コード例 #1
0
def logitProbitMixtureFunction(z, N, k, mu, sigma, isLogit):
    if isLogit == 1:
        density = util.logitDensity(z, mu, sigma)
    else:
        density = util.probitDensity(z, mu, sigma)
    probTerm = util.getBC(N, k) * (z**k) * ((1 - z)**(N - k))
    f = probTerm * density
    return f
コード例 #2
0
def independentBinomialAnalytic(N, p, c, alpha):
    pmfBinomial = np.zeros(N + 1)
    for k in range(0, N + 1):
        pmfBinomial[k] = util.getBC(N, k) * (p ** k) * ((1 - p) ** (N - k))
    cdfBinomial = np.cumsum(pmfBinomial)
    varAnalytic = c * np.interp(alpha, cdfBinomial, np.linspace(0, N, N + 1))
    esAnalytic = util.analyticExpectedShortfall(N, alpha, pmfBinomial, c)
    return pmfBinomial, cdfBinomial, varAnalytic, esAnalytic
コード例 #3
0
def betaBinomialAnalytic(N, c, a, b, alpha):
    pmfBeta = np.zeros(N + 1)
    den = util.computeBeta(a, b)
    for k in range(0, N + 1):
        pmfBeta[k] = util.getBC(N, k) * util.computeBeta(a + k,
                                                         b + N - k) / den
    cdfBeta = np.cumsum(pmfBeta)
    varAnalytic = c * np.interp(alpha, cdfBeta, np.linspace(0, N, N + 1))
    esAnalytic = util.analyticExpectedShortfall(N, alpha, pmfBeta, c)
    return pmfBeta, cdfBeta, varAnalytic, esAnalytic
コード例 #4
0
def getCMF_cr(s, myW, myA, myP, myN, myK):
    ps = myP * (1 - myW) + myP * myW * s
    f = util.getBC(myN, myK) * np.power(ps, myK) * np.power(1 - ps, myN - myK)
    return f * util.gammaDensity(s, myA, myA)
コード例 #5
0
def getProdCMF(g, myRho, myP, myN, myK):
    pg = th.computeP(myP, myRho, g)
    return np.multiply(util.getBC(myN, myK),
                       np.power(pg, myK) * np.power(1 - pg, myN - myK))
コード例 #6
0
def getCMF(g, myRho, myP, myN, myK):
    pg = th.computeP(myP, myRho, g)
    f = util.getBC(myN, myK) * np.power(pg, myK) * np.power(1 - pg, myN - myK)
    cmf = f * util.gaussianDensity(g, 0, 1)
    return cmf
コード例 #7
0
def bLikelihood(N, k, pDomain):
    L = util.getBC(N, k) * (pDomain ** k) * ((1 - pDomain) ** (N - k))
    return L / np.abs(np.max(L))