コード例 #1
0
ファイル: svm.py プロジェクト: Sadbus/IKT440-Project
y_pred = baseline_model.predict(x_test)
stop_test = time()

print("Accuracy: %.2f%% Training: %.2fs Testing: %.2fs" %
      (f1_score(y_test, y_pred, average='macro') * 100,
       stop_train - start_train, stop_test - start_test))
print(
    pd.crosstab(y_pred,
                y_test,
                rownames=['True'],
                colnames=['Predicted'],
                margins=True))
print('\nClassification Report:\n', classification_report(y_test, y_pred))
plot_confusion_matrix(confusion_matrix(y_test,
                                       y_pred,
                                       labels=['win', 'loss', 'draw']),
                      target_names=['win', 'loss', 'draw'],
                      title="Baseline Support-Vector Machine")

tuned_model = svm.SVC(decision_function_shape='ovo',
                      C=10,
                      gamma=0.1,
                      kernel='rbf',
                      random_state=42)

start_train = time()
tuned_model.fit(x_train, y_train)
stop_train = time()

start_test = time()
y_pred = tuned_model.predict(x_test)
コード例 #2
0
x_train, x_test, y_train, y_test = train_test_split(x_transformed,
                                                    y,
                                                    test_size=0.20,
                                                    random_state=42)

clf = GaussianNB()

start_train = time()
clf.fit(x_train, y_train)
stop_train = time()

start_test = time()
y_pred = clf.predict(x_test)
stop_test = time()

print("Accuracy: %.2f%% Training: %.2fs Testing: %.2fs" %
      (f1_score(y_test, y_pred, average='macro') * 100,
       stop_train - start_train, stop_test - start_test))
print(
    pd.crosstab(y_test,
                y_pred,
                rownames=['True'],
                colnames=['Predicted'],
                margins=True))
print('\nClassification Report:\n', classification_report(y_test, y_pred))
plot_confusion_matrix(confusion_matrix(y_test,
                                       y_pred,
                                       labels=['win', 'loss', 'draw']),
                      target_names=['win', 'loss', 'draw'],
                      title="Gaussian Naive Bayes")
コード例 #3
0
tm = MultiClassTsetlinMachine(2000, 80, 2.0, weighted_clauses=True)

start_train = time()
tm.fit(x_train, y_train, epochs=1, incremental=True)
stop_train = time()

start_test = time()
y_pred = tm.predict(x_test)
stop_test = time()

print("Accuracy: %.2f%% Training: %.2fs Testing: %.2f" %
      (f1_score(y_test, y_pred, average='macro'), stop_train - start_train,
       stop_test - start_test))
print(
    pd.crosstab(y_test,
                y_pred,
                rownames=['True'],
                colnames=["Predicted"],
                margins=True))
print('\nClassification Report:\n', classification_report(y_test, y_pred))

y_test = le.inverse_transform(y_test)
y_pred = le.inverse_transform(y_pred)

plot_confusion_matrix(confusion_matrix(y_test,
                                       y_pred,
                                       labels=['win', 'loss', 'draw']),
                      target_names=['win', 'loss', 'draw'],
                      title="Optimized Tsetlin Machine")
コード例 #4
0
stop_test = time()

print("Baseline")
print("Accuracy: %.2f%% Training: %.2fs Testing: %.2fs \n" %
      (f1_score(y_pred, y_test, average='macro') * 100,
       stop_train - start_train, stop_test - start_test))
print(
    pd.crosstab(y_test,
                y_pred,
                rownames=['True'],
                colnames=['Predicted'],
                margins=True))
print('\nClassification Report:\n', classification_report(y_test, y_pred))
plot_confusion_matrix(confusion_matrix(y_test,
                                       y_pred,
                                       labels=['win', 'loss', 'draw']),
                      target_names=['win', 'loss', 'draw'],
                      title="Baseline KNN")

start_train = time()
tuned_model.fit(x_train, y_train)
stop_train = time()

start_test = time()
y_pred = tuned_model.predict(x_test)
stop_test = time()

print("Tuned")
print("Accuracy: %.2f%% Training: %.2fs Testing: %.2fs \n" %
      (f1_score(y_pred, y_test, average='macro') * 100,
       stop_train - start_train, stop_test - start_test))