コード例 #1
0
ファイル: statistics_tests.py プロジェクト: oaarscorp/cmepy
    def test_distribution_convex_combination(self):
        a = statistics.Distribution({
            (0, 0): 0.4,
            (0, 1): 0.3,
            (1, 0): 0.2,
            (1, 1): 0.1
        })

        b = statistics.Distribution({
            (0, -1): 0.1,
            (0, 0): 0.2,
            (0, 1): 0.3,
            (0, 2): 0.4
        })

        tau = 0.73111

        # let c be a convex combination of a and b, written in a wierd way.
        # this should test scalar mult, addition, unary negation operator
        # etc.
        c = a * tau + b + tau * (-b)

        assert len(c) == 6
        assert_almost_equal(c[(0, -1)], 0.1 * (1.0 - tau))
        assert_almost_equal(c[(0, 0)], 0.4 * tau + 0.2 * (1.0 - tau))
        assert_almost_equal(c[(0, 1)], 0.3 * tau + 0.3 * (1.0 - tau))
        assert_almost_equal(c[(1, 0)], 0.2 * tau)
        assert_almost_equal(c[(1, 1)], 0.1 * tau)
        assert_almost_equal(c[(0, 2)], 0.4 * (1.0 - tau))
コード例 #2
0
ファイル: statistics_tests.py プロジェクト: oaarscorp/cmepy
    def test_norms_and_metrics(self):
        a = statistics.Distribution({
            (0, 0): 0.4,
            (0, 1): 0.3,
            (1, 0): 0.2,
            (1, 1): 0.1
        })

        for p in numpy.linspace(0.1, 2.5, 25):
            assert_almost_equal(a.lp_distance(a, p), 0.0)
            assert a.lp_norm(p) > 0.0

        assert numpy.isinf(a.kl_divergence(statistics.Distribution()))
        assert_almost_equal(a.kl_divergence(a), 0.0)
コード例 #3
0
ファイル: statistics_tests.py プロジェクト: oaarscorp/cmepy
    def test_dense_conversions(self):
        p = statistics.Distribution()

        p_dense = numpy.array([
            [0.0, 0.2, 0.1, 0.0],
            [0.3, 0.0, 0.1, 0.3],
        ])

        p.from_dense(p_dense)

        assert len(p) == 5

        assert p[(0, 1)] == 0.2
        assert p[(0, 2)] == 0.1

        assert p[(1, 0)] == 0.3
        assert p[(1, 2)] == 0.1
        assert p[(1, 3)] == 0.3

        p.from_dense(p_dense, origin=(-1, 3))

        assert len(p) == 5

        assert p[(-1, 4)] == 0.2
        assert p[(-1, 5)] == 0.1

        assert p[(0, 3)] == 0.3
        assert p[(0, 5)] == 0.1
        assert p[(0, 6)] == 0.3
コード例 #4
0
ファイル: statistics_tests.py プロジェクト: oaarscorp/cmepy
    def test_distribution_scalar_multiplication(self):
        a = statistics.Distribution({
            (0, 0): 0.4,
            (0, 1): 0.3,
            (1, 0): 0.2,
            (1, 1): 0.1
        })

        b = -3.2

        # left mult with scalar
        c = a * b

        assert len(c) == 4
        assert_almost_equal(c[(0, 0)], 0.4 * b)
        assert_almost_equal(c[(0, 1)], 0.3 * b)
        assert_almost_equal(c[(1, 0)], 0.2 * b)
        assert_almost_equal(c[(1, 1)], 0.1 * b)

        # right mult with scalar
        c = b * a

        assert len(c) == 4
        assert_almost_equal(c[(0, 0)], 0.4 * b)
        assert_almost_equal(c[(0, 1)], 0.3 * b)
        assert_almost_equal(c[(1, 0)], 0.2 * b)
        assert_almost_equal(c[(1, 1)], 0.1 * b)
コード例 #5
0
ファイル: state_enum.py プロジェクト: kehlert/cmepy
 def unpack_distribution(self, p_dense, p_sparse=None):
     """
     convenience routine to translate a distribution from a dense array
     to a dictionary, using this state enumeration
     """
     p_indices = numpy.arange(numpy.size(p_dense))
     # convert from list of coordinate vectors to list of states
     p_states = domain.to_iter(self.states(p_indices))
     if p_sparse is None:
         p_sparse = statistics.Distribution()
     for index, state in zip(p_indices, p_states):
         value = p_dense[index]
         if value != 0.0:
             p_sparse[state] = value
     return p_sparse
コード例 #6
0
ファイル: statistics_tests.py プロジェクト: oaarscorp/cmepy
    def test_distribution_addition(self):
        a = statistics.Distribution({
            (0, 0): 0.4,
            (0, 1): 0.3,
            (1, 0): 0.2,
            (1, 1): 0.1
        })

        b = statistics.Distribution({
            (0, -1): 0.1,
            (0, 0): 0.2,
            (0, 1): 0.3,
            (0, 2): 0.4
        })

        c = a + b

        assert len(c) == 6
        assert_almost_equal(c[(0, -1)], 0.1)
        assert_almost_equal(c[(0, 0)], 0.6)
        assert_almost_equal(c[(0, 1)], 0.6)
        assert_almost_equal(c[(1, 0)], 0.2)
        assert_almost_equal(c[(1, 1)], 0.1)
        assert_almost_equal(c[(0, 2)], 0.4)
コード例 #7
0
ファイル: statistics_tests.py プロジェクト: oaarscorp/cmepy
    def test_distribution_subtraction(self):
        a = statistics.Distribution({
            (0, 0): 0.4,
            (0, 1): 0.3,
            (1, 0): 0.2,
            (1, 1): 0.1
        })

        b = statistics.Distribution({
            (0, -1): 0.1,
            (0, 0): 0.2,
            (0, 1): 0.3,
            (0, 2): 0.4
        })

        c = b - a

        assert len(c) == 6
        assert_almost_equal(c[(0, -1)], 0.1)
        assert_almost_equal(c[(0, 0)], -0.2)
        assert_almost_equal(c[(0, 1)], 0.0)
        assert_almost_equal(c[(1, 0)], -0.2)
        assert_almost_equal(c[(1, 1)], -0.1)
        assert_almost_equal(c[(0, 2)], 0.4)