コード例 #1
0
	def test_train(self):
		stm = STM(8, 4, 4, 10)

		parameters = stm._parameters()

		stm.train(
			randint(2, size=[stm.dim_in, 2000]),
			randint(2, size=[stm.dim_out, 2000]),
			parameters={
				'verbosity': 0,
				'max_iter': 0,
				})

		# parameters should not have changed
		self.assertLess(max(abs(stm._parameters() - parameters)), 1e-20)

		def callback(i, stm):
			callback.counter += 1
			return
		callback.counter = 0

		max_iter = 10

		stm.train(
			randint(2, size=[stm.dim_in, 10000]),
			randint(2, size=[stm.dim_out, 10000]),
			parameters={
				'verbosity': 0,
				'max_iter': max_iter,
				'threshold': 0.,
				'batch_size': 1999,
				'callback': callback,
				'cb_iter': 2,
				})

		self.assertEqual(callback.counter, max_iter / 2)

		# test zero-dimensional nonlinear inputs
		stm = STM(0, 5, 5)

		glm = GLM(stm.dim_in_linear, LogisticFunction, Bernoulli)
		glm.weights = randn(*glm.weights.shape)

		input = randn(stm.dim_in_linear, 10000)
		output = glm.sample(input)

		stm.train(input, output, parameters={'max_iter': 20})

		# STM should be able to learn GLM behavior
		self.assertAlmostEqual(glm.evaluate(input, output), stm.evaluate(input, output), 1)

		# test zero-dimensional inputs
		stm = STM(0, 0, 10)

		input = empty([0, 10000])
		output = rand(1, 10000) < 0.35

		stm.train(input, output)

		self.assertLess(abs(mean(stm.sample(input)) - mean(output)), 0.1)
コード例 #2
0
	def test_gradient(self):
		stm = STM(5, 2, 10)

		stm.sharpness = 1.5

		# choose random parameters
		stm._set_parameters(randn(*stm._parameters().shape) / 100.)

		err = stm._check_gradient(
			randn(stm.dim_in, 1000),
			randint(2, size=[stm.dim_out, 1000]),
			1e-5,
			parameters={'train_sharpness': True})
		self.assertLess(err, 1e-8)

		# test with regularization turned off
		for param in ['biases', 'weights', 'features', 'pred', 'linear_predictor', 'sharpness']:
			err = stm._check_gradient(
				randn(stm.dim_in, 1000),
				randint(2, size=[stm.dim_out, 1000]),
				1e-6,
				parameters={
					'train_biases': param == 'biases',
					'train_weights': param == 'weights',
					'train_features': param == 'features',
					'train_predictors': param == 'pred',
					'train_linear_predictor': param == 'linear_predictor',
					'train_sharpness': param == 'sharpness',
				})
			self.assertLess(err, 1e-7)

		# test with regularization turned on
		for norm in ['L1', 'L2']:
			for param in ['priors', 'weights', 'features', 'pred', 'input_bias', 'output_bias']:
				err = stm._check_gradient(
					randint(2, size=[stm.dim_in, 1000]),
					randint(2, size=[stm.dim_out, 1000]),
					1e-7,
					parameters={
						'train_prior': param == 'priors',
						'train_weights': param == 'weights',
						'train_features': param == 'features',
						'train_predictors': param == 'pred',
						'train_input_bias': param == 'input_bias',
						'train_output_bias': param == 'output_bias',
						'regularize_biases': {'strength': 0.6, 'norm': norm},
						'regularize_features': {'strength': 0.6, 'norm': norm},
						'regularize_predictors': {'strength': 0.6, 'norm': norm},
						'regularize_weights': {'strength': 0.6, 'norm': norm},
					})
				self.assertLess(err, 1e-6)

		self.assertFalse(any(isnan(
			stm._parameter_gradient(
				randint(2, size=[stm.dim_in, 1000]),
				randint(2, size=[stm.dim_out, 1000]),
				stm._parameters()))))
コード例 #3
0
	def test_poisson(self):
		stm = STM(5, 5, 3, 10, ExponentialFunction, Poisson)

		# choose random parameters
		stm._set_parameters(randn(*stm._parameters().shape) / 100.)

		err = stm._check_gradient(
			randn(stm.dim_in, 1000),
			randint(2, size=[stm.dim_out, 1000]), 1e-5)
		self.assertLess(err, 1e-8)