コード例 #1
0
        print('Best parameters:')
        print(grid.best_params_)

        results = pd.DataFrame(grid.cv_results_)
        results.sort_values(by='rank_test_score', inplace=True)

        print(results.to_string())

        # Build top 3 models
        idx = 0
        top_models = []
        for index, row in results.iterrows():
            top_model = False
            if (single_branch):
                top_model = cnn_batchnorm_lstm.build_model(
                    row['param_layers'], row['param_cnn_layers'],
                    row['param_kernel_size'])
            else:
                top_model = bidir_multiple_branch_lstm.build_model(
                    row['param_layers'], row['param_ksize1'],
                    row['param_step_size'], row['param_lstm_units'],
                    row['param_single_lstm_layer'])
            top_models.append(top_model)
            top_models[-1].batch_size = row['param_batch_size']
            idx = idx + 1
            if idx > 2:
                break

        early_stopping = EarlyStopping(patience=20)
        fit_models = []
        for i in reversed(range(len(top_models))):
コード例 #2
0
ファイル: run.py プロジェクト: ryanshim/StockPrediction
if __name__=='__main__':
	global_start_time = time.time()
	#epochs  = 1
	epochs  = 100
	seq_len = 40

	print('> Loading data... ')

	X_train, y_train, X_test, y_test = dataload.load_data('daily_spx.csv', seq_len, True)

	print('> Data Loaded. Compiling...')

	#lstm_model = lstm.build_model([1, seq_len, 100, 1])
	model_layers = [1, 2, 3, 4]
	cnn_models = [
			cnn_batchnorm_lstm.build_model([1, seq_len, 100, 1], x) for x in model_layers
		]
	[model.fit(
	    X_train,
	    y_train,
	    batch_size=512,
	    nb_epoch=epochs,
	    validation_split=0.05)
		for model in cnn_models
	]

	#lstm_predictions = dataload.predict_sequences_multiple(lstm_model, X_test, seq_len, seq_len)
	cnn_predictions = [dataload.predict_sequences_multiple(model, X_test, seq_len, seq_len)
		for model in cnn_models]
	#predictions = dataload.predict_sequence_full(model, X_test, seq_len)
	#predictions = dataload.predict_point_by_point(model, X_test)