self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss # Accuracy with tf.name_scope("accuracy"): correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy") # data loading data_path = '/home/ubuntu/RRing/ratings_test_22.csv' contents, points = tool.loading_rdata(data_path) contents = tool.cut(contents, cut=2) # tranform document to vector max_document_length = 200 x, vocabulary, vocab_size = tool.make_input(contents, max_document_length) #print(vocab_size) #print(vocabulary) #print('사전단어수 : %s' % (vocab_size)) y = tool.make_output(points, threshold=0.5) # 긍정 부정으로 0, 1로만 구분되어 있어서 0.5 를 선택함 # divide dataset into train/test set #x_train, x_test, y_train, y_test = tool.divide(x,y,train_prop=0.8) # 80% 는 train 20% 는 test
def train(): # # data loading data_path = 'preprocessed_POSCO.csv' # csv 파일로 불러오기 # 포스코 모델 # data_path = 'repro_45.csv' # csv 파일로 불러오기 contents, points = tool.loading_rdata(data_path) # CSV 읽어오기 vocab_list = tool.cut(contents) # contents 에 모든 기사들을 1개의 리스트에 통합 # transform document to vector max_document_length = 1400 x, vocabulary, vocab_size = tool.make_vocab(vocab_list, max_document_length) tool.save_vocab('news_vocab_sk.txt', contents, max_document_length) # tool.save_vocab('news_vocab_posco.txt', vocabulary, max_document_length) # vocab = tool.load_vocab('news_vocab_sk.txt') print('사전단어수 : %s' % (vocab_size)) y = tool.make_output(points, threshold=0) # divide dataset into train/test set x_train, x_test, y_train, y_test = tool.divide(x, y, train_prop=0.9) # Model Hyperparameters flags.DEFINE_integer('embedding_dim', 128, "Dimensionality of embedded vector (default: 128)") flags.DEFINE_string('filter_sizes', '3,4,5', "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer('num_filters', 128, "Number of filters per filter size (default: 128)") flags.DEFINE_float('dropout_keep_prob', 0.5, "Dropout keep probability (default: 0.5)") flags.DEFINE_float('l2_reg_lambda', 0.1, "L2 regularization lambda (default: 0.0)") # Training parameters flags.DEFINE_integer("batch_size", 128, "Batch Size (default: 64)") flags.DEFINE_integer("num_epochs", 200, "Number of training epochs (default: 200)") flags.DEFINE_integer( "evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)") flags.DEFINE_integer("num_checkpoints", 10, "Number of checkpoints to store (default: 5)") # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") FLAGS = flags.FLAGS # print('\nParameters : ') # for attr, value in sorted(FLAGS.flag_values_dict()): # print('{}={}'.format(attr.upper(), value)) # print('') with tf.Graph().as_default(): sess = tf.Session() with sess.as_default(): cnn = TextCNN(sequence_length=x_train.shape[1], num_classes=y_train.shape[1], vocab_size=vocab_size, embedding_size=FLAGS.embedding_dim, filter_sizes=list( map(int, FLAGS.filter_sizes.split(","))), num_filters=FLAGS.num_filters, l2_reg_lambda=FLAGS.l2_reg_lambda) # cnn = CharCNN() # Define Training procedure global_step = tf.Variable(0, name="global_step", trainable=False) optimizer = tf.train.AdamOptimizer(1e-3) grads_and_vars = optimizer.compute_gradients(cnn.loss) train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step) # Keep track of gradient values and sparsity (optional) grad_summaries = [] for g, v in grads_and_vars: if g is not None: grad_hist_summary = tf.summary.histogram( "{}".format(v.name), g) sparsity_summary = tf.summary.scalar( "{}".format(v.name), tf.nn.zero_fraction(g)) grad_summaries.append(grad_hist_summary) grad_summaries.append(sparsity_summary) grad_summaries_merged = tf.summary.merge(grad_summaries) # Output directory for models and summaries timestamp = str(int(time.time())) out_dir = os.path.abspath( os.path.join(os.path.curdir, "runs", timestamp)) print("Writing to {}\n".format(out_dir)) # Summaries for loss and accuracy loss_summary = tf.summary.scalar("loss", cnn.loss) acc_summary = tf.summary.scalar("accuracy", cnn.accuracy) # Train Summaries train_summary_op = tf.summary.merge( [loss_summary, acc_summary, grad_summaries_merged]) train_summary_dir = os.path.join(out_dir, "summaries", "train") train_summary_writer = tf.summary.FileWriter( train_summary_dir, sess.graph) # Dev summaries dev_summary_op = tf.summary.merge([loss_summary, acc_summary]) dev_summary_dir = os.path.join(out_dir, "summaries", "dev") dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph) # Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it checkpoint_dir = os.path.abspath( os.path.join(out_dir, "checkpoints")) checkpoint_prefix = os.path.join(checkpoint_dir, "model") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints) # Initialize all variables sess.run(tf.global_variables_initializer()) # initW = tool.load_embedding_vectors(vocabulary) # sess.run(cnn.W.assign(initW)) def train_step(x_batch, y_batch): """ A single training step """ feed_dict = { cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: FLAGS.dropout_keep_prob } _, step, summaries, loss, accuracy = sess.run([ train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy ], feed_dict) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g}".format( time_str, step, loss, accuracy)) train_summary_writer.add_summary(summaries, step) def dev_step(x_batch, y_batch, writer=None): """ Evaluates model on a dev set """ feed_dict = { cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: 1.0 } step, summaries, loss, accuracy = sess.run( [global_step, dev_summary_op, cnn.loss, cnn.accuracy], feed_dict) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g}".format( time_str, step, loss, accuracy)) if writer: writer.add_summary(summaries, step) def batch_iter(data, batch_size, num_epochs, shuffle=True): """ Generates a batch iterator for a dataset. """ data = np.array(data) data_size = len(data) num_batches_per_epoch = int((len(data) - 1) / batch_size) + 1 for epoch in range(num_epochs): # Shuffle the data at each epoch if shuffle: shuffle_indices = np.random.permutation( np.arange(data_size)) shuffled_data = data[shuffle_indices] else: shuffled_data = data for batch_num in range(num_batches_per_epoch): start_index = batch_num * batch_size end_index = min((batch_num + 1) * batch_size, data_size) yield shuffled_data[start_index:end_index] # Generate batches batches = batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs) testpoint = 0 # Training loop. For each batch... for batch in batches: x_batch, y_batch = zip(*batch) train_step(x_batch, y_batch) current_step = tf.train.global_step(sess, global_step) if current_step % FLAGS.evaluate_every == 0: if testpoint + 100 < len(x_test): testpoint += 100 else: testpoint = 0 print("\nEvaluation:") dev_step(x_test[testpoint:testpoint + 100], y_test[testpoint:testpoint + 100], writer=dev_summary_writer) print("") if current_step % FLAGS.checkpoint_every == 0: path = saver.save(sess, checkpoint_prefix, global_step=current_step) print("Saved model checkpoint to {}\n".format(path))
x_train_genres[i][idx] = 1 # company one-hot encode x_train_companies = np.zeros((row_count, len(companies_set))) for i in range(len(x_companies_text)): companies_array = ast.literal_eval(x_companies_text[i]) for company in companies_array: try: idx = companies_set.index(company['id']) x_train_companies[i][idx] = 1 except: pass # Text 준비 contents = tool.cut(x_train_text, 2) max_document_length = 256 x, vocabulary, vocab_size = tool.make_input(contents,max_document_length) x_train, x_test, y_train, y_test = x[list(range(5000))+list(range(-2500,0))], x[5000:6000], y_train_point[list(range(5000))+list(range(-2500,0))], y_train_point[5000:6000] #train reshape x_train = x_train.astype(np.float32) x_train = x_train.reshape(x_train.shape[0], 16, 16, 1) y_train = y_train.reshape(y_train.shape[0], 1) #test reshape x_test = x_test.astype(np.float32) x_test = x_test.reshape(x_test.shape[0], 16, 16, 1) y_test = y_test.reshape(y_test.shape[0], 1)
losses = tf.nn.softmax_cross_entropy_with_logits_v2( logits=self.scores, labels=self.input_y) self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss # Accuracy with tf.name_scope("accuracy"): correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy") data_path = './data.csv' contents, cls = tool.loading_rdata(data_path, eng=True, num=True, punc=False) contents = tool.cut(contents) max_document_length = 10 x, vocabulary, vocab_size = tool.make_input(contents, max_document_length) print('사전단어수 : %s' % (vocab_size)) y = tool.make_output(cls) x_train, x_test, y_train, y_test = tool.divide(x, y, train_prop=1) # tranform document to vector # train 데이터와 dev데이터를 나눠주는 역활을한다. # 다른코드는 파일로 저장을하는데 여기서는 그냥 함수콜을 해서 리턴해서 로컬변수로 저장하는듯함 # 데이터 타입과 value들을 말해주는데 fllags의 모든 항목들을 보여준다. # 3. train the model and test with tf.Graph().as_default(): sess = tf.Session() with sess.as_default(): cnn = TextCNN(sequence_length=x_train.shape[1],
# sparse_cross_entropy_with_logits losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.scores, labels= self.input_y)# 아웃풋 건드는것 #losses = tf.nn.sparse_cross_entropy_with_logits(logits=self.predictions, labels= self.input_y)# 아웃풋 건드는것 self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss #loss 건드는것 # Accuracy with tf.name_scope("accuracy"): correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy") # data loading data_path='./data.csv' # csv파일 경로지정 contents, cls = tool.loading_rdata(data_path, eng=True, num=True, punc=False)#여기서 csv파일을 #읽어서 내용과 판결 calssyfi를 리스트화 시킨다. contents = tool.cut(contents)# 문서에 있는 단어를 tokenization한 모든 문서 개수 리스트를 반환 # tranform document to vector max_document_length = 10# 여기서 10은 내가 이미 만들어놓은 데이터가 10개씩 잘려있기 때문에 이렇게 주어줌 x, vocabulary, vocab_size = tool.make_input(contents,max_document_length) # 이것은 그냥 단순히 10개로 한정해서 사전과 사전단어개수와 input 리스트를 리턴하는 함수임으로 # 다른 코드와는 다른점이 있다. 유의 print('사전단어수 : %s' % (vocab_size)) y = tool.make_output(cls) # cassify해주는 함수이다. y값을 1,0,0 /0,1,0 /0,0,1로 임베딩해서 아웃풋해놓음 # divide dataset into train/test set x_train, x_test, y_train, y_test = tool.divide(x,y,train_prop=0.8) # train 데이터와 dev데이터를 나눠주는 역활을한다. # 다른코드는 파일로 저장을하는데 여기서는 그냥 함수콜을 해서 리턴해서 로컬변수로 저장하는듯함 # Model Hyperparameters