コード例 #1
0
 def _alternate_descent(self):
     n, d = self.X.shape
     self.centers = cluster._init_centers(self.centers, self.X,
                                          self.n_clusters)
     self.memberships = cluster._init_memberships(self.memberships,
                                                  self.centers, self.X,
                                                  self.n_clusters)
     self.weights = cluster._init_weights(self.weights, self.X,
                                          self.n_clusters)
     self.memberships, self.centers = super()._alternate_descent()
     for niter in range(self.max_iter):
         if self.verbose & Verbosity.COST_FUNCTION:
             self._log_cost(self.centers, self.memberships, self.weights)
         cst = np.min(
             1 / self._memberships_hessian(self.memberships, self.centers))
         print("Cst is {}".format(cst))
         #print("Cst is now {}".format(cst))
         new_memberships = _pfscm_prox_gradient(
             self.memberships,
             self._memberships_gradient,
             _prox_op,
             cst,
             prox_arg=cst * self.memberships_gamma,
             max_iter=10,
             tol=self.tol,
             grad_args=(self.X, self.centers))
         new_centers = self._update_centers(self.X, self.n_clusters,
                                            self.weights, new_memberships)
         gain = np.linalg.norm(new_centers - self.centers)
         if gain < self.tol:
             break
         self.centers = new_centers
         self.memberships = new_memberships
     return self.memberships, self.centers
コード例 #2
0
 def _alternate_descent(self):
     n, d = self.X.shape
     self.centers = cluster._init_centers(self.centers, self.X,
                                          self.n_clusters)
     self.memberships = cluster._init_memberships(self.memberships,
                                                  self.centers, self.X,
                                                  self.n_clusters)
     self.weights = cluster._init_weights(self.weights, self.X,
                                          self.n_clusters)
     fcm_init = cluster.FCMeans(self.n_clusters)
     fcm_init.fit(self.X)
     # self.memberships, self.centers = fcm_init.memberships, fcm_init.centers
     for i in range(self.max_iter):
         if self.verbose & Verbosity.COST_FUNCTION:
             self._log_cost(self.centers, self.memberships, self.weights)
         new_memberships = self._update_memberships(self.X, self.n_clusters,
                                                    self.weights,
                                                    self.centers,
                                                    self.memberships)
         new_centers = self._update_centers(self.X, self.n_clusters,
                                            self.weights, new_memberships)
         new_weights = self._update_weights(self.X, self.n_clusters,
                                            new_memberships, new_centers)
         if np.linalg.norm(new_centers - self.centers) < self.tol:
             break
         self.memberships = new_memberships
         self.centers = new_centers
         self.weights = new_weights
     if self.verbose & Verbosity.COST_FUNCTION:
         self._log_cost(self.centers, self.memberships, self.weights)
     self._fcm_init = fcm_init
     return self.memberships, self.centers, self.weights
コード例 #3
0
 def _alternate_descent(self):
     n, d = self.X.shape
     self.centers = cluster._init_centers(self.centers, self.X,
                                          self.n_clusters)
     self.memberships = cluster._init_memberships(self.memberships,
                                                  self.centers, self.X,
                                                  self.n_clusters)
     self.weights = cluster._init_weights(self.weights, self.X,
                                          self.n_clusters)
     self.memberships, self.centers = cluster.FCMeans._alternate_descent(
         self)
     for niter in range(self.max_iter):
         if self.verbose & Verbosity.COST_FUNCTION:
             self._log_cost(self.centers, self.memberships, self.weights)
         memberships_cst = np.min(1 / self._memberships_hessian(
             self.memberships, self.centers, self.weights))
         new_memberships = _pfscm_prox_gradient(
             self.memberships,
             self._memberships_gradient,
             _prox_op,
             memberships_cst,
             prox_arg=memberships_cst * self.memberships_gamma,
             max_iter=10,
             tol=self.tol,
             grad_args=(self.X, self.centers, self.weights))
         #print(np.sum(new_memberships))
         new_centers = self._update_centers(self.X, self.n_clusters,
                                            self.weights, new_memberships)
         weights_cst = np.min(1 / self._weights_hessian(
             new_memberships, new_centers, n, d, self.n_clusters))
         new_weights = _pfscm_prox_gradient(
             self.weights,
             self._weights_gradient,
             _sparsity_prox_op,
             weights_cst,
             prox_arg=weights_cst * self.weights_gamma,
             max_iter=10,
             tol=self.tol,
             grad_args=(self.X, new_centers, new_memberships))
         gain = np.linalg.norm(new_centers - self.centers)
         #print(self.centers)
         #print(gain)
         if gain < self.tol:
             break
         self.weights = new_weights
         self.centers = new_centers
         self.memberships = new_memberships
     return self.memberships, self.centers, self.weights
コード例 #4
0
ファイル: borgelt.py プロジェクト: aguillon/subspy
 def _alternate_descent(self):
     n, d = self.X.shape
     centers = cluster._init_centers(self.centers, self.X, self.n_clusters)
     memberships = cluster._init_memberships(self.memberships, centers,
                                             self.X, self.n_clusters)
     weights = cluster._init_weights(self.weights, self.X, self.n_clusters)
     for i in range(self.max_iter):
         if self.verbose & Verbosity.COST_FUNCTION:
             self._log_cost(centers, memberships, weights)
         new_memberships = self._update_memberships(self.X, self.n_clusters,
                                                    weights, centers)
         new_centers = self._update_centers(self.X, self.n_clusters,
                                            weights, new_memberships)
         new_weights = self._update_weights(self.X, self.n_clusters,
                                            new_memberships, new_centers)
         if np.linalg.norm(new_centers - centers) < self.tol:
             break
         memberships = new_memberships
         centers = new_centers
         weights = new_weights
     if self.verbose & Verbosity.COST_FUNCTION:
         self._log_cost(centers, memberships, weights)
     return memberships, centers, weights