コード例 #1
0
ファイル: __init__.py プロジェクト: msincenselee/CNTK
def round(arg, name=None):
    """
    The output of this operation is the element wise value rounded to the nearest integer. 
    In case of tie, where element can have exact fractional part of 0.5
    this operation follows "round half-up" tie breaking strategy.
    This is different from the round operation of numpy which follows
    round half to even.

    Example:
        >>> C.eval(C.round([0.2, 1.3, 4., 5.5, 0.0]))
        [array([[ 0.,  1.,  4.,  6.,  0.]])]

        >>> C.eval(C.round([[0.6, 3.3], [1.9, 5.6]]))
        [array([[[ 1.,  3.],
                 [ 2.,  6.]]])]

        >>> C.eval(C.round([-5.5, -4.2, -3., -0.7, 0]))
        [array([[-5., -4., -3., -1.,  0.]])]

        >>> C.eval(C.round([[-0.6, -4.3], [1.9, -3.2]]))
        [array([[[-1., -4.],
                 [ 2., -3.]]])]

    Args:
        arg: input tensor
        name (str): the name of the node in the network (optional)
    Returns:
        :class:`cntk.graph.ComputationNode`
    """
    from cntk.ops.cntk2 import Round
    op = Round(arg, name=name)
    wrap_numpy_arrays(op)
    op.rank = op._.rank
    return op
コード例 #2
0
ファイル: __init__.py プロジェクト: ironhide23586/CNTK
def round(arg, name=None):
    """
    The output of this operation is the element wise value rounded to the nearest integer. 
    In case of tie, where element can have exact fractional part of 0.5
    this operation follows "round half-up" tie breaking strategy.
    This is different from the round operation of numpy which follows
    round half to even.

    Example:
        >>> C.eval(C.round([0.2, 1.3, 4., 5.5, 0.0]))
        [array([[ 0.,  1.,  4.,  6.,  0.]])]

        >>> C.eval(C.round([[0.6, 3.3], [1.9, 5.6]]))
        [array([[[ 1.,  3.],
                 [ 2.,  6.]]])]

        >>> C.eval(C.round([-5.5, -4.2, -3., -0.7, 0]))
        [array([[-5., -4., -3., -1.,  0.]])]

        >>> C.eval(C.round([[-0.6, -4.3], [1.9, -3.2]]))
        [array([[[-1., -4.],
                 [ 2., -3.]]])]

    Args:
        arg: input tensor
        name: the name of the node in the network (optional)
    Returns:
        :class:`cntk.graph.ComputationNode`
    """
    from cntk.ops.cntk2 import Round
    op = Round(arg, name = name)
    wrap_numpy_arrays(op)    
    op.rank = op._.rank  
    return op