コード例 #1
0
ファイル: variables.py プロジェクト: hintz/CNTK
def _sanitize_value(shape, value, dtype, device, is_param=False):
    np_dtype = utils.sanitize_dtype_numpy(dtype)
    cntk_dtype = utils.sanitize_dtype_cntk(dtype)
    if value is None:
        if shape is None:
            raise ValueError('you need to specify at least shape or value')
        shape = utils.sanitize_shape(shape)

        if is_param:
            # TODO: expose the initialization params
            ndav = NDArrayView.random_uniform_float(shape, -0.05, 0.05, 1,
                                                    device)
        else:
            ndav = utils.create_NDArrayView(shape, cntk_dtype, device)

    else:
        if not isinstance(value, np.ndarray) or value.dtype != np_dtype:
            value = np.asarray(value, dtype=np_dtype)

        #TODO: check whether this copy operation from cpu to gpu is not needed
        if device != DeviceDescriptor_cpudevice():
            ndav_cpu = utils.create_NDArrayView_from_NumPy(value)
            ndav = utils.create_NDArrayView(value.shape,
                                            data_type=cntk_dtype,
                                            dev=device)
            ndav.copy_from(ndav_cpu)
        else:
            ndav = utils.create_NDArrayView_from_NumPy(value, device)

    return ndav
コード例 #2
0
ファイル: variables.py プロジェクト: FDecaYed/CNTK
 def value(self, val):
     if isinstance(val, np.ndarray):
         ndarray = NDArrayView.from_dense(val.astype(self.dtype))
         super(Parameter, self).set_value(ndarray)
     elif isinstance(val, cntk_py.NDArrayView):
         super(Parameter, self).set_value(val)
     else:
         raise TypeError("Unsupported value type: %s", type(val))
コード例 #3
0
 def value(self, val):
     if isinstance(val, np.ndarray):
         ndarray = NDArrayView.from_dense(val.astype(self.dtype))
         super(Parameter, self).set_value(ndarray)
     elif isinstance(val, cntk_py.NDArrayView):
         super(Parameter, self).set_value(val)
     else:
         raise TypeError("Unsupported value type: %s", type(val))
コード例 #4
0
def test_native_binary_function():
    # user functions need to be registered before being callable by python
    if not nopt.native_convolve_function_registered:
        pytest.skip("Could not find {0} library. "
                    "Please check if HALIDE_PATH is configured properly "
                    "and try building {1} again".format(
                        'Cntk.BinaryConvolution-' + C.__version__.rstrip('+'),
                        'Extnsibiliy\BinaryConvolution'))

    # be sure to only run on CPU, binary convolution does not have GPU support for now
    dev = C.cpu()
    # create an arbitrary input mimicking a realistic cifar input
    x = input((64, 28, 28))
    # random filter weights for testing
    w = parameter((64, 64, 3, 3),
                  init=np.reshape(2 * (np.random.rand(64 * 64 * 3 * 3) - .5),
                                  (64, 64, 3, 3)),
                  dtype=np.float32,
                  device=dev)

    # set the convolution parameters by passing in an attribute dictionary
    #attributes = {'stride' : 1, 'padding' : False, 'size' : 3}

    attributes = {
        'stride': 1,
        'padding': False,
        'size': 3,
        'h': 28,
        'w': 28,
        'channels': 64,
        'filters': 64
    }

    # define the binary convolution op
    op = ops.native_user_function('NativeBinaryConvolveFunction', [w, x],
                                  attributes, 'native_binary_convolve')

    # also define an op using python custom functions that should have the same output
    op2 = C.convolution(CustomMultibitKernel(w, 1),
                        CustomSign(x),
                        auto_padding=[False])
    # create random input data
    x_data = NDArrayView.from_dense(np.asarray(np.reshape(
        2 * (np.random.rand(64 * 28 * 28) - .5), (64, 28, 28)),
                                               dtype=np.float32),
                                    device=dev)
    # evaluate the CPP binary convolve
    result = op.eval({x: x_data}, device=dev)

    # evaluate the python emulator
    result2 = op2.eval({x: x_data}, device=dev)
    native_times_primitive = op.find_by_name('native_binary_convolve')
    # assert that both have the same result
    '''
コード例 #5
0
ファイル: utils.py プロジェクト: muskanmahajan37/struct
def _to_cntk_dict_value(py_value):
    if isinstance(py_value, dict):
        return DictionaryValueFromDict(_py_dict_to_cntk_dict(py_value))

    if isinstance(py_value, list):
        py_list = list(map(_to_cntk_dict_value, py_value))
        return DictionaryValue(py_list)

    if isinstance(py_value, np.ndarray):
        py_value = NDArrayView.from_dense(py_value)
        return DictionaryValueFromNDArrayView(py_value)

    if py_value is None:
        return DictionaryValue()

    return DictionaryValue(py_value)
コード例 #6
0
ファイル: utils.py プロジェクト: OlegBoulanov/CNTK
def _to_cntk_dict_value(py_value):
    if isinstance(py_value, dict):
        return DictionaryValueFromDict(_py_dict_to_cntk_dict(py_value))

    if isinstance(py_value, list):
        py_list = list(map(_to_cntk_dict_value, py_value))
        return DictionaryValue(py_list)

    if isinstance(py_value, np.ndarray):
        py_value = NDArrayView.from_dense(py_value)
        return DictionaryValueFromNDArrayView(py_value)
    
    if py_value is None:
        return DictionaryValue()

    return DictionaryValue(py_value)
コード例 #7
0
ファイル: utils.py プロジェクト: AllanYiin/CNTK
def _to_cntk_dict_value(py_value):
    if isinstance(py_value, dict):
        return DictionaryValueFromDict(_py_dict_to_cntk_dict(py_value))

    if isinstance(py_value, list):
        py_list = list(map(_to_cntk_dict_value, py_value))
        return DictionaryValue(py_list)

    if isinstance(py_value, np.ndarray):
        py_value = NDArrayView.from_dense(py_value)
        return DictionaryValueFromNDArrayView(py_value)

    if isinstance(py_value, cntk_py.training_double_parameter_schedule):
        return cntk_py.DictionaryValueFromTrainingDoubleParameterSchedule(py_value)

    if py_value is None:
        return DictionaryValue()

    return DictionaryValue(py_value)
コード例 #8
0
def test_native_binary_function():
    # user functions need to be registered before being callable by python
    if not nopt.native_convolve_function_registered:
      pytest.skip("Could not find {0} library. "
        "Please check if HALIDE_PATH is configured properly "
        "and try building {1} again"
        .format('Cntk.BinaryConvolution-' + C.__version__.rstrip('+'),
        'Extnsibiliy\\BinaryConvolution'))

    # be sure to only run on CPU, binary convolution does not have GPU support for now
    dev = C.cpu()
    # create an arbitrary input mimicking a realistic cifar input
    x = input((64, 28, 28))
    # random filter weights for testing
    w = parameter((64, 64, 3, 3), init=np.reshape(2*(np.random.rand(64*64*3*3)-.5), (64, 64, 3, 3)), dtype=np.float32, device=dev)

    # set the convolution parameters by passing in an attribute dictionary
    #attributes = {'stride' : 1, 'padding' : False, 'size' : 3}

    attributes = {'stride' : 1,
                  'padding' : False,
                  'size' : 3,                       
                  'h' : 28,
                  'w' : 28,
                  'channels' : 64,
                  'filters' : 64 }

    # define the binary convolution op
    op = ops.native_user_function('NativeBinaryConvolveFunction', [w, x], attributes, 'native_binary_convolve')
    
    # also define an op using python custom functions that should have the same output
    op2 = C.convolution(CustomMultibitKernel(w, 1), CustomSign(x), auto_padding = [False])
    # create random input data
    x_data = NDArrayView.from_dense(np.asarray(np.reshape(2*(np.random.rand(64*28*28)-.5), (64, 28, 28)),dtype=np.float32), device=dev)
    # evaluate the CPP binary convolve
    result = op.eval({x : x_data}, device=dev)

    # evaluate the python emulator
    result2 = op2.eval({x : x_data}, device=dev)
    native_times_primitive = op.find_by_name('native_binary_convolve')
    # assert that both have the same result
    '''
コード例 #9
0
def _to_cntk_dict_value(py_value):
    if isinstance(py_value, dict):
        return DictionaryValueFromDict(_py_dict_to_cntk_dict(py_value))

    if isinstance(py_value, list):
        py_list = list(map(_to_cntk_dict_value, py_value))
        return DictionaryValue(py_list)

    if isinstance(py_value, np.ndarray):
        py_value = NDArrayView.from_dense(py_value)
        return DictionaryValueFromNDArrayView(py_value)

    if isinstance(py_value, cntk_py.training_double_parameter_schedule):
        return cntk_py.DictionaryValueFromTrainingDoubleParameterSchedule(
            py_value)

    if py_value is None:
        return DictionaryValue()

    return DictionaryValue(py_value)
コード例 #10
0
def test_native_binary_function():
    # user functions need to be registered before being callable by python
    ops.register_native_user_function(
        'NativeBinaryConvolveFunction',
        'Cntk.BinaryConvolutionExample-' + C.__version__.rstrip('+'),
        'CreateBinaryConvolveFunction')
    # be sure to only run on CPU, binary convolution does not have GPU support for now
    dev = cpu()
    # create an arbitrary input mimicking a realistic cifar input
    x = input((64, 30, 30))
    # random filter weights for testing
    w = parameter((64, 64, 3, 3),
                  init=np.reshape(2 * (np.random.rand(64 * 64 * 3 * 3) - .5),
                                  (64, 64, 3, 3)),
                  dtype=np.float32,
                  device=dev)
    # set the convolution parameters by passing in an attribute dictionary
    attributes = {'stride': 1, 'padding': False, 'size': 3}
    # define the binary convolution op
    op = ops.native_user_function('NativeBinaryConvolveFunction', [w, x],
                                  attributes,
                                  'native_binary_convolve_function')
    # also define an op using python custom functions that should have the same output
    op2 = C.convolution(CustomMultibitKernel(w, 1),
                        CustomSign(x),
                        auto_padding=[False])
    # create random input data
    x_data = NDArrayView.from_dense(np.asarray(np.reshape(
        2 * (np.random.rand(64 * 30 * 30) - .5), (64, 30, 30)),
                                               dtype=np.float32),
                                    device=dev)
    # evaluate the CPP binary convolve
    result = op.eval({x: x_data}, device=dev)
    # evaluate the python emulator
    result2 = op2.eval({x: x_data}, device=dev)
    native_times_primitive = op.find_by_name('native_binary_convolve_function')
    # assert that both have the same result
    assert np.allclose(result, result2, atol=0.001)
コード例 #11
0
def test_native_binary_function():
    # user functions need to be registered before being callable by python
    ops.register_native_user_function('NativeBinaryConvolveFunction', 'Cntk.BinaryConvolutionExample-' + C.__version__.rstrip('+'), 'CreateBinaryConvolveFunction')
    # be sure to only run on CPU, binary convolution does not have GPU support for now
    dev = cpu()
    # create an arbitrary input mimicking a realistic cifar input
    x = input((64, 30, 30))
    # random filter weights for testing
    w = parameter((64, 64, 3, 3), init=np.reshape(2*(np.random.rand(64*64*3*3)-.5), (64, 64, 3, 3)), dtype=np.float32, device=dev)
    # set the convolution parameters by passing in an attribute dictionary
    attributes = {'stride' : 1, 'padding' : False, 'size' : 3}
    # define the binary convolution op
    op = ops.native_user_function('NativeBinaryConvolveFunction', [w, x], attributes, 'native_binary_convolve_function')
    # also define an op using python custom functions that should have the same output
    op2 = C.convolution(CustomMultibitKernel(w, 1), CustomSign(x), auto_padding = [False])
    # create random input data
    x_data = NDArrayView.from_dense(np.asarray(np.reshape(2*(np.random.rand(64*30*30)-.5), (64, 30, 30)),dtype=np.float32), device=dev)
    # evaluate the CPP binary convolve
    result = op.eval({x : x_data}, device=dev)
    # evaluate the python emulator
    result2 = op2.eval({x : x_data}, device=dev)
    native_times_primitive = op.find_by_name('native_binary_convolve_function')
    # assert that both have the same result
    assert np.allclose(result, result2, atol=0.001)
コード例 #12
0
def test_Value_raises():
    from cntk import NDArrayView, Value
    with pytest.raises(ValueError):
        nd = NDArrayView.from_dense(np.asarray([[[4, 5]]], dtype=np.float32))
        val = Value(nd)
コード例 #13
0
ファイル: misc_test.py プロジェクト: BorisJineman/CNTK
def test_Value_raises():
    from cntk import NDArrayView, Value
    with pytest.raises(ValueError):
        nd = NDArrayView.from_dense(np.asarray([[[4,5]]], dtype=np.float32))
        val = Value(nd)