"cutoff": 5.0, "radial_basis": "chebyshev", "cutoff_hyps": [], "sigma_e": 0.009, "sigma_f": 0.005, "sigma_s": 0.0006, "hpo_max_iterations": 50, "freeze_hyps": 0, } bi, final_cluster = cluster_GA( nPool, eleNames, eleNums, eleRadii, generations, calc, filename, log_file, CXPB, singleTypeCluster, use_dask, use_vasp, al_method, learner_params, train_config, optimizer, use_vasp_inter, )
CXPB = 0.5 eleRadii = [covalent_radii[atomic_numbers[ele]] for ele in eleNames] filename = "clus_Cu4" # For saving the best cluster at every generation log_file = "clus_Cu4.log" singleTypeCluster = False calc = EMT() use_vasp = False if use_dask == True: # Set up the dask run using the worker-spec file based on the computing cluster cluster = KubeCluster.from_yaml("worker-cpu-spec.yml") client = Client(cluster) # cluster.adapt(minimum=0, maximum=10) cluster.scale(10) # Since 10 clusters in the pool bi, final_cluster = cluster_GA( nPool, eleNames, eleNums, eleRadii, generations, calc, filename, log_file, CXPB, singleTypeCluster, use_dask, use_vasp, optimizer=BFGS, # Set ase optimizer )
lcharg=False, lwave=False, lreal=False, ispin=2, isym=0, ) if cluster_use_dask == True: # Set up the dask run using the worker-spec file based on the computing cluster cluster = KubeCluster.from_yaml("worker-cpu-spec.yml") client = Client(cluster) # cluster.adapt(minimum=0, maximum=10) cluster.scale(10) # Since 10 clusters in the pool cluster.scale(10) bi, final_cluster = cluster_GA( nPool, eleNames, eleNums, eleRadii, generations, calc, filename, log_file, CXPB, singleTypeCluster, cluster_use_dask, use_vasp, )