コード例 #1
0
        "cutoff": 5.0,
        "radial_basis": "chebyshev",
        "cutoff_hyps": [],
        "sigma_e": 0.009,
        "sigma_f": 0.005,
        "sigma_s": 0.0006,
        "hpo_max_iterations": 50,
        "freeze_hyps": 0,
    }


    bi, final_cluster = cluster_GA(
        nPool,
        eleNames,
        eleNums,
        eleRadii,
        generations,
        calc,
        filename,
        log_file,
        CXPB,
        singleTypeCluster,
        use_dask,
        use_vasp,
        al_method,
        learner_params,
        train_config,
        optimizer,
        use_vasp_inter,
    )
コード例 #2
0
ファイル: run_emt.py プロジェクト: ulissigroup/cluster_mlp
    CXPB = 0.5
    eleRadii = [covalent_radii[atomic_numbers[ele]] for ele in eleNames]
    filename = "clus_Cu4"  # For saving the best cluster at every generation
    log_file = "clus_Cu4.log"
    singleTypeCluster = False
    calc = EMT()
    use_vasp = False

    if use_dask == True:
        # Set up the dask run using the worker-spec file based on the computing cluster
        cluster = KubeCluster.from_yaml("worker-cpu-spec.yml")
        client = Client(cluster)
        # cluster.adapt(minimum=0, maximum=10)
        cluster.scale(10)  # Since 10 clusters in the pool

    bi, final_cluster = cluster_GA(
        nPool,
        eleNames,
        eleNums,
        eleRadii,
        generations,
        calc,
        filename,
        log_file,
        CXPB,
        singleTypeCluster,
        use_dask,
        use_vasp,
        optimizer=BFGS,  # Set ase optimizer
    )
コード例 #3
0
ファイル: run_vasp.py プロジェクト: ulissigroup/cluster_mlp
        lcharg=False,
        lwave=False,
        lreal=False,
        ispin=2,
        isym=0,
    )

    if cluster_use_dask == True:
        # Set up the dask run using the worker-spec file based on the computing cluster
        cluster = KubeCluster.from_yaml("worker-cpu-spec.yml")
        client = Client(cluster)
        # cluster.adapt(minimum=0, maximum=10)
        cluster.scale(10)  # Since 10 clusters in the pool

        cluster.scale(10)

    bi, final_cluster = cluster_GA(
        nPool,
        eleNames,
        eleNums,
        eleRadii,
        generations,
        calc,
        filename,
        log_file,
        CXPB,
        singleTypeCluster,
        cluster_use_dask,
        use_vasp,
    )