コード例 #1
0
ファイル: text_main_bbc.py プロジェクト: harshef/iit_nips
):  ## Initialize dictionary of size upto length maximum generation
    CN[mm] = {}
    RN[mm] = {}

for i in range(0, chromosome):
    cluster = random.randint(
        2, max_cluster
    )  ##Randomly selects cluster number from 2 to root(poplation)
    K.insert(i, cluster)  ##Store the number of clusters in clu
    u, label = Kmeans_clu(cluster, data)
    lab.insert(i, label)  ##Store the labels in lab
    center.insert(i, u)
    new_pbm = cal_pbm_index(cluster, data, u, label)
    pbm_index.insert(i,
                     new_pbm)  ##Store the second objective function(PBM Index)
    dn = calculate_dunn_index(data, label, cluster)
    ini_dunn.insert(i, dn)
    s = silhouette_score(data, label)
    sil_score.insert(i,
                     s)  ##Store the first objective funvtion(Silhouette Score)
    new_center = pop_create(max_cluster, features, cluster, u)
    population.insert(i, new_center)  ##Store the populations in population

file.write("Initial Clusters : " + str(K) + '\n')
file.write("Initial PBM : " + str(pbm_index) + '\n')
file.write("Initial Sil score : " + str(sil_score) + '\n')
file.write("Initial Dunn : " + str(ini_dunn) + '\n')
index = ini_dunn.index(max(ini_dunn))
file.write("Max Dunn and corresponding cluster, PBM, Sil : " +
           str(ini_dunn[index]) + "," + str(K[index]) + "," +
           str(pbm_index[index]) + "," + str(sil_score[index]) + '\n')
コード例 #2
0
    return centroids


# Give no. of clusters

K = 2

# --------------------------------



cluster = KMeans(n_clusters=K)
cluster.fit(Idata)
label = cluster.predict(Idata)
centers = cluster.cluster_centers_
dn = calculate_dunn_index(Idata, label, K)
print "Kmeans Siloutte score : ", silhouette_score(Idata, label)
print "Kmeans PBM index : ", cal_pbm_index(K, Idata, centers, label)
print "Kmeans Dunn index : ", dn
print "-------------------------------------------------------------\n"

agglomerative1 = AgglomerativeClustering(n_clusters=K, linkage='ward', affinity='euclidean')
idx = agglomerative1.fit_predict(Idata)
hlabels = agglomerative1.labels_
centers = cal_center(Idata, hlabels)
dn = calculate_dunn_index(Idata, hlabels, K)
print "Hierarchical single Siloutte score : ", silhouette_score(Idata, hlabels)
print "Hierarchical single PBM index : ", cal_pbm_index(K, Idata, centers, hlabels)
print "Hierarchical single Dunn index : ", dn
print "---------------------------------------------------------\n"