model(data_in=data_in, data_out=data_out, dropout_rate=params['dropout_rate'],
                                  nb_cnn2d_filt=params['nb_cnn2d_filt'], pool_size=params['pool_size'],
                                  rnn_size=params['rnn_size'], fnn_size=params['fnn_size'],
                                  classification_mode=params['mode'], weights=params['loss_weights'], loader=False, loader2=False) # Change loader to True to enable transfer learning, Change loader2 to True to enable transfer learning with different labels
    best_metric = 99999
    conf_mat = None
    best_conf_mat = None
    best_epoch = -1
    patience_cnt = 0
    epoch_metric_loss = np.zeros(params['nb_epochs'])
    tr_loss = np.zeros(params['nb_epochs'])
    val_loss = np.zeros(params['nb_epochs'])
    doa_loss = np.zeros((params['nb_epochs'], 6))
    sed_loss = np.zeros((params['nb_epochs'], 2))
    nb_epoch = 2 if params['quick_test'] else params['nb_epochs']
    for epoch_cnt in range(nb_epoch):
        start = time.time()
        hist = model.fit_generator(
            generator=data_gen_train.generate(),
            steps_per_epoch=2 if params['quick_test'] else data_gen_train.get_total_batches_in_data(),
            validation_data=data_gen_test.generate(),
            validation_steps=2 if params['quick_test'] else data_gen_test.get_total_batches_in_data(),
            epochs=1,
            verbose=0
        )
        tr_loss[epoch_cnt] = hist.history.get('loss')[-1]
        val_loss[epoch_cnt] = hist.history.get('val_loss')[-1]

        pred = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=2 if params['quick_test'] else data_gen_test.get_total_batches_in_data(),
            verbose=2
        )
        if params['mode'] == 'regr':
            sed_pred = evaluation_metrics.reshape_3Dto2D(pred[0]) > 0.5
            doa_pred = evaluation_metrics.reshape_3Dto2D(pred[1])

            sed_loss[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(sed_pred, sed_gt, data_gen_test.nb_frames_1s())
            if params['azi_only']:
                doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xy(doa_pred, doa_gt,
                                                                                                 sed_pred, sed_gt)
            else:
                doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xyz(doa_pred, doa_gt,
                                                                                                  sed_pred, sed_gt)

            epoch_metric_loss[epoch_cnt] = np.mean([
                sed_loss[epoch_cnt, 0],
                1-sed_loss[epoch_cnt, 1],
                2*np.arcsin(doa_loss[epoch_cnt, 1]/2.0)/np.pi,
                1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))]
            )
        plot_functions(unique_name, tr_loss, val_loss, sed_loss, doa_loss, epoch_metric_loss)

        patience_cnt += 1
        if epoch_metric_loss[epoch_cnt] < best_metric:
            best_metric = epoch_metric_loss[epoch_cnt]
            best_conf_mat = conf_mat
            best_epoch = epoch_cnt
            model.save('{}_model.h5'.format(unique_name))
            patience_cnt = 0

        print(
            'epoch_cnt: %d, time: %.2fs, tr_loss: %.2f, val_loss: %.2f, '
            'F1_overall: %.2f, ER_overall: %.2f, '
            'doa_error_gt: %.2f, doa_error_pred: %.2f, good_pks_ratio:%.2f, '
            'error_metric: %.2f, best_error_metric: %.2f, best_epoch : %d' %
            (
                epoch_cnt, time.time() - start, tr_loss[epoch_cnt], val_loss[epoch_cnt],
                sed_loss[epoch_cnt, 1], sed_loss[epoch_cnt, 0],
                doa_loss[epoch_cnt, 1], doa_loss[epoch_cnt, 2], doa_loss[epoch_cnt, 5] / float(sed_gt.shape[0]),
                epoch_metric_loss[epoch_cnt], best_metric, best_epoch
            )
        )
        if patience_cnt > params['patience']:
            break

    print('best_conf_mat : {}'.format(best_conf_mat))
    print('best_conf_mat_diag : {}'.format(np.diag(best_conf_mat)))
    print('saved model for the best_epoch: {} with best_metric: {},  '.format(best_epoch, best_metric))
    print('DOA Metrics: doa_loss_gt: {}, doa_loss_pred: {}, good_pks_ratio: {}'.format(
        doa_loss[best_epoch, 1], doa_loss[best_epoch, 2], doa_loss[best_epoch, 5] / float(sed_gt.shape[0])))
    print('SED Metrics: ER_overall: {}, F1_overall: {}'.format(sed_loss[best_epoch, 1], sed_loss[best_epoch, 0]))
    print('unique_name: {} '.format(unique_name))
コード例 #5
0
ファイル: seld.py プロジェクト: jankoller888/seld-dcase2020
def main(argv):
    """
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: task_id - (optional) To chose the system configuration in parameters.py.
                                (default) 1 - uses default parameters
        second input: job_id - (optional) all the output files will be uniquely represented with this.
                              (default) 1

    """
    print(argv)
    if len(argv) != 3:
        print('\n\n')
        print(
            '-------------------------------------------------------------------------------------------------------'
        )
        print('The code expected two optional inputs')
        print('\t>> python seld.py <task-id> <job-id>')
        print(
            '\t\t<task-id> is used to choose the user-defined parameter set from parameter.py'
        )
        print('Using default inputs for now')
        print(
            '\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
            'You can use any number or string for this.')
        print(
            '-------------------------------------------------------------------------------------------------------'
        )
        print('\n\n')

    # use parameter set defined by user
    task_id = '1' if len(argv) < 2 else argv[1]
    params = parameter.get_params(task_id)

    job_id = 1 if len(argv) < 3 else argv[-1]

    feat_cls = cls_feature_class.FeatureClass(params)
    train_splits, val_splits, test_splits = None, None, None

    if params['mode'] == 'dev':
        test_splits = [1]
        val_splits = [2]
        train_splits = [[3, 4, 5, 6]]

    elif params['mode'] == 'eval':
        test_splits = [[7, 8]]
        val_splits = [[1]]
        train_splits = [[2, 3, 4, 5, 6]]

    avg_scores_val = []
    avg_scores_test = []
    for split_cnt, split in enumerate(test_splits):
        print(
            '\n\n---------------------------------------------------------------------------------------------------'
        )
        print(
            '------------------------------------      SPLIT {}   -----------------------------------------------'
            .format(split))
        print(
            '---------------------------------------------------------------------------------------------------'
        )

        # Unique name for the run
        cls_feature_class.create_folder(params['model_dir'])
        unique_name = '{}_{}_{}_{}_split{}'.format(task_id, job_id,
                                                   params['dataset'],
                                                   params['mode'], split)
        unique_name = os.path.join(params['model_dir'], unique_name)
        model_name = '{}_model.h5'.format(unique_name)
        print("unique_name: {}\n".format(unique_name))

        # Load train and validation data
        print('Loading training dataset:')
        data_gen_train = cls_data_generator.DataGenerator(
            params=params, split=train_splits[split_cnt])

        print('Loading validation dataset:')
        data_gen_val = cls_data_generator.DataGenerator(
            params=params, split=val_splits[split_cnt], shuffle=False)

        # Collect the reference labels for validation data
        data_in, data_out = data_gen_train.get_data_sizes()
        print('FEATURES:\n\tdata_in: {}\n\tdata_out: {}\n'.format(
            data_in, data_out))

        nb_classes = data_gen_train.get_nb_classes()
        gt = collect_test_labels(data_gen_val, data_out, nb_classes,
                                 params['quick_test'])
        sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
        doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

        print(
            'MODEL:\n\tdropout_rate: {}\n\tCNN: nb_cnn_filt: {}, f_pool_size{}, t_pool_size{}\n\trnn_size: {}, fnn_size: {}\n\tdoa_objective: {}\n'
            .format(params['dropout_rate'], params['nb_cnn2d_filt'],
                    params['f_pool_size'], params['t_pool_size'],
                    params['rnn_size'], params['fnn_size'],
                    params['doa_objective']))

        print('Using loss weights : {}'.format(params['loss_weights']))
        model = keras_model.get_model(data_in=data_in,
                                      data_out=data_out,
                                      dropout_rate=params['dropout_rate'],
                                      nb_cnn2d_filt=params['nb_cnn2d_filt'],
                                      f_pool_size=params['f_pool_size'],
                                      t_pool_size=params['t_pool_size'],
                                      rnn_size=params['rnn_size'],
                                      fnn_size=params['fnn_size'],
                                      weights=params['loss_weights'],
                                      doa_objective=params['doa_objective'])
        best_seld_metric = 99999
        best_epoch = -1
        patience_cnt = 0
        nb_epoch = 2 if params['quick_test'] else params['nb_epochs']
        seld_metric = np.zeros(nb_epoch)
        new_seld_metric = np.zeros(nb_epoch)
        tr_loss = np.zeros(nb_epoch)
        doa_metric = np.zeros((nb_epoch, 6))
        sed_metric = np.zeros((nb_epoch, 2))
        new_metric = np.zeros((nb_epoch, 4))

        # start training
        for epoch_cnt in range(nb_epoch):
            start = time.time()

            # train once per epoch
            hist = model.fit_generator(
                generator=data_gen_train.generate(),
                steps_per_epoch=2 if params['quick_test'] else
                data_gen_train.get_total_batches_in_data(),
                epochs=params['epochs_per_fit'],
                verbose=2,
            )
            tr_loss[epoch_cnt] = hist.history.get('loss')[-1]

            # predict once per peoch
            pred = model.predict_generator(
                generator=data_gen_val.generate(),
                steps=2 if params['quick_test'] else
                data_gen_val.get_total_batches_in_data(),
                verbose=2)

            sed_pred = evaluation_metrics.reshape_3Dto2D(pred[0]) > 0.5
            doa_pred = evaluation_metrics.reshape_3Dto2D(
                pred[1]
                if params['doa_objective'] is 'mse' else pred[1][:, :,
                                                                 nb_classes:])

            # Calculate the DCASE 2019 metrics - Detection-only and Localization-only scores
            sed_metric[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(
                sed_pred, sed_gt, data_gen_val.nb_frames_1s())
            doa_metric[
                epoch_cnt, :] = evaluation_metrics.compute_doa_scores_regr_xyz(
                    doa_pred, doa_gt, sed_pred, sed_gt)
            seld_metric[epoch_cnt] = evaluation_metrics.early_stopping_metric(
                sed_metric[epoch_cnt, :], doa_metric[epoch_cnt, :])

            # Calculate the DCASE 2020 metrics - Location-aware detection and Class-aware localization scores
            cls_new_metric = SELD_evaluation_metrics.SELDMetrics(
                nb_classes=data_gen_val.get_nb_classes(),
                doa_threshold=params['lad_doa_thresh'])
            pred_dict = feat_cls.regression_label_format_to_output_format(
                sed_pred, doa_pred)
            gt_dict = feat_cls.regression_label_format_to_output_format(
                sed_gt, doa_gt)

            pred_blocks_dict = feat_cls.segment_labels(pred_dict,
                                                       sed_pred.shape[0])
            gt_blocks_dict = feat_cls.segment_labels(gt_dict, sed_gt.shape[0])

            cls_new_metric.update_seld_scores_xyz(pred_blocks_dict,
                                                  gt_blocks_dict)
            new_metric[epoch_cnt, :] = cls_new_metric.compute_seld_scores()
            new_seld_metric[
                epoch_cnt] = evaluation_metrics.early_stopping_metric(
                    new_metric[epoch_cnt, :2], new_metric[epoch_cnt, 2:])

            # Visualize the metrics with respect to epochs
            plot_functions(unique_name, tr_loss, sed_metric, doa_metric,
                           seld_metric, new_metric, new_seld_metric)

            patience_cnt += 1
            if new_seld_metric[epoch_cnt] < best_seld_metric:
                best_seld_metric = new_seld_metric[epoch_cnt]
                best_epoch = epoch_cnt
                model.save(model_name)
                patience_cnt = 0

            print(
                'epoch_cnt: {}, time: {:0.2f}s, tr_loss: {:0.2f}, '
                '\n\t\t DCASE2019 SCORES: ER: {:0.2f}, F: {:0.1f}, DE: {:0.1f}, FR:{:0.1f}, seld_score: {:0.2f}, '
                '\n\t\t DCASE2020 SCORES: ER: {:0.2f}, F: {:0.1f}, DE: {:0.1f}, DE_F:{:0.1f}, seld_score (early stopping score): {:0.2f}, '
                'best_seld_score: {:0.2f}, best_epoch : {}\n'.format(
                    epoch_cnt,
                    time.time() - start, tr_loss[epoch_cnt],
                    sed_metric[epoch_cnt, 0], sed_metric[epoch_cnt, 1] * 100,
                    doa_metric[epoch_cnt, 0], doa_metric[epoch_cnt, 1] * 100,
                    seld_metric[epoch_cnt], new_metric[epoch_cnt, 0],
                    new_metric[epoch_cnt, 1] * 100, new_metric[epoch_cnt, 2],
                    new_metric[epoch_cnt, 3] * 100, new_seld_metric[epoch_cnt],
                    best_seld_metric, best_epoch))
            if patience_cnt > params['patience']:
                break

        avg_scores_val.append([
            new_metric[best_epoch, 0], new_metric[best_epoch, 1],
            new_metric[best_epoch, 2], new_metric[best_epoch,
                                                  3], best_seld_metric
        ])
        print('\nResults on validation split:')
        print('\tUnique_name: {} '.format(unique_name))
        print('\tSaved model for the best_epoch: {}'.format(best_epoch))
        print('\tSELD_score (early stopping score) : {}'.format(
            best_seld_metric))

        print('\n\tDCASE2020 scores')
        print(
            '\tClass-aware localization scores: DOA_error: {:0.1f}, F-score: {:0.1f}'
            .format(new_metric[best_epoch, 2],
                    new_metric[best_epoch, 3] * 100))
        print(
            '\tLocation-aware detection scores: Error rate: {:0.2f}, F-score: {:0.1f}'
            .format(new_metric[best_epoch, 0],
                    new_metric[best_epoch, 1] * 100))

        print('\n\tDCASE2019 scores')
        print(
            '\tLocalization-only scores: DOA_error: {:0.1f}, Frame recall: {:0.1f}'
            .format(doa_metric[best_epoch, 0],
                    doa_metric[best_epoch, 1] * 100))
        print(
            '\tDetection-only scores: Error rate: {:0.2f}, F-score: {:0.1f}\n'.
            format(sed_metric[best_epoch, 0], sed_metric[best_epoch, 1] * 100))

        # ------------------  Calculate metric scores for unseen test split ---------------------------------
        print(
            '\nLoading the best model and predicting results on the testing split'
        )
        print('\tLoading testing dataset:')
        data_gen_test = cls_data_generator.DataGenerator(
            params=params,
            split=split,
            shuffle=False,
            per_file=params['dcase_output'],
            is_eval=True if params['mode'] is 'eval' else False)

        model = keras_model.load_seld_model('{}_model.h5'.format(unique_name),
                                            params['doa_objective'])
        pred_test = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=2 if params['quick_test'] else
            data_gen_test.get_total_batches_in_data(),
            verbose=2)

        test_sed_pred = evaluation_metrics.reshape_3Dto2D(pred_test[0]) > 0.5
        test_doa_pred = evaluation_metrics.reshape_3Dto2D(
            pred_test[1]
            if params['doa_objective'] is 'mse' else pred_test[1][:, :,
                                                                  nb_classes:])

        if params['dcase_output']:
            # Dump results in DCASE output format for calculating final scores
            dcase_dump_folder = os.path.join(
                params['dcase_dir'],
                '{}_{}_{}'.format(task_id, params['dataset'], params['mode']))
            cls_feature_class.create_folder(dcase_dump_folder)
            print('Dumping recording-wise results in: {}'.format(
                dcase_dump_folder))

            test_filelist = data_gen_test.get_filelist()
            # Number of frames for a 60 second audio with 20ms hop length = 3000 frames
            max_frames_with_content = data_gen_test.get_nb_frames()

            # Number of frames in one batch (batch_size* sequence_length) consists of all the 3000 frames above with
            # zero padding in the remaining frames
            frames_per_file = data_gen_test.get_frame_per_file()

            for file_cnt in range(test_sed_pred.shape[0] // frames_per_file):
                output_file = os.path.join(
                    dcase_dump_folder,
                    test_filelist[file_cnt].replace('.npy', '.csv'))
                dc = file_cnt * frames_per_file
                output_dict = feat_cls.regression_label_format_to_output_format(
                    test_sed_pred[dc:dc + max_frames_with_content, :],
                    test_doa_pred[dc:dc + max_frames_with_content, :])
                data_gen_test.write_output_format_file(output_file,
                                                       output_dict)

        if params['mode'] is 'dev':
            test_data_in, test_data_out = data_gen_test.get_data_sizes()
            test_gt = collect_test_labels(data_gen_test, test_data_out,
                                          nb_classes, params['quick_test'])
            test_sed_gt = evaluation_metrics.reshape_3Dto2D(test_gt[0])
            test_doa_gt = evaluation_metrics.reshape_3Dto2D(test_gt[1])

            # Calculate DCASE2019 scores
            test_sed_loss = evaluation_metrics.compute_sed_scores(
                test_sed_pred, test_sed_gt, data_gen_test.nb_frames_1s())
            test_doa_loss = evaluation_metrics.compute_doa_scores_regr_xyz(
                test_doa_pred, test_doa_gt, test_sed_pred, test_sed_gt)
            test_metric_loss = evaluation_metrics.early_stopping_metric(
                test_sed_loss, test_doa_loss)

            # Calculate DCASE2020 scores
            cls_new_metric = SELD_evaluation_metrics.SELDMetrics(
                nb_classes=data_gen_test.get_nb_classes(), doa_threshold=20)
            test_pred_dict = feat_cls.regression_label_format_to_output_format(
                test_sed_pred, test_doa_pred)
            test_gt_dict = feat_cls.regression_label_format_to_output_format(
                test_sed_gt, test_doa_gt)

            test_pred_blocks_dict = feat_cls.segment_labels(
                test_pred_dict, test_sed_pred.shape[0])
            test_gt_blocks_dict = feat_cls.segment_labels(
                test_gt_dict, test_sed_gt.shape[0])

            cls_new_metric.update_seld_scores_xyz(test_pred_blocks_dict,
                                                  test_gt_blocks_dict)
            test_new_metric = cls_new_metric.compute_seld_scores()
            test_new_seld_metric = evaluation_metrics.early_stopping_metric(
                test_new_metric[:2], test_new_metric[2:])

            avg_scores_test.append([
                test_new_metric[0], test_new_metric[1], test_new_metric[2],
                test_new_metric[3], test_new_seld_metric
            ])
            print('Results on test split:')

            print('\tDCASE2020 Scores')
            print(
                '\tClass-aware localization scores: DOA Error: {:0.1f}, F-score: {:0.1f}'
                .format(test_new_metric[2], test_new_metric[3] * 100))
            print(
                '\tLocation-aware detection scores: Error rate: {:0.2f}, F-score: {:0.1f}'
                .format(test_new_metric[0], test_new_metric[1] * 100))
            print('\tSELD (early stopping metric): {:0.2f}'.format(
                test_new_seld_metric))

            print('\n\tDCASE2019 Scores')
            print(
                '\tLocalization-only scores: DOA Error: {:0.1f}, Frame recall: {:0.1f}'
                .format(test_doa_loss[0], test_doa_loss[1] * 100))
            print(
                '\tDetection-only scores:Error rate: {:0.2f}, F-score: {:0.1f}'
                .format(test_sed_loss[0], test_sed_loss[1] * 100))
コード例 #6
0
def main(argv):
    """
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: task_id - (optional) To chose the system configuration in parameters.py.
                                (default) 1 - uses default parameters
        second input: job_id - (optional) all the output files will be uniquely represented with this.
                              (default) 1

    """
    print(argv)
    if len(argv) != 3:
        print('\n\n')
        print(
            '-------------------------------------------------------------------------------------------------------'
        )
        print('The code expected two optional inputs')
        print('\t>> python seld.py <task-id> <job-id>')
        print(
            '\t\t<task-id> is used to choose the user-defined parameter set from parameter.py'
        )
        print('Using default inputs for now')
        print(
            '\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
            'You can use any number or string for this.')
        print(
            '-------------------------------------------------------------------------------------------------------'
        )
        print('\n\n')

    # use parameter set defined by user
    task_id = '1' if len(argv) < 2 else argv[1]
    params = parameter.get_params(task_id)

    job_id = 1 if len(argv) < 3 else argv[-1]

    feat_cls = cls_feature_class.FeatureClass(params)
    train_splits, val_splits, test_splits = None, None, None

    if params['mode'] == 'dev':
        test_splits = [6]
        val_splits = [5]
        train_splits = [[1, 2, 3, 4]]

    elif params['mode'] == 'eval':
        test_splits = [[7, 8]]
        val_splits = [[6]]
        train_splits = [[1, 2, 3, 4, 5]]

    for split_cnt, split in enumerate(test_splits):
        print(
            '\n\n---------------------------------------------------------------------------------------------------'
        )
        print(
            '------------------------------------      SPLIT {}   -----------------------------------------------'
            .format(split))
        print(
            '---------------------------------------------------------------------------------------------------'
        )

        # Unique name for the run
        cls_feature_class.create_folder(params['model_dir'])
        unique_name = '{}_{}_{}_{}_split{}'.format(task_id, job_id,
                                                   params['dataset'],
                                                   params['mode'], split)
        unique_name = os.path.join(params['model_dir'], unique_name)
        model_name = '{}_model.h5'.format(unique_name)
        print("unique_name: {}\n".format(unique_name))

        # Load train and validation data
        print('Loading training dataset:')
        data_gen_train = cls_data_generator.DataGenerator(
            params=params, split=train_splits[split_cnt])

        print('Loading validation dataset:')
        data_gen_val = cls_data_generator.DataGenerator(
            params=params,
            split=val_splits[split_cnt],
            shuffle=False,
            per_file=True,
            is_eval=False)

        # Collect the reference labels for validation data
        data_in, data_out = data_gen_train.get_data_sizes()
        print('FEATURES:\n\tdata_in: {}\n\tdata_out: {}\n'.format(
            data_in, data_out))

        nb_classes = data_gen_train.get_nb_classes()
        print(
            'MODEL:\n\tdropout_rate: {}\n\tCNN: nb_cnn_filt: {}, f_pool_size{}, t_pool_size{}\n\trnn_size: {}, fnn_size: {}\n\tdoa_objective: {}\n'
            .format(params['dropout_rate'], params['nb_cnn2d_filt'],
                    params['f_pool_size'], params['t_pool_size'],
                    params['rnn_size'], params['fnn_size'],
                    params['doa_objective']))

        print('Using loss weights : {}'.format(params['loss_weights']))
        model = keras_model.get_model(data_in=data_in,
                                      data_out=data_out,
                                      dropout_rate=params['dropout_rate'],
                                      nb_cnn2d_filt=params['nb_cnn2d_filt'],
                                      f_pool_size=params['f_pool_size'],
                                      t_pool_size=params['t_pool_size'],
                                      rnn_size=params['rnn_size'],
                                      fnn_size=params['fnn_size'],
                                      weights=params['loss_weights'],
                                      doa_objective=params['doa_objective'],
                                      is_accdoa=params['is_accdoa'])

        # Dump results in DCASE output format for calculating final scores
        dcase_output_val_folder = os.path.join(
            params['dcase_output_dir'],
            '{}_{}_{}_val'.format(task_id, params['dataset'], params['mode']))
        cls_feature_class.delete_and_create_folder(dcase_output_val_folder)
        print('Dumping recording-wise val results in: {}'.format(
            dcase_output_val_folder))

        # Initialize evaluation metric class
        score_obj = ComputeSELDResults(params)

        best_seld_metric = 99999
        best_epoch = -1
        patience_cnt = 0
        nb_epoch = 2 if params['quick_test'] else params['nb_epochs']
        tr_loss = np.zeros(nb_epoch)
        seld_metric = np.zeros((nb_epoch, 5))

        # start training
        for epoch_cnt in range(nb_epoch):
            start = time.time()

            # train once per epoch
            hist = model.fit_generator(
                generator=data_gen_train.generate(),
                steps_per_epoch=2 if params['quick_test'] else
                data_gen_train.get_total_batches_in_data(),
                epochs=params['epochs_per_fit'],
                verbose=2,
            )
            tr_loss[epoch_cnt] = hist.history.get('loss')[-1]

            # predict once per epoch
            pred = model.predict_generator(
                generator=data_gen_val.generate(),
                steps=2 if params['quick_test'] else
                data_gen_val.get_total_batches_in_data(),
                verbose=2)

            if params['is_accdoa']:
                sed_pred, doa_pred = get_accdoa_labels(pred, nb_classes)
                sed_pred = reshape_3Dto2D(sed_pred)
                doa_pred = reshape_3Dto2D(doa_pred)
            else:
                sed_pred = reshape_3Dto2D(pred[0]) > 0.5
                doa_pred = reshape_3Dto2D(pred[1] if params['doa_objective'] is
                                          'mse' else pred[1][:, :,
                                                             nb_classes:])

            # Calculate the DCASE 2021 metrics - Location-aware detection and Class-aware localization scores
            dump_DCASE2021_results(data_gen_val, feat_cls,
                                   dcase_output_val_folder, sed_pred, doa_pred)
            seld_metric[epoch_cnt, :] = score_obj.get_SELD_Results(
                dcase_output_val_folder)

            patience_cnt += 1
            if seld_metric[epoch_cnt, -1] < best_seld_metric:
                best_seld_metric = seld_metric[epoch_cnt, -1]
                best_epoch = epoch_cnt
                model.save(model_name)
                patience_cnt = 0

            print(
                'epoch_cnt: {}, time: {:0.2f}s, tr_loss: {:0.2f}, '
                '\n\t\t DCASE2021 SCORES: ER: {:0.2f}, F: {:0.1f}, LE: {:0.1f}, LR:{:0.1f}, seld_score (early stopping score): {:0.2f}, '
                'best_seld_score: {:0.2f}, best_epoch : {}\n'.format(
                    epoch_cnt,
                    time.time() - start, tr_loss[epoch_cnt],
                    seld_metric[epoch_cnt, 0], seld_metric[epoch_cnt, 1] * 100,
                    seld_metric[epoch_cnt, 2], seld_metric[epoch_cnt, 3] * 100,
                    seld_metric[epoch_cnt, -1], best_seld_metric, best_epoch))
            if patience_cnt > params['patience']:
                break

        print('\nResults on validation split:')
        print('\tUnique_name: {} '.format(unique_name))
        print('\tSaved model for the best_epoch: {}'.format(best_epoch))
        print('\tSELD_score (early stopping score) : {}'.format(
            best_seld_metric))

        print('\n\tDCASE2021 scores')
        print(
            '\tClass-aware localization scores: Localization Error: {:0.1f}, Localization Recall: {:0.1f}'
            .format(seld_metric[best_epoch, 2],
                    seld_metric[best_epoch, 3] * 100))
        print(
            '\tLocation-aware detection scores: Error rate: {:0.2f}, F-score: {:0.1f}'
            .format(seld_metric[best_epoch, 0],
                    seld_metric[best_epoch, 1] * 100))

        # ------------------  Calculate metric scores for unseen test split ---------------------------------
        print(
            '\nLoading the best model and predicting results on the testing split'
        )
        print('\tLoading testing dataset:')
        data_gen_test = cls_data_generator.DataGenerator(
            params=params,
            split=split,
            shuffle=False,
            per_file=True,
            is_eval=True if params['mode'] is 'eval' else False)

        model = keras_model.load_seld_model('{}_model.h5'.format(unique_name),
                                            params['doa_objective'])
        pred_test = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=2 if params['quick_test'] else
            data_gen_test.get_total_batches_in_data(),
            verbose=2)
        if params['is_accdoa']:
            test_sed_pred, test_doa_pred = get_accdoa_labels(
                pred_test, nb_classes)
            test_sed_pred = reshape_3Dto2D(test_sed_pred)
            test_doa_pred = reshape_3Dto2D(test_doa_pred)
        else:
            test_sed_pred = reshape_3Dto2D(pred_test[0]) > 0.5
            test_doa_pred = reshape_3Dto2D(
                pred_test[1] if params['doa_objective'] is 'mse' else
                pred_test[1][:, :, nb_classes:])

        # Dump results in DCASE output format for calculating final scores
        dcase_output_test_folder = os.path.join(
            params['dcase_output_dir'],
            '{}_{}_{}_test'.format(task_id, params['dataset'], params['mode']))
        cls_feature_class.delete_and_create_folder(dcase_output_test_folder)
        print('Dumping recording-wise test results in: {}'.format(
            dcase_output_test_folder))
        dump_DCASE2021_results(data_gen_test, feat_cls,
                               dcase_output_test_folder, test_sed_pred,
                               test_doa_pred)

        if params['mode'] is 'dev':
            # Calculate DCASE2021 scores
            test_seld_metric = score_obj.get_SELD_Results(
                dcase_output_test_folder)

            print('Results on test split:')
            print('\tDCASE2021 Scores')
            print(
                '\tClass-aware localization scores: Localization Error: {:0.1f}, Localization Recall: {:0.1f}'
                .format(test_seld_metric[2], test_seld_metric[3] * 100))
            print(
                '\tLocation-aware detection scores: Error rate: {:0.2f}, F-score: {:0.1f}'
                .format(test_seld_metric[0], test_seld_metric[1] * 100))
            print('\tSELD (early stopping metric): {:0.2f}'.format(
                test_seld_metric[-1]))
コード例 #7
0
def main(args):
    """
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1
        second input: task_id - (optional) To chose the system configuration in parameters.py. 
                                (default) uses default parameters
    """

    # use parameter set defined by user
    task_id = args.params
    params = parameter.get_params(task_id)

    job_id = args.model_name

    model_dir = 'models/' + args.author + '/' if args.author != "" else 'models/'
    utils.create_folder(model_dir)
    unique_name = '{}_ov{}_split{}_{}{}_3d{}_{}'.format(
        params['dataset'], params['overlap'], params['split'], params['mode'],
        params['weakness'], int(params['cnn_3d']), job_id)

    model_name = unique_name

    epoch_manager = JSON_Manager(args.author, unique_name)
    logdir = "logs/" + args.author + "/" + unique_name

    unique_name = os.path.join(model_dir, unique_name)
    print("unique_name: {}\n".format(unique_name))

    session = tf.InteractiveSession()

    file_writer = tf.summary.FileWriter(logdir, session.graph)

    data_gen_train = cls_data_generator.DataGenerator(
        dataset=params['dataset'],
        ov=params['overlap'],
        split=params['split'],
        db=params['db'],
        nfft=params['nfft'],
        batch_size=params['batch_size'],
        seq_len=params['sequence_length'],
        classifier_mode=params['mode'],
        weakness=params['weakness'],
        datagen_mode='train',
        cnn3d=params['cnn_3d'],
        xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only'])

    data_gen_test = cls_data_generator.DataGenerator(
        dataset=params['dataset'],
        ov=params['overlap'],
        split=params['split'],
        db=params['db'],
        nfft=params['nfft'],
        batch_size=params['batch_size'],
        seq_len=params['sequence_length'],
        classifier_mode=params['mode'],
        weakness=params['weakness'],
        datagen_mode='test',
        cnn3d=params['cnn_3d'],
        xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only'],
        shuffle=False)

    data_in, data_out = data_gen_train.get_data_sizes()
    print('FEATURES:\n'
          '\tdata_in: {}\n'
          '\tdata_out: {}\n'.format(data_in, data_out))

    gt = collect_test_labels(data_gen_test, data_out, params['mode'],
                             params['quick_test'])
    sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
    doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

    print('MODEL:\n'
          '\tdropout_rate: {}\n'
          '\tCNN: nb_cnn_filt: {}, pool_size{}\n'
          '\trnn_size: {}, fnn_size: {}\n'.format(
              params['dropout_rate'], params['nb_cnn3d_filt']
              if params['cnn_3d'] else params['nb_cnn2d_filt'],
              params['pool_size'], params['rnn_size'], params['fnn_size']))

    model = keras_model.get_model(data_in=data_in,
                                  data_out=data_out,
                                  dropout_rate=params['dropout_rate'],
                                  nb_cnn2d_filt=params['nb_cnn2d_filt'],
                                  pool_size=params['pool_size'],
                                  rnn_size=params['rnn_size'],
                                  fnn_size=params['fnn_size'],
                                  classification_mode=params['mode'],
                                  weights=params['loss_weights'])

    initial = epoch_manager.get_epoch()
    if initial != 0:
        print(f"Resume training from epoch {initial}")
        print("Loading already trained model...")
        # In order to load custom layers we need to link the references to the custom objects
        model = load_model(os.path.join(model_dir, model_name + "_model.h5"),
                           custom_objects={
                               'QuaternionConv2D': QuaternionConv2D,
                               'QuaternionGRU': QuaternionGRU,
                               'QuaternionDense': QuaternionDense
                           })

    best_metric = epoch_manager.get_best_metric()
    best_std = epoch_manager.get_best_std()
    conf_mat = None
    best_conf_mat = epoch_manager.get_best_conf_mat()
    best_epoch = epoch_manager.get_best_epoch()
    patience_cnt = epoch_manager.get_patience_cnt()
    epoch_metric_loss = np.zeros(params['nb_epochs'])
    sed_score = np.zeros(params['nb_epochs'])
    std_score = np.zeros(params['nb_epochs'])
    doa_score = np.zeros(params['nb_epochs'])
    seld_score = np.zeros(params['nb_epochs'])
    tr_loss = np.zeros(params['nb_epochs'])
    val_loss = np.zeros(params['nb_epochs'])
    doa_loss = np.zeros((params['nb_epochs'], 6))
    sed_loss = np.zeros((params['nb_epochs'], 2))

    time_hold = tf.placeholder(tf.float32, shape=None, name='time_summary')
    time_summ = tf.summary.scalar('time', time_hold)

    tr_loss_hold = tf.placeholder(tf.float32,
                                  shape=None,
                                  name='tr_loss_summary')
    tr_loss_summ = tf.summary.scalar('tr_loss', tr_loss_hold)

    val_loss_hold = tf.placeholder(tf.float32,
                                   shape=None,
                                   name='val_loss_summary')
    val_loss_summ = tf.summary.scalar('val_loss', val_loss_hold)

    f1_hold = tf.placeholder(tf.float32, shape=None, name='f1_summary')
    f1_summ = tf.summary.scalar('F1_overall', f1_hold)

    er_hold = tf.placeholder(tf.float32, shape=None, name='er_summary')
    er_summ = tf.summary.scalar('ER_overall', er_hold)

    doa_error_gt_hold = tf.placeholder(tf.float32,
                                       shape=None,
                                       name='doa_error_gt_summary')
    doa_error_gt_summ = tf.summary.scalar('doa_error_gt', doa_error_gt_hold)

    doa_error_pred_hold = tf.placeholder(tf.float32,
                                         shape=None,
                                         name='doa_error_pred_summary')
    doa_error_pred_summ = tf.summary.scalar('doa_error_pred',
                                            doa_error_pred_hold)

    good_pks_hold = tf.placeholder(tf.float32,
                                   shape=None,
                                   name='good_pks_summary')
    good_pks_summ = tf.summary.scalar('good_pks_ratio', good_pks_hold)

    sed_score_hold = tf.placeholder(tf.float32,
                                    shape=None,
                                    name='sed_score_summary')
    sed_score_summ = tf.summary.scalar('sed_score', sed_score_hold)

    doa_score_hold = tf.placeholder(tf.float32,
                                    shape=None,
                                    name='doa_score_summary')
    doa_score_summ = tf.summary.scalar('doa_score', doa_score_hold)

    seld_score_hold = tf.placeholder(tf.float32,
                                     shape=None,
                                     name='seld_score_summary')
    seld_score_summ = tf.summary.scalar('seld_score', seld_score_hold)

    std_score_hold = tf.placeholder(tf.float32,
                                    shape=None,
                                    name='std_score_summary')
    std_score_summ = tf.summary.scalar('std_score', std_score_hold)

    best_error_metric_hold = tf.placeholder(tf.float32,
                                            shape=None,
                                            name='best_error_metric_summary')
    best_error_metric_summ = tf.summary.scalar('best_error_metric',
                                               best_error_metric_hold)

    best_epoch_hold = tf.placeholder(tf.float32,
                                     shape=None,
                                     name='best_epoch_summary')
    best_epoch_summ = tf.summary.scalar('best_epoch', best_epoch_hold)

    best_std_hold = tf.placeholder(tf.float32,
                                   shape=None,
                                   name='best_std_summary')
    best_std_summ = tf.summary.scalar('best_std', best_std_hold)

    merged = tf.summary.merge_all()

    for epoch_cnt in range(initial, params['nb_epochs']):
        start = time.time()
        hist = model.fit_generator(
            generator=data_gen_train.generate(),
            steps_per_epoch=5 if params['quick_test'] else
            data_gen_train.get_total_batches_in_data(),
            validation_data=data_gen_test.generate(),
            validation_steps=5 if params['quick_test'] else
            data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            epochs=1,
            verbose=1)
        tr_loss[epoch_cnt] = hist.history.get('loss')[-1]
        val_loss[epoch_cnt] = hist.history.get('val_loss')[-1]

        pred = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=5 if params['quick_test'] else
            data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            verbose=2)
        print("pred:", pred[1].shape)
        if params['mode'] == 'regr':
            sed_pred = evaluation_metrics.reshape_3Dto2D(pred[0]) > 0.5
            doa_pred = evaluation_metrics.reshape_3Dto2D(pred[1])

            sed_loss[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(
                sed_pred, sed_gt, data_gen_test.nb_frames_1s())
            if params['azi_only']:
                doa_loss[
                    epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xy(
                        doa_pred, doa_gt, sed_pred, sed_gt)
            else:
                doa_loss[
                    epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xyz(
                        doa_pred, doa_gt, sed_pred, sed_gt)

            sed_score[epoch_cnt] = np.mean(
                [sed_loss[epoch_cnt, 0], 1 - sed_loss[epoch_cnt, 1]])
            doa_score[epoch_cnt] = np.mean([
                2 * np.arcsin(doa_loss[epoch_cnt, 1] / 2.0) / np.pi,
                1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))
            ])
            seld_score[epoch_cnt] = np.mean(
                [sed_score[epoch_cnt], doa_score[epoch_cnt]])

            # standard deviation
            std_score[epoch_cnt] = np.std(
                [sed_score[epoch_cnt], doa_score[epoch_cnt]])

        plot_functions(unique_name, tr_loss, val_loss, sed_loss, doa_loss,
                       sed_score, doa_score)

        patience_cnt += 1
        epoch_manager.increase_patience_cnt()

        model.save('{}_model.h5'.format(unique_name))

        if seld_score[epoch_cnt] < best_metric:
            best_metric = seld_score[epoch_cnt]
            epoch_manager.set_best_metric(best_metric)

            best_std = std_score[epoch_cnt]
            epoch_manager.set_best_std(best_std)

            best_conf_mat = conf_mat
            epoch_manager.set_best_conf_mat(conf_mat)

            best_epoch = epoch_cnt
            epoch_manager.set_best_epoch(best_epoch)

            model.save('{}_best_model.h5'.format(unique_name))
            patience_cnt = 0
            epoch_manager.reset_patience_cnt()

        if patience_cnt > params['patience']:
            print(
                f"\n----  PATIENCE TRIGGERED AFTER {epoch_cnt} EPOCHS  ----\n")
            break

        summary = session.run(merged,
                              feed_dict={
                                  time_hold:
                                  time.time() - start,
                                  tr_loss_hold:
                                  tr_loss[epoch_cnt],
                                  val_loss_hold:
                                  val_loss[epoch_cnt],
                                  f1_hold:
                                  sed_loss[epoch_cnt, 1],
                                  er_hold:
                                  sed_loss[epoch_cnt, 0],
                                  doa_error_gt_hold:
                                  doa_loss[epoch_cnt, 1],
                                  doa_error_pred_hold:
                                  doa_loss[epoch_cnt, 2],
                                  good_pks_hold:
                                  doa_loss[epoch_cnt, 5] /
                                  float(sed_gt.shape[0]),
                                  sed_score_hold:
                                  sed_score[epoch_cnt],
                                  doa_score_hold:
                                  doa_score[epoch_cnt],
                                  seld_score_hold:
                                  seld_score[epoch_cnt],
                                  std_score_hold:
                                  std_score[epoch_cnt],
                                  best_error_metric_hold:
                                  best_metric,
                                  best_epoch_hold:
                                  best_epoch,
                                  best_std_hold:
                                  best_std
                              })
        file_writer.add_summary(summary, epoch_cnt)

        print(
            'epoch_cnt: %d, time: %.2fs, tr_loss: %.2f, val_loss: %.2f, '
            'F1_overall: %.2f, ER_overall: %.2f, '
            'doa_error_gt: %.2f, doa_error_pred: %.2f, good_pks_ratio:%.2f, '
            'sed_score: %.2f, doa_score: %.2f, best_error_metric: %.2f, best_epoch : %d, best_std: %.2f'
            % (epoch_cnt, time.time() - start, tr_loss[epoch_cnt],
               val_loss[epoch_cnt], sed_loss[epoch_cnt, 1],
               sed_loss[epoch_cnt, 0], doa_loss[epoch_cnt, 1],
               doa_loss[epoch_cnt, 2], doa_loss[epoch_cnt, 5] /
               float(sed_gt.shape[0]), sed_score[epoch_cnt],
               doa_score[epoch_cnt], best_metric, best_epoch, best_std))
        epoch_manager.increase_epoch()
    lower_confidence, upper_confidence = evaluation_metrics.compute_confidence_interval(
        best_metric, best_std, params['nb_epochs'],
        confid_coeff=1.96)  # 1.96 for a 95% CI

    print("\n----  FINISHED TRAINING  ----\n")

    print('best_conf_mat : {}'.format(best_conf_mat))
    print('best_conf_mat_diag : {}'.format(np.diag(best_conf_mat)))
    print('saved model for the best_epoch: {} with best_metric: {},  '.format(
        best_epoch, best_metric))
    print(
        'DOA Metrics: doa_loss_gt: {}, doa_loss_pred: {}, good_pks_ratio: {}'.
        format(doa_loss[best_epoch, 1], doa_loss[best_epoch, 2],
               doa_loss[best_epoch, 5] / float(sed_gt.shape[0])))
    print('SED Metrics: ER_overall: {}, F1_overall: {}'.format(
        sed_loss[best_epoch, 0], sed_loss[best_epoch, 1]))
    print('Confidence Interval: lower_interval: {}, upper_inteval: {}'.format(
        lower_confidence, upper_confidence))
    print('unique_name: {} '.format(unique_name))
コード例 #8
0
def main(argv):
    """
    Main wrapper for training sound event localization and detection network.

    :param argv: expects two optional inputs.
        first input: task_id - (optional) To chose the system configuration in parameters.py.
                                (default) 1 - uses default parameters
        second input: job_id - (optional) all the output files will be uniquely represented with this.
                              (default) 1

    """
    print(argv)
    if len(argv) != 3:
        print('\n\n')
        print(
            '-------------------------------------------------------------------------------------------------------'
        )
        print('The code expected two optional inputs')
        print('\t>> python seld.py <task-id> <job-id>')
        print(
            '\t\t<task-id> is used to choose the user-defined parameter set from parameter.py'
        )
        print('Using default inputs for now')
        print(
            '\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
            'You can use any number or string for this.')
        print(
            '-------------------------------------------------------------------------------------------------------'
        )
        print('\n\n')

    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    torch.autograd.set_detect_anomaly(True)

    # use parameter set defined by user
    task_id = '1' if len(argv) < 2 else argv[1]
    params = doanet_parameters.get_params(task_id)

    job_id = 1 if len(argv) < 3 else argv[-1]

    # load Hungarian network for data association, and freeze all layers.
    hnet_model = HNetGRU(max_len=2).to(device)
    hnet_model.load_state_dict(
        torch.load("models/hnet_model.pt", map_location=torch.device('cpu')))
    for model_params in hnet_model.parameters():
        model_params.requires_grad = False
    print('---------------- Hungarian-net -------------------')
    print(hnet_model)

    # Training setup
    train_splits, val_splits, test_splits = None, None, None
    if params['mode'] == 'dev':
        test_splits = [1]
        val_splits = [2]
        train_splits = [[3, 4, 5, 6]]

    for split_cnt, split in enumerate(test_splits):
        print(
            '\n\n---------------------------------------------------------------------------------------------------'
        )
        print(
            '------------------------------------      SPLIT {}   -----------------------------------------------'
            .format(split))
        print(
            '---------------------------------------------------------------------------------------------------'
        )

        # Unique name for the run
        cls_feature_class.create_folder(params['model_dir'])
        unique_name = '{}_{}_{}_{}_split{}'.format(task_id, job_id,
                                                   params['dataset'],
                                                   params['mode'], split)
        unique_name = os.path.join(params['model_dir'], unique_name)
        model_name = '{}_model.h5'.format(unique_name)
        print("unique_name: {}\n".format(unique_name))

        # Load train and validation data
        print('Loading training dataset:')
        data_gen_train = cls_data_generator.DataGenerator(
            params=params, split=train_splits[split_cnt])

        print('Loading validation dataset:')
        data_gen_val = cls_data_generator.DataGenerator(
            params=params, split=val_splits[split_cnt], shuffle=False)

        # Collect i/o data size and load model configuration
        data_in, data_out = data_gen_train.get_data_sizes()
        model = doanet_model.CRNN(data_in, data_out, params).to(device)
        #        model.load_state_dict(torch.load("models/23_5624972_mic_dev_split1_model.h5", map_location='cpu'))

        print('---------------- DOA-net -------------------')
        print('FEATURES:\n\tdata_in: {}\n\tdata_out: {}\n'.format(
            data_in, data_out))
        print(
            'MODEL:\n\tdropout_rate: {}\n\tCNN: nb_cnn_filt: {}, f_pool_size{}, t_pool_size{}\n\trnn_size: {}, fnn_size: {}\n'
            .format(params['dropout_rate'], params['nb_cnn2d_filt'],
                    params['f_pool_size'], params['t_pool_size'],
                    params['rnn_size'], params['fnn_size']))
        print(model)

        # start training
        best_val_epoch = -1
        best_doa, best_mota, best_ids, best_recall, best_precision, best_fscore = 180, 0, 1000, 0, 0, 0
        patience_cnt = 0

        nb_epoch = 2 if params['quick_test'] else params['nb_epochs']
        tr_loss_list = np.zeros(nb_epoch)
        val_loss_list = np.zeros(nb_epoch)
        hung_tr_loss_list = np.zeros(nb_epoch)
        hung_val_loss_list = np.zeros(nb_epoch)

        optimizer = optim.Adam(model.parameters(), lr=params['lr'])
        criterion = torch.nn.MSELoss()
        activity_loss = nn.BCEWithLogitsLoss()

        for epoch_cnt in range(nb_epoch):
            # ---------------------------------------------------------------------
            # TRAINING
            # ---------------------------------------------------------------------
            start_time = time.time()
            train_loss, train_dMOTP_loss, train_dMOTA_loss, train_act_loss = train_epoch(
                data_gen_train, optimizer, model, hnet_model, activity_loss,
                criterion, params, device)
            train_time = time.time() - start_time
            # ---------------------------------------------------------------------
            # VALIDATION
            # ---------------------------------------------------------------------
            start_time = time.time()
            val_metric = doa_metric()
            val_metric, val_loss, val_dMOTP_loss, val_dMOTA_loss, val_act_loss = test_epoch(
                data_gen_val, model, hnet_model, activity_loss, criterion,
                val_metric, params, device)

            val_hung_loss, val_mota, val_ids, val_recall_doa, val_precision_doa, val_fscore_doa = val_metric.get_results(
            )
            val_time = time.time() - start_time

            # Save model if loss is good
            if val_hung_loss <= best_doa:
                best_val_epoch, best_doa, best_mota, best_ids, best_recall, best_precision, best_fscore = epoch_cnt, val_hung_loss, val_mota, val_ids, val_recall_doa, val_precision_doa, val_fscore_doa
                torch.save(model.state_dict(), model_name)

            # Print stats and plot scores
            print(
                'epoch: {}, time: {:0.2f}/{:0.2f}, '
                'train_loss: {:0.2f} {}, val_loss: {:0.2f} {}, '
                'LE/MOTA/IDS/LR/LP/LF: {:0.3f}/{}, '
                'best_val_epoch: {} {}'.format(
                    epoch_cnt, train_time, val_time,
                    train_loss, '({:0.2f},{:0.2f},{:0.2f})'.format(
                        train_dMOTP_loss, train_dMOTA_loss, train_act_loss)
                    if params['use_hnet'] else '',
                    val_loss, '({:0.2f},{:0.2f},{:0.2f})'.format(
                        val_dMOTP_loss, val_dMOTA_loss, val_act_loss)
                    if params['use_hnet'] else '', val_hung_loss,
                    '{:0.2f}/{:0.2f}/{:0.2f}/{:0.2f}/{:0.2f}'.format(
                        val_mota, val_ids, val_recall_doa, val_precision_doa,
                        val_fscore_doa), best_val_epoch,
                    '({:0.2f}/{:0.2f}/{:0.2f}/{:0.2f}/{:0.2f}/{:0.2f})'.format(
                        best_doa, best_mota, best_ids, best_recall,
                        best_precision, best_fscore)))

            tr_loss_list[epoch_cnt], val_loss_list[
                epoch_cnt], hung_val_loss_list[
                    epoch_cnt] = train_loss, val_loss, val_hung_loss
            plot_functions(unique_name, tr_loss_list, val_loss_list,
                           hung_tr_loss_list, hung_val_loss_list)

            patience_cnt += 1
            if patience_cnt > params['patience']:
                break

        # ---------------------------------------------------------------------
        # Evaluate on unseen test data
        # ---------------------------------------------------------------------
        print('Load best model weights')
        model.load_state_dict(torch.load(model_name, map_location='cpu'))

        print('Loading unseen test dataset:')
        data_gen_test = cls_data_generator.DataGenerator(
            params=params, split=test_splits[split_cnt], shuffle=False)

        test_metric = doa_metric()
        test_metric, test_loss, test_dMOTP_loss, test_dMOTA_loss, test_act_loss = test_epoch(
            data_gen_test, model, hnet_model, activity_loss, criterion,
            test_metric, params, device)

        test_hung_loss, test_mota, test_ids, test_recall_doa, test_precision_doa, test_fscore_doa = test_metric.get_results(
        )

        print('test_loss: {:0.2f} {}, LE/MOTA/IDS/LR/LP/LF: {:0.3f}/{}'.format(
            test_loss, '({:0.2f},{:0.2f},{:0.2f})'.format(
                test_dMOTP_loss, test_dMOTA_loss, test_act_loss)
            if params['use_hnet'] else '', test_hung_loss,
            '{:0.2f}/{:0.2f}/{:0.2f}/{:0.2f}/{:0.2f}'.format(
                test_mota, test_ids, test_recall_doa, test_precision_doa,
                test_fscore_doa)))
コード例 #9
0
def main(argv):
    """
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1
        second input: task_id - (optional) To chose the system configuration in parameters.py. 
                                (default) uses default parameters
    """
    if len(argv) != 3:
        print('\n\n')
        print(
            '-------------------------------------------------------------------------------------------------------'
        )
        print('The code expected two inputs')
        print('\t>> python seld.py <job-id> <task-id>')
        print(
            '\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
            'You can use any number or string for this.')
        print(
            '\t\t<task-id> is used to choose the user-defined parameter set from parameter.py'
        )
        print('Using default inputs for now')
        print(
            '-------------------------------------------------------------------------------------------------------'
        )
        print('\n\n')
    # use parameter set defined by user
    task_id = '1' if len(argv) < 3 else argv[-1]
    params = parameter.get_params(task_id)

    job_id = 1 if len(argv) < 2 else argv[1]

    model_dir = 'models/'
    utils.create_folder(model_dir)
    unique_name = '{}_ov{}_split{}_{}{}_3d{}_{}'.format(
        params['dataset'], params['overlap'], params['split'], params['mode'],
        params['weakness'], int(params['cnn_3d']), job_id)
    unique_name = os.path.join(model_dir, unique_name)
    print("unique_name: {}\n".format(unique_name))

    data_gen_train = cls_data_generator.DataGenerator(
        dataset=params['dataset'],
        ov=params['overlap'],
        split=params['split'],
        db=params['db'],
        nfft=params['nfft'],
        batch_size=params['batch_size'],
        seq_len=params['sequence_length'],
        classifier_mode=params['mode'],
        weakness=params['weakness'],
        datagen_mode='train',
        cnn3d=params['cnn_3d'],
        xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only'])

    data_gen_test = cls_data_generator.DataGenerator(
        dataset=params['dataset'],
        ov=params['overlap'],
        split=params['split'],
        db=params['db'],
        nfft=params['nfft'],
        batch_size=params['batch_size'],
        seq_len=params['sequence_length'],
        classifier_mode=params['mode'],
        weakness=params['weakness'],
        datagen_mode='test',
        cnn3d=params['cnn_3d'],
        xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only'],
        shuffle=False)

    data_in, data_out = data_gen_train.get_data_sizes()
    print('FEATURES:\n'
          '\tdata_in: {}\n'
          '\tdata_out: {}\n'.format(data_in, data_out))

    gt = collect_test_labels(data_gen_test, data_out, params['mode'],
                             params['quick_test'])
    sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
    doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

    print('MODEL:\n'
          '\tdropout_rate: {}\n'
          '\tCNN: nb_cnn_filt: {}, pool_size{}\n'
          '\trnn_size: {}, fnn_size: {}\n'.format(
              params['dropout_rate'], params['nb_cnn3d_filt']
              if params['cnn_3d'] else params['nb_cnn2d_filt'],
              params['pool_size'], params['rnn_size'], params['fnn_size']))

    # TPU CODE FOR GOOGLE COLABORATORY
    resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
        tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
    tf.config.experimental_connect_to_cluster(resolver)
    # This is the TPU initialization code that has to be at the beginning.
    tf.tpu.experimental.initialize_tpu_system(resolver)
    print("All devices: ", tf.config.list_logical_devices('TPU'))

    strategy = tf.distribute.experimental.TPUStrategy(resolver)

    with strategy.scope():
        # Load or create model
        model = utils.load_model(unique_name)
        if model is None:
            model = keras_model.get_model(
                data_in=data_in,
                data_out=data_out,
                dropout_rate=params['dropout_rate'],
                nb_cnn2d_filt=params['nb_cnn2d_filt'],
                pool_size=params['pool_size'],
                rnn_size=params['rnn_size'],
                fnn_size=params['fnn_size'],
                classification_mode=params['mode'],
                weights=params['loss_weights'])
        model.summary()

    best_metric = 99999
    conf_mat = None
    best_conf_mat = None
    best_epoch = -1
    patience_cnt = 0
    epoch_metric_loss = np.zeros(params['nb_epochs'])
    sed_score = np.zeros(params['nb_epochs'])
    doa_score = np.zeros(params['nb_epochs'])
    tr_loss = np.zeros(params['nb_epochs'])
    val_loss = np.zeros(params['nb_epochs'])
    doa_loss = np.zeros((params['nb_epochs'], 6))
    sed_loss = np.zeros((params['nb_epochs'], 2))
    for epoch_cnt in range(params['nb_epochs']):
        start = time.time()
        hist = model.fit_generator(
            generator=data_gen_train.generate(),
            steps_per_epoch=5 if params['quick_test'] else
            data_gen_train.get_total_batches_in_data(),
            validation_data=data_gen_test.generate(),
            validation_steps=5 if params['quick_test'] else
            data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            epochs=1,
            verbose=1)
        tr_loss[epoch_cnt] = hist.history.get('loss')[-1]
        val_loss[epoch_cnt] = hist.history.get('val_loss')[-1]

        pred = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=5 if params['quick_test'] else
            data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            verbose=2)
        print("pred:", pred[1].shape)
        if params['mode'] == 'regr':
            sed_pred = evaluation_metrics.reshape_3Dto2D(pred[0]) > 0.5
            doa_pred = evaluation_metrics.reshape_3Dto2D(pred[1])

            sed_loss[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(
                sed_pred, sed_gt, data_gen_test.nb_frames_1s())
            if params['azi_only']:
                doa_loss[
                    epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xy(
                        doa_pred, doa_gt, sed_pred, sed_gt)
            else:
                doa_loss[
                    epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xyz(
                        doa_pred, doa_gt, sed_pred, sed_gt)


#            epoch_metric_loss[epoch_cnt] = np.mean([
#                sed_loss[epoch_cnt, 0],
#                1-sed_loss[epoch_cnt, 1],
#                2*np.arcsin(doa_loss[epoch_cnt, 1]/2.0)/np.pi,
#                1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))]
#            )
            sed_score[epoch_cnt] = np.mean(
                [sed_loss[epoch_cnt, 0], 1 - sed_loss[epoch_cnt, 1]])
            doa_score[epoch_cnt] = np.mean([
                2 * np.arcsin(doa_loss[epoch_cnt, 1] / 2.0) / np.pi,
                1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))
            ])

        #plot_functions(unique_name, tr_loss, val_loss, sed_loss, doa_loss, epoch_metric_loss)
        plot_functions(unique_name, tr_loss, val_loss, sed_loss, doa_loss,
                       sed_score, doa_score)

        patience_cnt += 1
        #        if epoch_metric_loss[epoch_cnt] < best_metric:
        #            best_metric = epoch_metric_loss[epoch_cnt]
        #            best_conf_mat = conf_mat
        #            best_epoch = epoch_cnt
        #            model.save('{}_model.h5'.format(unique_name))
        #            patience_cnt = 0
        if sed_score[epoch_cnt] < best_metric:
            best_metric = sed_score[epoch_cnt]
            best_conf_mat = conf_mat
            best_epoch = epoch_cnt
            model.save('{}_model.h5'.format(unique_name))
            patience_cnt = 0

        print(
            'epoch_cnt: %d, time: %.2fs, tr_loss: %.2f, val_loss: %.2f, '
            'F1_overall: %.2f, ER_overall: %.2f, '
            'doa_error_gt: %.2f, doa_error_pred: %.2f, good_pks_ratio:%.2f, '
            'sed_score: %.2f, doa_score: %.2f, best_error_metric: %.2f, best_epoch : %d'
            % (epoch_cnt, time.time() - start, tr_loss[epoch_cnt],
               val_loss[epoch_cnt], sed_loss[epoch_cnt, 1],
               sed_loss[epoch_cnt, 0], doa_loss[epoch_cnt, 1],
               doa_loss[epoch_cnt, 2], doa_loss[epoch_cnt, 5] /
               float(sed_gt.shape[0]), sed_score[epoch_cnt],
               doa_score[epoch_cnt], best_metric, best_epoch))

    #plot_functions(unique_name, tr_loss, val_loss, sed_loss, doa_loss, sed_score, doa_score, epoch_cnt)
    print('best_conf_mat : {}'.format(best_conf_mat))
    print('best_conf_mat_diag : {}'.format(np.diag(best_conf_mat)))
    print('saved model for the best_epoch: {} with best_metric: {},  '.format(
        best_epoch, best_metric))
    print(
        'DOA Metrics: doa_loss_gt: {}, doa_loss_pred: {}, good_pks_ratio: {}'.
        format(doa_loss[best_epoch, 1], doa_loss[best_epoch, 2],
               doa_loss[best_epoch, 5] / float(sed_gt.shape[0])))
    print('SED Metrics: ER_overall: {}, F1_overall: {}'.format(
        sed_loss[best_epoch, 0], sed_loss[best_epoch, 1]))
    print('unique_name: {} '.format(unique_name))
コード例 #10
0
def main(argv):

    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}

    # use parameter set defined by user
    task_id = '1' if len(argv) < 2 else argv[1]
    params = doanet_parameters.get_params(task_id)

    print(
        '\nLoading the best model and predicting results on the testing split')
    print('\tLoading testing dataset:')
    data_gen_test = cls_data_generator.DataGenerator(
        params=params,
        split=1,
        shuffle=False,
        is_eval=True if params['mode'] is 'eval' else False)
    data_in, data_out = data_gen_test.get_data_sizes()
    dump_figures = True

    # CHOOSE THE MODEL WHOSE OUTPUT YOU WANT TO VISUALIZE
    checkpoint_name = "models/11_5751328_mic_dev_split1_model.h5"
    model = doanet_model.CRNN(data_in, data_out, params)
    model.eval()
    model.load_state_dict(
        torch.load(checkpoint_name, map_location=torch.device('cpu')))
    model = model.to(device)
    if dump_figures:
        dump_folder = os.path.join(
            'dump_dir',
            os.path.basename(checkpoint_name).split('.')[0])
        os.makedirs(dump_folder, exist_ok=True)

    with torch.no_grad():
        file_cnt = 0
        for data, target in data_gen_test.generate():
            data, target = torch.tensor(data).to(device).float(), torch.tensor(
                target[:, :, :-params['unique_classes']]).to(device).float()
            output, activity_out = model(data)

            # (batch, sequence, max_nb_doas*3) to (batch, sequence, 3, max_nb_doas)
            max_nb_doas = output.shape[2] // 3
            output = output.view(output.shape[0], output.shape[1], 3,
                                 max_nb_doas).transpose(-1, -2)
            target = target.view(target.shape[0], target.shape[1], 3,
                                 max_nb_doas).transpose(-1, -2)

            # get pair-wise distance matrix between predicted and reference.
            output, target, activity_out = output.view(
                -1, output.shape[-2], output.shape[-1]), target.view(
                    -1, target.shape[-2], target.shape[-1]), activity_out.view(
                        -1, activity_out.shape[-1])
            output_norm = torch.sqrt(torch.sum(output**2, -1) + 1e-10)
            output = output / output_norm.unsqueeze(-1)

            output = output.cpu().detach().numpy()
            target = target.cpu().detach().numpy()

            use_activity_detector = True
            if use_activity_detector:
                activity = (torch.sigmoid(activity_out).cpu().detach().numpy()
                            > 0.5)
            mel_spec = data[0][0].cpu()
            foa_iv = data[0][-1].cpu()
            target[target > 1] = 0

            plot.figure(figsize=(20, 10))
            plot.subplot(321), plot.imshow(torch.transpose(mel_spec, -1, -2))
            plot.subplot(322), plot.imshow(torch.transpose(foa_iv, -1, -2))

            plot.subplot(323), plot.plot(
                target[:params['label_sequence_length'], 0, 0], 'r', lw=2)
            plot.subplot(323), plot.plot(
                target[:params['label_sequence_length'], 0, 1], 'g', lw=2)
            plot.subplot(323), plot.plot(
                target[:params['label_sequence_length'], 0, 2], 'b', lw=2)
            plot.grid()
            plot.ylim([-1.1, 1.1])

            plot.subplot(324), plot.plot(
                target[:params['label_sequence_length'], 1, 0], 'r', lw=2)
            plot.subplot(324), plot.plot(
                target[:params['label_sequence_length'], 1, 1], 'g', lw=2)
            plot.subplot(324), plot.plot(
                target[:params['label_sequence_length'], 1, 2], 'b', lw=2)
            plot.grid()
            plot.ylim([-1.1, 1.1])
            if use_activity_detector:
                output[:, 0,
                       0:3] = activity[:, 0][:, np.newaxis] * output[:, 0, 0:3]
                output[:, 1,
                       0:3] = activity[:, 1][:, np.newaxis] * output[:, 1, 0:3]

            plot.subplot(325), plot.plot(
                output[:params['label_sequence_length'], 0, 0], 'r', lw=2)
            plot.subplot(325), plot.plot(
                output[:params['label_sequence_length'], 0, 1], 'g', lw=2)
            plot.subplot(325), plot.plot(
                output[:params['label_sequence_length'], 0, 2], 'b', lw=2)
            plot.grid()
            plot.ylim([-1.1, 1.1])

            plot.subplot(326), plot.plot(
                output[:params['label_sequence_length'], 1, 0], 'r', lw=2)
            plot.subplot(326), plot.plot(
                output[:params['label_sequence_length'], 1, 1], 'g', lw=2)
            plot.subplot(326), plot.plot(
                output[:params['label_sequence_length'], 1, 2], 'b', lw=2)
            plot.grid()
            plot.ylim([-1.1, 1.1])

            if dump_figures:
                fig_name = '{}'.format(
                    os.path.join(dump_folder, '{}.png'.format(file_cnt)))
                print('saving figure : {}'.format(fig_name))
                plot.savefig(fig_name, dpi=100)
                plot.close()
                file_cnt += 1
            else:
                plot.show()
            if file_cnt > 20:
                break
コード例 #11
0
def main(argv):
    """
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1
        second input: task_id - (optional) To chose the system configuration in parameters.py. 
                                (default) uses default parameters
    """
    if len(argv) != 3:
        print('\n\n')
        print('-------------------------------------------------------------------------------------------------------')
        print('The code expected two inputs')
        print('\t>> python seld.py <job-id> <task-id>')
        print('\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
              'You can use any number or string for this.')
        print('\t\t<task-id> is used to choose the user-defined parameter set from parameter.py')
        print('Using default inputs for now')
        print('-------------------------------------------------------------------------------------------------------')
        print('\n\n')
    # use parameter set defined by user
    task_id = '1' if len(argv) < 3 else argv[-1]
    params = parameter.get_params(task_id)

    job_id = 1 if len(argv) < 2 else argv[1]

    model_dir = 'models/'
    utils.create_folder(model_dir)
    unique_name = '{}_train{}_validation{}_seq{}'.format(params['dataset'], params['train_split'], params['val_split'], params['sequence_length'])
    unique_name = os.path.join(model_dir, unique_name)
    print("unique_name: {}\n".format(unique_name))

    # Cycling over overlaps
    for ov in range(1, params['overlap']+1):

        data_gen_test = cls_data_generator.DataGenerator(
            dataset=params['dataset'], ov=params['overlap'], ov_num=ov, split=params['test_split'], db=params['db'], nfft=params['nfft'],
            batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'],
            weakness=params['weakness'], datagen_mode='test', cnn3d=params['cnn_3d'], xyz_def_zero=params['xyz_def_zero'],
            azi_only=params['azi_only'], shuffle=False
        )

        data_in, data_out = data_gen_test.get_data_sizes()
        n_classes = data_out[0][2]

        print(
            'FEATURES:\n'
            '\tdata_in: {}\n'
            '\tdata_out: {}\n'.format(
                data_in, data_out
            )
        )

        gt = collect_test_labels(data_gen_test, data_out, params['mode'], params['quick_test'])
        sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
        doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

        print("#### Saving DOA and SED GT Values ####")
        f = open("models/doa_gt.txt", "w+")
        for elem in doa_gt:
          f.write(str(list(elem)) + "\n")
        f.close()

        f = open("models/sed_gt.txt", "w+")
        for elem in sed_gt:
          f.write(str(elem)+"\n")
        f.close()
        print("######################################")

        print(
            'MODEL:\n'
            '\tdropout_rate: {}\n'
            '\tCNN: nb_cnn_filt: {}, pool_size{}\n'
            '\trnn_size: {}, fnn_size: {}\n'.format(
                params['dropout_rate'],
                params['nb_cnn3d_filt'] if params['cnn_3d'] else params['nb_cnn2d_filt'], params['pool_size'],
                params['rnn_size'], params['fnn_size']
            )
        )

        model = keras_model.get_model(data_in=data_in, data_out=data_out, dropout_rate=params['dropout_rate'],
                        nb_cnn2d_filt=params['nb_cnn2d_filt'], pool_size=params['pool_size'],
                        rnn_size=params['rnn_size'], fnn_size=params['fnn_size'],
                        classification_mode=params['mode'], weights=params['loss_weights'], summary=False)

        if(os.path.exists('{}_model.ckpt'.format(unique_name))):
            print("Model found!")
            model.load_weights('{}_model.ckpt'.format(unique_name))
            for i in range(10):
                print("###")

        sed_score = np.zeros(params['nb_epochs'])
        doa_score = np.zeros(params['nb_epochs'])
        seld_score = np.zeros(params['nb_epochs'])
        tr_loss = np.zeros(params['nb_epochs'])
        val_loss = np.zeros(params['nb_epochs'])
        doa_loss = np.zeros((params['nb_epochs'], 6))
        sed_loss = np.zeros((params['nb_epochs'], 2))

        epoch_cnt = 0
        start = time.time()

        print("#### Prediction on validation split ####")
        pred = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=params['quick_test_steps'] if params['quick_test'] else data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            workers=1,
            verbose=1,
        )
        print("##########################")
        #print("pred:", pred[1].shape)

        if params['mode'] == 'regr':
            sed_pred = np.array(evaluation_metrics.reshape_3Dto2D(pred[0])) > .5
            doa_pred = evaluation_metrics.reshape_3Dto2D(pred[1])

            print("#### Saving DOA and SED Pred Values ####")
            f = open("models/doa_pred.txt", "w+")
            for elem in doa_pred:
              f.write(str(list(elem)) + "\n")
            f.close()

            f = open("models/sed_pred.txt", "w+")
            for elem in sed_pred:
              f.write(str(elem)+"\n")
            f.close()
            print("########################################")

            # Old version of confidence intervals
            '''
            # Computing confidence intervals
            sed_err = sed_gt - sed_pred
            [sed_conf_low, sed_conf_up, sed_median] = compute_confidence(sed_err)
            # print("Condidence Interval for SED error is [" + str(sed_conf_low) + ", " + str(sed_conf_up) + "]")
            print("Confidence Interval for SED error is [ %f, %f ]" % (sed_conf_low, sed_conf_up))
            # print("\tMedian is " + str(sed_median))
            print("\tMedian is %f" % (sed_median))
            # print("\tDisplacement: +/- " + str(sed_conf_up - sed_median))
            print("\tDisplacement: +/- %f" % (sed_conf_up - sed_median))
            doa_err = doa_gt - doa_pred
            [doa_conf_low, doa_conf_up, doa_median] = compute_confidence(doa_err)
            # print("Condidence Interval for DOA is [" + str(doa_conf_low) + ", " + str(doa_conf_up) + "]")
            print("Confidence Interval for DOA is [ %f, %f ]" % (doa_conf_low, doa_conf_up))
            # print("Median is " + str(doa_median))
            print("\tMedian is %f" % (doa_median))
            # print("Displacement: +/- " + str(doa_conf_up - doa_median))
            print("\tDisplacement: +/- %f" % (doa_conf_up - doa_median))
            # ------------------------------
            '''

            sed_loss[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(sed_pred, sed_gt, data_gen_test.nb_frames_1s())
            if params['azi_only']:
                doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xy(doa_pred, doa_gt,
                                                                                                 sed_pred, sed_gt)
            else:
                doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xyz(doa_pred, doa_gt,
                                                                                                  sed_pred, sed_gt)

            sed_score[epoch_cnt] = np.mean([sed_loss[epoch_cnt, 0], 1 - sed_loss[epoch_cnt, 1]])
            doa_score[epoch_cnt] = np.mean([2 * np.arcsin(doa_loss[epoch_cnt, 1] / 2.0) / np.pi,
                                            1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))])
            seld_score[epoch_cnt] = (sed_score[epoch_cnt] + doa_score[epoch_cnt]) / 2

            if os.path.isdir('./models'):
                plot.imshow(conf_mat, cmap='binary', interpolation='None')
                plot.savefig('models/confusion_matrix.jpg')

            # New confidence computation, differing doa and sed errors
            sed_err = sed_loss[epoch_cnt, 0]
            [sed_conf_low, sed_conf_up] = compute_confidence(sed_err, sed_pred.shape[0])
            print("Confidence Interval for SED error is [ %f, %f ]" % (sed_conf_low, sed_conf_up))

            doa_err = doa_gt - doa_pred
            [x_err, y_err, z_err] = compute_doa_confidence(doa_err, n_classes)


            print('epoch_cnt: %d, time: %.2fs, tr_loss: %.4f, val_loss: %.4f, '
                'F1_overall: %.2f, ER_overall: %.2f, '
                'doa_error_gt: %.2f, doa_error_pred: %.2f, good_pks_ratio:%.2f, '
                'sed_score: %.4f, doa_score: %.4f, seld_score: %.4f' %
                (
                    epoch_cnt, time.time() - start, tr_loss[epoch_cnt], val_loss[epoch_cnt],
                    sed_loss[epoch_cnt, 1], sed_loss[epoch_cnt, 0],
                    doa_loss[epoch_cnt, 1], doa_loss[epoch_cnt, 2], doa_loss[epoch_cnt, 5] / float(sed_gt.shape[0]),
                    sed_score[epoch_cnt], doa_score[epoch_cnt], seld_score[epoch_cnt]
                )
            )

        simple_plotter.plot_3d("models/doa_gt.txt", "models/doa_pred.txt", 0, 11, 200)
        simple_plotter.plot_confidence(x_err, y_err, z_err, "ov"+str(ov))
コード例 #12
0
def main(argv):
    """
    Main wrapper for training sound event localization and detection network.

    :param argv: expects two optional inputs.
        first input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1
        second input: task_id - (optional) To chose the system configuration in parameters.py.
                                (default) uses default parameters
    """
    if len(argv) != 3:
        print('\n\n')
        print('-------------------------------------------------------------------------------------------------------')
        print('The code expected two inputs')
        print('\t>> python seld.py <job-id> <task-id>')
        print('\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
              'You can use any number or string for this.')
        print('\t\t<task-id> is used to choose the user-defined parameter set from parameter.py')
        print('Using default inputs for now')
        print('-------------------------------------------------------------------------------------------------------')
        print('\n\n')
    # use parameter set defined by user
    task_id = '1' if len(argv) < 3 else argv[-1]
    params = parameter.get_params(task_id)

    job_id = 1 if len(argv) < 2 else argv[1]

    model_dir = 'models/'
    utils.create_folder(model_dir)
    unique_name = '{}_train{}_validation{}_seq{}'.format(params['dataset'], params['train_split'], params['val_split'],
                                                         params['sequence_length'])

    unique_name = os.path.join(model_dir, unique_name)
    print("unique_name: {}\n".format(unique_name))

    data_gen_train = cls_data_generator.DataGenerator(
        dataset=params['dataset'], ov=params['overlap'], split=params['train_split'], db=params['db'],
        nfft=params['nfft'],
        batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'],
        weakness=params['weakness'], datagen_mode='train', cnn3d=params['cnn_3d'], xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only']
    )

    data_gen_test = cls_data_generator.DataGenerator(
        dataset=params['dataset'], ov=params['overlap'], split=params['val_split'], db=params['db'],
        nfft=params['nfft'],
        batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'],
        weakness=params['weakness'], datagen_mode='validation', cnn3d=params['cnn_3d'], xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only'], shuffle=False
    )

    data_in, data_out = data_gen_train.get_data_sizes()
    #n_classes = data_out[0][2]

    print(
        'FEATURES:\n'
        '\tdata_in: {}\n'
        '\tdata_out: {}\n'.format(
            data_in, data_out
        )
    )

    gt = collect_test_labels(data_gen_test, data_out, params['mode'], params['quick_test'])
    sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
    doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

    print(
        'MODEL:\n'
        '\tdropout_rate: {}\n'
        '\tCNN: nb_cnn_filt: {}, pool_size{}\n'
        '\trnn_size: {}, fnn_size: {}\n'.format(
            params['dropout_rate'],
            params['nb_cnn3d_filt'] if params['cnn_3d'] else params['nb_cnn2d_filt'], params['pool_size'],
            params['rnn_size'], params['fnn_size']
        )
    )

    model = keras_model.get_model(data_in=data_in, data_out=data_out, dropout_rate=params['dropout_rate'],
                                  nb_cnn2d_filt=params['nb_cnn2d_filt'], pool_size=params['pool_size'],
                                  rnn_size=params['rnn_size'], fnn_size=params['fnn_size'],
                                  classification_mode=params['mode'], weights=params['loss_weights'], summary=True)

    if (os.path.exists('{}_model.ckpt'.format(unique_name))):
        print("Model found!")
        model.load_weights('{}_model.ckpt'.format(unique_name))
        for i in range(10):
            print("###")

    best_metric = 99999
    conf_mat = None
    best_conf_mat = None
    best_epoch = -1
    patience_cnt = 0
    epoch_metric_loss = np.zeros(params['nb_epochs'])
    sed_score = np.zeros(params['nb_epochs'])
    doa_score = np.zeros(params['nb_epochs'])
    seld_score = np.zeros(params['nb_epochs'])
    tr_loss = np.zeros(params['nb_epochs'])
    val_loss = np.zeros(params['nb_epochs'])
    doa_loss = np.zeros((params['nb_epochs'], 6))
    sed_loss = np.zeros((params['nb_epochs'], 2))

    for epoch_cnt in range(params['nb_epochs']):
        start = time.time()

        print("##### Training the model #####")
        hist = model.fit_generator(
            generator=data_gen_train.generate(),
            steps_per_epoch=params['quick_test_steps'] if params[
                'quick_test'] else data_gen_train.get_total_batches_in_data(),
            validation_data=data_gen_test.generate(),
            validation_steps=params['quick_test_steps'] if params[
                'quick_test'] else data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            workers=1,
            epochs=1,
            verbose=1
        )
        tr_loss[epoch_cnt] = hist.history.get('loss')[-1]
        val_loss[epoch_cnt] = hist.history.get('val_loss')[-1]
        print("##########################")

        # Save, get model and re-load weights for the predict_generator bug
        print("##### Saving weights #####")
        model.save_weights('{}_model.ckpt'.format(unique_name))

        model = keras_model.get_model(data_in=data_in, data_out=data_out, dropout_rate=params['dropout_rate'],
                                      nb_cnn2d_filt=params['nb_cnn2d_filt'], pool_size=params['pool_size'],
                                      rnn_size=params['rnn_size'], fnn_size=params['fnn_size'],
                                      classification_mode=params['mode'], weights=params['loss_weights'], summary=False)
        model.load_weights('{}_model.ckpt'.format(unique_name))
        print("##########################")

        print("#### Prediction on validation split ####")
        pred = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=params['quick_test_steps'] if params['quick_test'] else data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            workers=1,
            verbose=1
        )
        print("########################################")
        # print("pred:",pred[1].shape)

        if params['mode'] == 'regr':
            sed_pred = np.array(evaluation_metrics.reshape_3Dto2D(pred[0])) > .5
            doa_pred = evaluation_metrics.reshape_3Dto2D(pred[1])

            # Old confidence intervals
            '''
            sed_err = sed_gt - sed_pred
            [sed_conf_low, sed_conf_up, sed_median] = compute_confidence(sed_err)
            # print("Condidence Interval for SED error is [" + str(sed_conf_low) + ", " + str(sed_conf_up) + "]")
            print("Confidence Interval for SED error is [ %.5f, %.5f ]" % (sed_conf_low, sed_conf_up))
            # print("\tMedian is " + str(sed_median))
            print("\tMedian is %.5f" % (sed_median))
            # print("\tDisplacement: +/- " + str(sed_conf_up - sed_median))
            print("\tDisplacement: +/- %.5f" % (sed_conf_up - sed_median))
            doa_err = doa_gt - doa_pred
            [doa_conf_low, doa_conf_up, doa_median] = compute_confidence(doa_err)
            # print("Condidence Interval for DOA is [" + str(doa_conf_low) + ", " + str(doa_conf_up) + "]")
            print("Confidence Interval for DOA is [ %.5f, %.5f ]" % (doa_conf_low, doa_conf_up))
            # print("Median is " + str(doa_median))
            print("\tMedian is %.5f" % (doa_median))
            # print("Displacement: +/- " + str(doa_conf_up - doa_median))
            print("\tDisplacement: +/- %.5f" % (doa_conf_up - doa_median))
            '''

            sed_loss[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(sed_pred, sed_gt,
                                                                           data_gen_test.nb_frames_1s())
            if params['azi_only']:
                doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xy(doa_pred, doa_gt,
                                                                                                 sed_pred, sed_gt)
            else:
                doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xyz(doa_pred, doa_gt,
                                                                                                  sed_pred, sed_gt)

            sed_score[epoch_cnt] = np.mean([sed_loss[epoch_cnt, 0], 1 - sed_loss[epoch_cnt, 1]])
            doa_score[epoch_cnt] = np.mean([2 * np.arcsin(doa_loss[epoch_cnt, 1] / 2.0) / np.pi,
                                            1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))])
            seld_score[epoch_cnt] = (sed_score[epoch_cnt] + doa_score[epoch_cnt]) / 2

            if os.path.isdir('./models'):
                plot.imshow(conf_mat, cmap='binary', interpolation='None')
                plot.savefig('models/confusion_matrix.jpg')

        # New confidence computation, differing doa and sed errors
        sed_err = sed_loss[epoch_cnt, 0]
        [sed_conf_low, sed_conf_up] = compute_confidence(sed_err, sed_pred.shape[0])
        print("Confidence Interval for SED error is [ %f, %f ]" % (sed_conf_low, sed_conf_up))

        #doa_err = doa_gt - doa_pred
        #[x_err, y_err, z_err] = compute_doa_confidence(doa_err, n_classes)

        plot_array = [tr_loss[epoch_cnt],  # 0
                      val_loss[epoch_cnt],  # 1
                      sed_loss[epoch_cnt][0],  # 2    er
                      sed_loss[epoch_cnt][1],  # 3    f1
                      doa_loss[epoch_cnt][0],  # 4    avg_accuracy
                      doa_loss[epoch_cnt][1],  # 5    doa_loss_gt
                      doa_loss[epoch_cnt][2],  # 6    doa_loss_pred
                      doa_loss[epoch_cnt][3],  # 7    doa_loss_gt_cnt
                      doa_loss[epoch_cnt][4],  # 8    doa_loss_pred_cnt
                      doa_loss[epoch_cnt][5],  # 9    good_frame_cnt
                      sed_score[epoch_cnt],  # 10
                      doa_score[epoch_cnt],
                      seld_score[epoch_cnt],
                      #doa_conf_low, doa_median,
                      #doa_conf_up, sed_conf_low,
                      #sed_median, sed_conf_up]
                      sed_conf_low, sed_conf_up]

        patience_cnt += 1

        # model.save_weights('{}_model.ckpt'.format(unique_name))
        simple_plotter.save_array_to_csv("{}_plot.csv".format(unique_name), plot_array)
        #simple_plotter.plot_confidence(x_err, y_err, z_err, "ov")
        print("##### Model and metrics saved! #####")

        if seld_score[epoch_cnt] < best_metric:
            best_metric = seld_score[epoch_cnt]
            best_conf_mat = conf_mat
            best_epoch = epoch_cnt
            # Now we save the model at every iteration
            model.save_weights('{}_BEST_model.ckpt'.format(unique_name))
            patience_cnt = 0

        print('epoch_cnt: %d, time: %.2fs, tr_loss: %.4f, val_loss: %.4f, '
              'F1_overall: %.2f, ER_overall: %.2f, '
              'doa_error_gt: %.2f, doa_error_pred: %.2f, good_pks_ratio:%.2f, '
              'sed_score: %.4f, doa_score: %.4f, seld_score: %.4f, best_error_metric: %.2f, best_epoch : %d' %
              (
                  epoch_cnt, time.time() - start, tr_loss[epoch_cnt], val_loss[epoch_cnt],
                  sed_loss[epoch_cnt, 1], sed_loss[epoch_cnt, 0],
                  doa_loss[epoch_cnt, 1], doa_loss[epoch_cnt, 2], doa_loss[epoch_cnt, 5] / float(sed_gt.shape[0]),
                  sed_score[epoch_cnt], doa_score[epoch_cnt], seld_score[epoch_cnt], best_metric, best_epoch
              )
              )

    # plot_functions(unique_name, tr_loss, val_loss, sed_loss, doa_loss, sed_score, doa_score, epoch_cnt)
    print('best_conf_mat : {}'.format(best_conf_mat))
    print('best_conf_mat_diag : {}'.format(np.diag(best_conf_mat)))
    print('saved model for the best_epoch: {} with best_metric: {},  '.format(best_epoch, best_metric))
    print('DOA Metrics: doa_loss_gt: {}, doa_loss_pred: {}, good_pks_ratio: {}'.format(
        doa_loss[best_epoch, 1], doa_loss[best_epoch, 2], doa_loss[best_epoch, 5] / float(sed_gt.shape[0])))
    print('SED Metrics: ER_overall: {}, F1_overall: {}'.format(sed_loss[best_epoch, 0], sed_loss[best_epoch, 1]))
    print('unique_name: {} '.format(unique_name))
コード例 #13
0
def main(argv):
    """
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1
        second input: task_id - (optional) To chose the system configuration in parameters.py. 
                                (default) uses default parameters
    
    if len(argv) != 4:
        logger.info('\n\n')
        logger.info('-------------------------------------------------------------------------------------------------------')
        logger.info('The code expected three inputs')
        logger.info('\t>> python seld.py <job-id> <train-test> <task-id>')
        logger.info('\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
              'You can use any number or string for this.')
        logger.info('\t\t<task-id> is used to choose the user-defined parameter set from parameter.py')
        logger.info('Using default inputs for now')
        logger.info('-------------------------------------------------------------------------------------------------------')
        logger.info('\n\n')
	"""
    job_id = 1 if len(argv) < 2 else argv[1]

    # use parameter set defined by user
    task_id = '1' if len(argv) < 3 else argv[2]
    params = parameter.get_params(task_id)

    isTraining = True if len(argv) < 4 else (True if argv[3] == 'train' else False)
    logger.info(f"isTraining {isTraining}")

    log_dir_name = None if len(argv) < 5 else argv[4]
    if not log_dir_name and not isTraining:
        raise ValueError("Specify log_dir if evaluation mode")

    model_dir = os.path.join(os.pardir, 'models')
    if isTraining:
        utils.create_folder(model_dir)

    unique_name = '{}_ov{}_train{}_val{}_{}'.format(
        params['dataset'], list_to_string(params['overlap']), list_to_string(params['train_split']),
        list_to_string(params['val_split']),
        job_id)
    
    if not isTraining:
        unique_name = job_id
        
    logger.info(f"unique_name: {unique_name}")

    dnn_type = 'QTCN' if params['use_quaternions'] else params['recurrent_type']
    if not log_dir_name:
        log_dir_name = "-".join([dnn_type, datetime.datetime.now().strftime("%Y%m%d-%H%M%S")])
    logger.info(f"log_dir_name: {log_dir_name}")

    log_dir = os.path.join(model_dir, unique_name, log_dir_name)
    logger.info(f"log_dir: {log_dir}")

    if isTraining:
        utils.create_folder(log_dir)

    utils.setup_logger(log_dir, console_logger_level=logging.INFO)
    
    logger.info(f"log_dir {log_dir}")
    logger.info("unique_name: {}\n".format(unique_name))
    
    data_gen_train = None
    data_gen_val = None
    data_gen_test = None
    if isTraining:
        load_files_train_splitting_point = None if params['train_val_split'] == 1.0 else 'before'
        data_gen_train = cls_data_generator.DataGenerator(
            dataset=params['dataset'], ov=params['overlap'], split=params['train_split'], db=params['db'],
            nfft=params['nfft'],
            batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'],
            weakness=params['weakness'], datagen_mode='train', cnn3d=params['cnn_3d'],
            xyz_def_zero=params['xyz_def_zero'],
            azi_only=params['azi_only'], debug_load_single_batch=params['debug_load_single_batch'],
            data_format=params['data_format'], params=params,
            load_files_before_after_splitting_point=load_files_train_splitting_point
        )

        if not params['quick_test']:
            load_files_val_splitting_point = None if params['train_val_split'] == 1.0 else 'after'
            data_gen_val = cls_data_generator.DataGenerator(
                dataset=params['dataset'], ov=params['overlap'], split=params['val_split'], db=params['db'],
                nfft=params['nfft'],
                batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'],
                weakness=params['weakness'], datagen_mode='train', cnn3d=params['cnn_3d'],
                xyz_def_zero=params['xyz_def_zero'],
                azi_only=params['azi_only'], shuffle=False, debug_load_single_batch=params['debug_load_single_batch'],
                data_format=params['data_format'], params=params,
                load_files_before_after_splitting_point=load_files_val_splitting_point
            )
        else:
            import copy
            data_gen_val = copy.deepcopy(data_gen_train)
            logger.warning(f"Quick test, validation set is a deep copy of training set.")

    else:
        data_gen_test = cls_data_generator.DataGenerator(
            dataset=params['dataset'], ov=params['overlap'], split=params['test_split'], db=params['db'],
            nfft=params['nfft'],
            batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'],
            weakness=params['weakness'], datagen_mode='test', cnn3d=params['cnn_3d'],
            xyz_def_zero=params['xyz_def_zero'],
            azi_only=params['azi_only'], shuffle=False, debug_load_single_batch=params['debug_load_single_batch'],
            data_format=params['data_format'], params=params
        )

    data_gen_for_shapes = data_gen_train if isTraining else data_gen_test
    data_in, data_out = data_gen_for_shapes.get_data_sizes()
    logger.info(
        'FEATURES:\n'
        '\tdata_in: {}\n'
        '\tdata_out: {}\n'.format(
            data_in, data_out
        )
    )

    logger.info(
        'MODEL:\n'
        '\tdropout_rate: {}\n'
        '\tCNN: nb_cnn_filt: {}, pool_size{}\n'
        '\trnn_size: {}, fnn_size: {}\n'.format(
            params['dropout_rate'],
            params['nb_cnn3d_filt'] if params['cnn_3d'] else params['nb_cnn2d_filt'], params['pool_size'],
            params['rnn_size'], params['fnn_size']
        )
    )

    network.set_global_num_classes(params)
    keras.backend.set_image_data_format(params['data_format'])
    logger.info(f"Data format set to {params['data_format']}")
    
    model = None
    if isTraining:
        if params['use_quaternions']:
            assert (params['data_format'] == 'channels_last')

        if params['use_giusenso']:
            assert (params['data_format'] == 'channels_first')
            model = keras_model_giusenso.get_model_giusenso(data_in, data_out, params['dropout_rate'],
                                                            params['nb_cnn2d_filt'],
                                                            params['pool_size'], params['fnn_size'], params['loss_weights'])
        else:
            model = network.get_model(input_shape=data_in, output_shape=data_out, dropout_rate=params['dropout_rate'],
                                      pool_size=params['pool_size'],
                                      rnn_size=params['rnn_size'], fnn_size=params['fnn_size'],
                                      weights=params['loss_weights'], data_format=params['data_format'],
                                      params=params)
    
    model_path = os.path.join(log_dir, 'model')
    logger.info(f"model_path {model_path}")
    if os.path.exists(model_path):
        logger.info(f"Loading pretrained model from {model_path}")
        model = network.load_seld_model(model_path, params['doa_objective'])
    else:
        if not isTraining:
            raise FileNotFoundError(f"test mode but model was not found at {os.path.abspath(model_path)}")

    try:
        dot_img_file = os.path.join(log_dir, 'model_plot.png')
        keras.utils.plot_model(model, to_file=dot_img_file, show_shapes=True)
    except ImportError:
        logger.warning(f"Failed to import pydot, skip plotting")

    if isTraining:
        utils.copy_source_code(log_dir)
        train(model, data_gen_train, data_gen_val, params, log_dir=log_dir, unique_name=unique_name)
    else:
        evaluate(model, data_gen_test, params, log_dir=log_dir, unique_name=unique_name)