コード例 #1
0
def label_images(metadata,settings):
    """
    Load satellite images and interactively label different classes (hard-coded)

    KV WRL 2019

    Arguments:
    -----------
    metadata: dict
        contains all the information about the satellite images that were downloaded
    settings: dict with the following keys
        'cloud_thresh': float
            value between 0 and 1 indicating the maximum cloud fraction in 
            the cropped image that is accepted    
        'cloud_mask_issue': boolean
            True if there is an issue with the cloud mask and sand pixels
            are erroneously being masked on the images
        'labels': dict
            list of label names (key) and label numbers (value) for each class
        'flood_fill': boolean
            True to use the flood_fill functionality when labelling sand pixels
        'tolerance': float
            tolerance value for flood fill when labelling the sand pixels
        'filepath_train': str
            directory in which to save the labelled data
        'inputs': dict
            input parameters (sitename, filepath, polygon, dates, sat_list)
                
    Returns:
    -----------
    Stores the labelled data in the specified directory

    """
    
    filepath_train = settings['filepath_train']
    # initialize figure
    fig,ax = plt.subplots(1,1,figsize=[17,10], tight_layout=True,sharex=True,
                          sharey=True)
    mng = plt.get_current_fig_manager()                                         
    mng.window.showMaximized()

    # loop through satellites
    for satname in metadata.keys():
        filepath = SDS_tools.get_filepath(settings['inputs'],satname)
        filenames = metadata[satname]['filenames']
        # loop through images
        for i in range(len(filenames)):
            # image filename
            fn = SDS_tools.get_filenames(filenames[i],filepath, satname)
            # read and preprocess image
            im_ms, georef, cloud_mask, im_extra, im_QA, im_nodata = SDS_preprocess.preprocess_single(fn, satname, settings['cloud_mask_issue'])

            # compute cloud_cover percentage (with no data pixels)
            cloud_cover_combined = np.divide(sum(sum(cloud_mask.astype(int))),
                                    (cloud_mask.shape[0]*cloud_mask.shape[1]))
            if cloud_cover_combined > 0.99: # if 99% of cloudy pixels in image skip
                continue

            # remove no data pixels from the cloud mask (for example L7 bands of no data should not be accounted for)
            cloud_mask_adv = np.logical_xor(cloud_mask, im_nodata)
            # compute updated cloud cover percentage (without no data pixels)
            cloud_cover = np.divide(sum(sum(cloud_mask_adv.astype(int))),
                                    (sum(sum((~im_nodata).astype(int)))))
            # skip image if cloud cover is above threshold
            if cloud_cover > settings['cloud_thresh'] or cloud_cover == 1:
                continue
            # get individual RGB image
            im_RGB = SDS_preprocess.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9)
            im_NDVI = SDS_tools.nd_index(im_ms[:,:,3], im_ms[:,:,2], cloud_mask)
            im_NDWI = SDS_tools.nd_index(im_ms[:,:,3], im_ms[:,:,1], cloud_mask)
            # initialise labels
            im_viz = im_RGB.copy()
            im_labels = np.zeros([im_RGB.shape[0],im_RGB.shape[1]])
            # show RGB image
            ax.axis('off')  
            ax.imshow(im_RGB)
            implot = ax.imshow(im_viz, alpha=0.6)            
            filename = filenames[i][:filenames[i].find('.')][:-4] 
            ax.set_title(filename)
           
            ##############################################################
            # select image to label
            ##############################################################           
            # set a key event to accept/reject the detections (see https://stackoverflow.com/a/15033071)
            # this variable needs to be immuatable so we can access it after the keypress event
            key_event = {}
            def press(event):
                # store what key was pressed in the dictionary
                key_event['pressed'] = event.key
            # let the user press a key, right arrow to keep the image, left arrow to skip it
            # to break the loop the user can press 'escape'
            while True:
                btn_keep = ax.text(1.1, 0.9, 'keep ⇨', size=12, ha="right", va="top",
                                    transform=ax.transAxes,
                                    bbox=dict(boxstyle="square", ec='k',fc='w'))
                btn_skip = ax.text(-0.1, 0.9, '⇦ skip', size=12, ha="left", va="top",
                                    transform=ax.transAxes,
                                    bbox=dict(boxstyle="square", ec='k',fc='w'))
                btn_esc = ax.text(0.5, 0, '<esc> to quit', size=12, ha="center", va="top",
                                    transform=ax.transAxes,
                                    bbox=dict(boxstyle="square", ec='k',fc='w'))
                fig.canvas.draw_idle()                         
                fig.canvas.mpl_connect('key_press_event', press)
                plt.waitforbuttonpress()
                # after button is pressed, remove the buttons
                btn_skip.remove()
                btn_keep.remove()
                btn_esc.remove()
                
                # keep/skip image according to the pressed key, 'escape' to break the loop
                if key_event.get('pressed') == 'right':
                    skip_image = False
                    break
                elif key_event.get('pressed') == 'left':
                    skip_image = True
                    break
                elif key_event.get('pressed') == 'escape':
                    plt.close()
                    raise StopIteration('User cancelled labelling images')
                else:
                    plt.waitforbuttonpress()
                    
            # if user decided to skip show the next image
            if skip_image:
                ax.clear()
                continue
            # otherwise label this image
            else:
                ##############################################################
                # digitize sandy pixels
                ##############################################################
                ax.set_title('Click on SAND pixels (flood fill activated, tolerance = %.2f)\nwhen finished press <Enter>'%settings['tolerance'])
                # create erase button, if you click there it delets the last selection
                btn_erase = ax.text(im_ms.shape[1], 0, 'Erase', size=20, ha='right', va='top',
                                    bbox=dict(boxstyle="square", ec='k',fc='w'))                
                fig.canvas.draw_idle()
                color_sand = settings['colors']['sand']
                sand_pixels = []
                while 1:
                    seed = ginput(n=1, timeout=0, show_clicks=True)
                    # if empty break the loop and go to next label
                    if len(seed) == 0:
                        break
                    else:
                        # round to pixel location
                        seed = np.round(seed[0]).astype(int)     
                    # if user clicks on erase, delete the last selection
                    if seed[0] > 0.95*im_ms.shape[1] and seed[1] < 0.05*im_ms.shape[0]:
                        if len(sand_pixels) > 0:
                            im_labels[sand_pixels[-1]] = 0
                            for k in range(im_viz.shape[2]):                              
                                im_viz[sand_pixels[-1],k] = im_RGB[sand_pixels[-1],k]
                            implot.set_data(im_viz)
                            fig.canvas.draw_idle() 
                            del sand_pixels[-1]
                            
                    # otherwise label the selected sand pixels
                    else:
                        # flood fill the NDVI and the NDWI
                        fill_NDVI = flood(im_NDVI, (seed[1],seed[0]), tolerance=settings['tolerance'])
                        fill_NDWI = flood(im_NDWI, (seed[1],seed[0]), tolerance=settings['tolerance'])
                        # compute the intersection of the two masks
                        fill_sand = np.logical_and(fill_NDVI, fill_NDWI)
                        im_labels[fill_sand] = settings['labels']['sand'] 
                        sand_pixels.append(fill_sand)
                        # show the labelled pixels
                        for k in range(im_viz.shape[2]):                              
                            im_viz[im_labels==settings['labels']['sand'],k] = color_sand[k]
                        implot.set_data(im_viz)
                        fig.canvas.draw_idle() 
                
                ##############################################################
                # digitize white-water pixels
                ##############################################################
                color_ww = settings['colors']['white-water']
                ax.set_title('Click on individual WHITE-WATER pixels (no flood fill)\nwhen finished press <Enter>')
                fig.canvas.draw_idle() 
                ww_pixels = []                        
                while 1:
                    seed = ginput(n=1, timeout=0, show_clicks=True)
                    # if empty break the loop and go to next label
                    if len(seed) == 0:
                        break
                    else:
                        # round to pixel location
                        seed = np.round(seed[0]).astype(int)     
                    # if user clicks on erase, delete the last labelled pixels
                    if seed[0] > 0.95*im_ms.shape[1] and seed[1] < 0.05*im_ms.shape[0]:
                        if len(ww_pixels) > 0:
                            im_labels[ww_pixels[-1][1],ww_pixels[-1][0]] = 0
                            for k in range(im_viz.shape[2]):
                                im_viz[ww_pixels[-1][1],ww_pixels[-1][0],k] = im_RGB[ww_pixels[-1][1],ww_pixels[-1][0],k]
                            implot.set_data(im_viz)
                            fig.canvas.draw_idle()
                            del ww_pixels[-1]
                    else:
                        im_labels[seed[1],seed[0]] = settings['labels']['white-water']  
                        for k in range(im_viz.shape[2]):                              
                            im_viz[seed[1],seed[0],k] = color_ww[k]
                        implot.set_data(im_viz)
                        fig.canvas.draw_idle()
                        ww_pixels.append(seed)
                        
                im_sand_ww = im_viz.copy()
                btn_erase.set(text='<Esc> to Erase', fontsize=12)
                
                ##############################################################
                # digitize water pixels (with lassos)
                ##############################################################
                color_water = settings['colors']['water']
                ax.set_title('Click and hold to draw lassos and select WATER pixels\nwhen finished press <Enter>')
                fig.canvas.draw_idle() 
                selector_water = SelectFromImage(ax, implot, color_water)
                key_event = {}
                while True:
                    fig.canvas.draw_idle()                         
                    fig.canvas.mpl_connect('key_press_event', press)
                    plt.waitforbuttonpress()
                    if key_event.get('pressed') == 'enter':
                        selector_water.disconnect()
                        break
                    elif key_event.get('pressed') == 'escape':
                        selector_water.array = im_sand_ww
                        implot.set_data(selector_water.array)
                        fig.canvas.draw_idle()                         
                        selector_water.implot = implot
                        selector_water.im_bool = np.zeros((selector_water.array.shape[0], selector_water.array.shape[1])) 
                        selector_water.ind=[]          
                # update im_viz and im_labels
                im_viz = selector_water.array
                selector_water.im_bool = selector_water.im_bool.astype(bool)
                im_labels[selector_water.im_bool] = settings['labels']['water']
                
                im_sand_ww_water = im_viz.copy()
                
                ##############################################################
                # digitize land pixels (with lassos)
                ##############################################################
                color_land = settings['colors']['other land features']
                ax.set_title('Click and hold to draw lassos and select OTHER LAND pixels\nwhen finished press <Enter>')
                fig.canvas.draw_idle() 
                selector_land = SelectFromImage(ax, implot, color_land)
                key_event = {}
                while True:
                    fig.canvas.draw_idle()                         
                    fig.canvas.mpl_connect('key_press_event', press)
                    plt.waitforbuttonpress()
                    if key_event.get('pressed') == 'enter':
                        selector_land.disconnect()
                        break
                    elif key_event.get('pressed') == 'escape':
                        selector_land.array = im_sand_ww_water
                        implot.set_data(selector_land.array)
                        fig.canvas.draw_idle()                         
                        selector_land.implot = implot
                        selector_land.im_bool = np.zeros((selector_land.array.shape[0], selector_land.array.shape[1])) 
                        selector_land.ind=[]
                # update im_viz and im_labels
                im_viz = selector_land.array
                selector_land.im_bool = selector_land.im_bool.astype(bool)
                im_labels[selector_land.im_bool] = settings['labels']['other land features']  
                
                # save labelled image
                ax.set_title(filename)
                fig.canvas.draw_idle()                         
                fp = os.path.join(filepath_train,settings['inputs']['sitename'])
                if not os.path.exists(fp):
                    os.makedirs(fp)
                fig.savefig(os.path.join(fp,filename+'.jpg'), dpi=150)
                ax.clear()
                # save labels and features
                features = dict([])
                for key in settings['labels'].keys():
                    im_bool = im_labels == settings['labels'][key]
                    features[key] = SDS_shoreline.calculate_features(im_ms, cloud_mask, im_bool)
                training_data = {'labels':im_labels, 'features':features, 'label_ids':settings['labels']}
                with open(os.path.join(fp, filename + '.pkl'), 'wb') as f:
                    pickle.dump(training_data,f)
                    
    # close figure when finished
    plt.close(fig)
コード例 #2
0
def extract_shorelines(metadata, settings):
    """
    Extracts shorelines from satellite images.

    KV WRL 2018

    Arguments:
    -----------
        metadata: dict
            contains all the information about the satellite images that were downloaded

        settings: dict
            contains the following fields:
        sitename: str
            String containig the name of the site
        cloud_mask_issue: boolean
            True if there is an issue with the cloud mask and sand pixels are being masked on the images
        buffer_size: int
            size of the buffer (m) around the sandy beach over which the pixels are considered in the
            thresholding algorithm
        min_beach_area: int
            minimum allowable object area (in metres^2) for the class 'sand'
        cloud_thresh: float
            value between 0 and 1 defining the maximum percentage of cloud cover allowed in the images
        output_epsg: int
            output spatial reference system as EPSG code
        check_detection: boolean
            True to show each invidual detection and let the user validate the mapped shoreline

    Returns:
    -----------
        output: dict
            contains the extracted shorelines and corresponding dates.

    """

    sitename = settings['inputs']['sitename']
    filepath_data = settings['inputs']['filepath']
    # initialise output structure
    output = dict([])
    # create a subfolder to store the .jpg images showing the detection
    filepath_jpg = os.path.join(filepath_data, sitename, 'jpg_files',
                                'detection')
    if not os.path.exists(filepath_jpg):
        os.makedirs(filepath_jpg)
    # close all open figures
    plt.close('all')

    print('Mapping shorelines:')

    # loop through satellite list
    for satname in metadata.keys():

        # get images
        filepath = SDS_tools.get_filepath(settings['inputs'], satname)
        filenames = metadata[satname]['filenames']

        # initialise the output variables
        output_timestamp = [
        ]  # datetime at which the image was acquired (UTC time)
        output_shoreline = []  # vector of shoreline points
        output_filename = [
        ]  # filename of the images from which the shorelines where derived
        output_cloudcover = []  # cloud cover of the images
        output_geoaccuracy = []  # georeferencing accuracy of the images
        output_idxkeep = [
        ]  # index that were kept during the analysis (cloudy images are skipped)

        # load classifiers and
        if satname in ['L5', 'L7', 'L8']:
            pixel_size = 15
            if settings['dark_sand']:
                clf = joblib.load(
                    os.path.join(os.getcwd(), 'classifiers',
                                 'NN_4classes_Landsat_dark.pkl'))
            else:
                clf = joblib.load(
                    os.path.join(os.getcwd(), 'classifiers',
                                 'NN_4classes_Landsat.pkl'))

        elif satname == 'S2':
            pixel_size = 10
            clf = joblib.load(
                os.path.join(os.getcwd(), 'classifiers', 'NN_4classes_S2.pkl'))

        # convert settings['min_beach_area'] and settings['buffer_size'] from metres to pixels
        buffer_size_pixels = np.ceil(settings['buffer_size'] / pixel_size)
        min_beach_area_pixels = np.ceil(settings['min_beach_area'] /
                                        pixel_size**2)

        # loop through the images
        for i in range(len(filenames)):

            print('\r%s:   %d%%' %
                  (satname, int(((i + 1) / len(filenames)) * 100)),
                  end='')

            # get image filename
            fn = SDS_tools.get_filenames(filenames[i], filepath, satname)
            # preprocess image (cloud mask + pansharpening/downsampling)
            im_ms, georef, cloud_mask, im_extra, imQA = SDS_preprocess.preprocess_single(
                fn, satname, settings['cloud_mask_issue'])
            # get image spatial reference system (epsg code) from metadata dict
            image_epsg = metadata[satname]['epsg'][i]
            # calculate cloud cover
            cloud_cover = np.divide(
                sum(sum(cloud_mask.astype(int))),
                (cloud_mask.shape[0] * cloud_mask.shape[1]))
            # skip image if cloud cover is above threshold
            if cloud_cover > settings['cloud_thresh']:
                continue

            # classify image in 4 classes (sand, whitewater, water, other) with NN classifier
            im_classif, im_labels = classify_image_NN(im_ms, im_extra,
                                                      cloud_mask,
                                                      min_beach_area_pixels,
                                                      clf)

            # calculate a buffer around the reference shoreline (if any has been digitised)
            im_ref_buffer = create_shoreline_buffer(cloud_mask.shape, georef,
                                                    image_epsg, pixel_size,
                                                    settings)

            # there are two options to extract to map the contours:
            # if there are pixels in the 'sand' class --> use find_wl_contours2 (enhanced)
            # otherwise use find_wl_contours2 (traditional)
            try:  # use try/except structure for long runs
                if sum(sum(im_labels[:, :, 0])) == 0:
                    # compute MNDWI image (SWIR-G)
                    im_mndwi = SDS_tools.nd_index(im_ms[:, :, 4],
                                                  im_ms[:, :, 1], cloud_mask)
                    # find water contours on MNDWI grayscale image
                    contours_mwi = find_wl_contours1(im_mndwi, cloud_mask,
                                                     im_ref_buffer)
                else:
                    # use classification to refine threshold and extract the sand/water interface
                    contours_wi, contours_mwi = find_wl_contours2(
                        im_ms, im_labels, cloud_mask, buffer_size_pixels,
                        im_ref_buffer)
            except:
                print('Could not map shoreline for this image: ' +
                      filenames[i])
                continue

            # process water contours into shorelines
            shoreline = process_shoreline(contours_mwi, georef, image_epsg,
                                          settings)

            # visualise the mapped shorelines, there are two options:
            # if settings['check_detection'] = True, shows the detection to the user for accept/reject
            # if settings['save_figure'] = True, saves a figure for each mapped shoreline
            if settings['check_detection'] or settings['save_figure']:
                date = filenames[i][:19]
                skip_image = show_detection(im_ms, cloud_mask, im_labels,
                                            shoreline, image_epsg, georef,
                                            settings, date, satname)
                # if the user decides to skip the image, continue and do not save the mapped shoreline
                if skip_image:
                    continue

            # append to output variables
            output_timestamp.append(metadata[satname]['dates'][i])
            output_shoreline.append(shoreline)
            output_filename.append(filenames[i])
            output_cloudcover.append(cloud_cover)
            output_geoaccuracy.append(metadata[satname]['acc_georef'][i])
            output_idxkeep.append(i)

        # create dictionnary of output
        output[satname] = {
            'dates': output_timestamp,
            'shorelines': output_shoreline,
            'filename': output_filename,
            'cloud_cover': output_cloudcover,
            'geoaccuracy': output_geoaccuracy,
            'idx': output_idxkeep
        }
        print('')

    # Close figure window if still open
    if plt.get_fignums():
        plt.close()

    # change the format to have one list sorted by date with all the shorelines (easier to use)
    output = SDS_tools.merge_output(output)

    # save outputput structure as output.pkl
    filepath = os.path.join(filepath_data, sitename)
    with open(os.path.join(filepath, sitename + '_output.pkl'), 'wb') as f:
        pickle.dump(output, f)

    # save output into a gdb.GeoDataFrame
    gdf = SDS_tools.output_to_gdf(output)
    # set projection
    gdf.crs = {'init': 'epsg:' + str(settings['output_epsg'])}
    # save as geojson
    gdf.to_file(os.path.join(filepath, sitename + '_output.geojson'),
                driver='GeoJSON',
                encoding='utf-8')

    return output
コード例 #3
0
ファイル: SDS_download.py プロジェクト: joshicha/CoastSat
def merge_overlapping_images(metadata,inputs):
    """
    Merge simultaneous overlapping images that cover the area of interest.
    When the area of interest is located at the boundary between 2 images, there 
    will be overlap between the 2 images and both will be downloaded from Google
    Earth Engine. This function merges the 2 images, so that the area of interest 
    is covered by only 1 image.
    
    KV WRL 2018
        
    Arguments:
    -----------
    metadata: dict
        contains all the information about the satellite images that were downloaded
    inputs: dict with the following keys
        'sitename': str
            name of the site
        'polygon': list
            polygon containing the lon/lat coordinates to be extracted,
            longitudes in the first column and latitudes in the second column,
            there are 5 pairs of lat/lon with the fifth point equal to the first point:
            ```
            polygon = [[[151.3, -33.7],[151.4, -33.7],[151.4, -33.8],[151.3, -33.8],
            [151.3, -33.7]]]
            ```
        'dates': list of str
            list that contains 2 strings with the initial and final dates in 
            format 'yyyy-mm-dd':
            ```
            dates = ['1987-01-01', '2018-01-01']
            ```
        'sat_list': list of str
            list that contains the names of the satellite missions to include: 
            ```
            sat_list = ['L5', 'L7', 'L8', 'S2']
            ```
        'filepath_data': str
            filepath to the directory where the images are downloaded
        
    Returns:
    -----------
    metadata_updated: dict
        updated metadata
            
    """
    
    # only for Sentinel-2 at this stage (not sure if this is needed for Landsat images)    
    sat = 'S2'
    filepath = os.path.join(inputs['filepath'], inputs['sitename'])
    filenames = metadata[sat]['filenames']
    # find the pairs of images that are within 5 minutes of each other
    time_delta = 5*60 # 5 minutes in seconds
    dates = metadata[sat]['dates'].copy()
    pairs = []
    for i,date in enumerate(metadata[sat]['dates']):
        # dummy value so it does not match it again
        dates[i] = pytz.utc.localize(datetime(1,1,1) + timedelta(days=i+1))
        # calculate time difference
        time_diff = np.array([np.abs((date - _).total_seconds()) for _ in dates])
        # find the matching times and add to pairs list
        boolvec = time_diff <= time_delta
        if np.sum(boolvec) == 0:
            continue
        else:
            idx_dup = np.where(boolvec)[0][0]
            pairs.append([i,idx_dup])
                
    # for each pair of image, create a mask and add no_data into the .tif file (this is needed before merging .tif files)
    for i,pair in enumerate(pairs):
        fn_im = []
        for index in range(len(pair)): 
            # get filenames of all the files corresponding to the each image in the pair
            fn_im.append([os.path.join(filepath, 'S2', '10m', filenames[pair[index]]),
                  os.path.join(filepath, 'S2', '20m',  filenames[pair[index]].replace('10m','20m')),
                  os.path.join(filepath, 'S2', '60m',  filenames[pair[index]].replace('10m','60m')),
                  os.path.join(filepath, 'S2', 'meta', filenames[pair[index]].replace('_10m','').replace('.tif','.txt'))])
            # read that image
            im_ms, georef, cloud_mask, im_extra, im_QA, im_nodata = SDS_preprocess.preprocess_single(fn_im[index], sat, False) 
            # im_RGB = SDS_preprocess.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9) 
            
            # in Sentinel2 images close to the edge of the image there are some artefacts, 
            # that are squares with constant pixel intensities. They need to be masked in the 
            # raster (GEOTIFF). It can be done using the image standard deviation, which 
            # indicates values close to 0 for the artefacts.      
            if len(im_ms) > 0:
                # calculate image std for the first 10m band
                im_std = SDS_tools.image_std(im_ms[:,:,0],1)
                # convert to binary
                im_binary = np.logical_or(im_std < 1e-6, np.isnan(im_std))
                # dilate to fill the edges (which have high std)
                mask10 = morphology.dilation(im_binary, morphology.square(3))
                # mask all 10m bands
                for k in range(im_ms.shape[2]):
                    im_ms[mask10,k] = np.nan
                # mask the 10m .tif file (add no_data where mask is True)
                SDS_tools.mask_raster(fn_im[index][0], mask10)
                
                # create another mask for the 20m band (SWIR1)
                im_std = SDS_tools.image_std(im_extra,1)
                im_binary = np.logical_or(im_std < 1e-6, np.isnan(im_std))
                mask20 = morphology.dilation(im_binary, morphology.square(3))     
                im_extra[mask20] = np.nan
                # mask the 20m .tif file (im_extra)
                SDS_tools.mask_raster(fn_im[index][1], mask20) 
                
                # use the 20m mask to create a mask for the 60m QA band (by resampling)
                mask60 = ndimage.zoom(mask20,zoom=1/3,order=0)
                mask60 = transform.resize(mask60, im_QA.shape, mode='constant', order=0,
                                          preserve_range=True)
                mask60 = mask60.astype(bool)
                # mask the 60m .tif file (im_QA)
                SDS_tools.mask_raster(fn_im[index][2], mask60)    
                            
            else:
                continue
            
            # make a figure for quality control
            # fig,ax= plt.subplots(2,2,tight_layout=True)
            # ax[0,0].imshow(im_RGB)
            # ax[0,0].set_title('RGB original')
            # ax[1,0].imshow(mask10)
            # ax[1,0].set_title('Mask 10m')
            # ax[0,1].imshow(mask20)  
            # ax[0,1].set_title('Mask 20m')
            # ax[1,1].imshow(mask60)
            # ax[1,1].set_title('Mask 60 m')
        
        # once all the pairs of .tif files have been masked with no_data, merge the using gdal_merge
        fn_merged = os.path.join(filepath, 'merged.tif')
        
        # merge masked 10m bands and remove duplicate file
        gdal_merge.main(['', '-o', fn_merged, '-n', '0', fn_im[0][0], fn_im[1][0]])
        os.chmod(fn_im[0][0], 0o777)
        os.remove(fn_im[0][0])
        os.chmod(fn_im[1][0], 0o777)
        os.remove(fn_im[1][0])
        os.chmod(fn_merged, 0o777)
        os.rename(fn_merged, fn_im[0][0])
        
        # merge masked 20m band (SWIR band)
        gdal_merge.main(['', '-o', fn_merged, '-n', '0', fn_im[0][1], fn_im[1][1]])
        os.chmod(fn_im[0][1], 0o777)
        os.remove(fn_im[0][1])
        os.chmod(fn_im[1][1], 0o777)
        os.remove(fn_im[1][1])
        os.chmod(fn_merged, 0o777)
        os.rename(fn_merged, fn_im[0][1])
    
        # merge QA band (60m band)
        gdal_merge.main(['', '-o', fn_merged, '-n', '0', fn_im[0][2], fn_im[1][2]])
        os.chmod(fn_im[0][2], 0o777)
        os.remove(fn_im[0][2])
        os.chmod(fn_im[1][2], 0o777)
        os.remove(fn_im[1][2])
        os.chmod(fn_merged, 0o777)
        os.rename(fn_merged, fn_im[0][2])
        
        # remove the metadata .txt file of the duplicate image
        os.chmod(fn_im[1][3], 0o777)
        os.remove(fn_im[1][3])
        
    print('%d pairs of overlapping Sentinel-2 images were merged' % len(pairs))
    
    # update the metadata dict
    metadata_updated = copy.deepcopy(metadata)
    idx_removed = []
    idx_kept = []
    for pair in pairs: idx_removed.append(pair[1])
    for idx in np.arange(0,len(metadata[sat]['dates'])):
        if not idx in idx_removed: idx_kept.append(idx)
    for key in metadata_updated[sat].keys():
        metadata_updated[sat][key] = [metadata_updated[sat][key][_] for _ in idx_kept]
        
    return metadata_updated  
コード例 #4
0
def evaluate_classifier(classifier, metadata, settings):
    """
    Apply the image classifier to all the images and save the classified images.

    KV WRL 2019

    Arguments:
    -----------
    classifier: joblib object
        classifier model to be used for image classification
    metadata: dict
        contains all the information about the satellite images that were downloaded
    settings: dict with the following keys
        'inputs': dict
            input parameters (sitename, filepath, polygon, dates, sat_list)
        'cloud_thresh': float
            value between 0 and 1 indicating the maximum cloud fraction in 
            the cropped image that is accepted
        'cloud_mask_issue': boolean
            True if there is an issue with the cloud mask and sand pixels
            are erroneously being masked on the images
        'output_epsg': int
            output spatial reference system as EPSG code
        'buffer_size': int
            size of the buffer (m) around the sandy pixels over which the pixels 
            are considered in the thresholding algorithm
        'min_beach_area': int
            minimum allowable object area (in metres^2) for the class 'sand',
            the area is converted to number of connected pixels
        'min_length_sl': int
            minimum length (in metres) of shoreline contour to be valid

    Returns:
    -----------
    Saves .jpg images with the output of the classification in the folder ./detection
    
    """  
    
    # create folder called evaluation
    fp = os.path.join(os.getcwd(), 'evaluation')
    if not os.path.exists(fp):
        os.makedirs(fp)
        
    # initialize figure (not interactive)
    plt.ioff()
    fig,ax = plt.subplots(1,2,figsize=[17,10],sharex=True, sharey=True,
                          constrained_layout=True)

    # create colormap for labels
    cmap = cm.get_cmap('tab20c')
    colorpalette = cmap(np.arange(0,13,1))
    colours = np.zeros((3,4))
    colours[0,:] = colorpalette[5]
    colours[1,:] = np.array([204/255,1,1,1])
    colours[2,:] = np.array([0,91/255,1,1])
    # loop through satellites
    for satname in metadata.keys():
        filepath = SDS_tools.get_filepath(settings['inputs'],satname)
        filenames = metadata[satname]['filenames']
        
        # load classifiers and
        if satname in ['L5','L7','L8']:
            pixel_size = 15
        elif satname == 'S2':
            pixel_size = 10
        # convert settings['min_beach_area'] and settings['buffer_size'] from metres to pixels
        buffer_size_pixels = np.ceil(settings['buffer_size']/pixel_size)
        min_beach_area_pixels = np.ceil(settings['min_beach_area']/pixel_size**2)
        
        # loop through images
        for i in range(len(filenames)):   
            # image filename
            fn = SDS_tools.get_filenames(filenames[i],filepath, satname)
            # read and preprocess image
            im_ms, georef, cloud_mask, im_extra, im_QA, im_nodata = SDS_preprocess.preprocess_single(fn, satname, settings['cloud_mask_issue'])
            image_epsg = metadata[satname]['epsg'][i]

            # compute cloud_cover percentage (with no data pixels)
            cloud_cover_combined = np.divide(sum(sum(cloud_mask.astype(int))),
                                    (cloud_mask.shape[0]*cloud_mask.shape[1]))
            if cloud_cover_combined > 0.99: # if 99% of cloudy pixels in image skip
                continue

            # remove no data pixels from the cloud mask (for example L7 bands of no data should not be accounted for)
            cloud_mask_adv = np.logical_xor(cloud_mask, im_nodata)
            # compute updated cloud cover percentage (without no data pixels)
            cloud_cover = np.divide(sum(sum(cloud_mask_adv.astype(int))),
                                    (sum(sum((~im_nodata).astype(int)))))
            # skip image if cloud cover is above threshold
            if cloud_cover > settings['cloud_thresh']:
                continue
            # calculate a buffer around the reference shoreline (if any has been digitised)
            im_ref_buffer = SDS_shoreline.create_shoreline_buffer(cloud_mask.shape, georef, image_epsg,
                                                    pixel_size, settings)
            # classify image in 4 classes (sand, whitewater, water, other) with NN classifier
            im_classif, im_labels = SDS_shoreline.classify_image_NN(im_ms, im_extra, cloud_mask,
                                    min_beach_area_pixels, classifier)
            # there are two options to map the contours:
            # if there are pixels in the 'sand' class --> use find_wl_contours2 (enhanced)
            # otherwise use find_wl_contours2 (traditional)
            try: # use try/except structure for long runs
                if sum(sum(im_labels[:,:,0])) < 10 :
                    # compute MNDWI image (SWIR-G)
                    im_mndwi = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask)
                    # find water contours on MNDWI grayscale image
                    contours_mwi, t_mndwi = SDS_shoreline.find_wl_contours1(im_mndwi, cloud_mask, im_ref_buffer)
                else:
                    # use classification to refine threshold and extract the sand/water interface
                    contours_mwi, t_mndwi = SDS_shoreline.find_wl_contours2(im_ms, im_labels,
                                                cloud_mask, buffer_size_pixels, im_ref_buffer)
            except:
                print('Could not map shoreline for this image: ' + filenames[i])
                continue
            # process the water contours into a shoreline
            shoreline = SDS_shoreline.process_shoreline(contours_mwi, cloud_mask, georef, image_epsg, settings)
            try:
                sl_pix = SDS_tools.convert_world2pix(SDS_tools.convert_epsg(shoreline,
                                                                            settings['output_epsg'],
                                                                            image_epsg)[:,[0,1]], georef)
            except:
                # if try fails, just add nan into the shoreline vector so the next parts can still run
                sl_pix = np.array([[np.nan, np.nan],[np.nan, np.nan]])
            # make a plot
            im_RGB = SDS_preprocess.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9)
            # create classified image
            im_class = np.copy(im_RGB)
            for k in range(0,im_labels.shape[2]):
                im_class[im_labels[:,:,k],0] = colours[k,0]
                im_class[im_labels[:,:,k],1] = colours[k,1]
                im_class[im_labels[:,:,k],2] = colours[k,2]        
            # show images
            ax[0].imshow(im_RGB)
            ax[1].imshow(im_RGB)
            ax[1].imshow(im_class, alpha=0.5)
            ax[0].axis('off')
            ax[1].axis('off')
            filename = filenames[i][:filenames[i].find('.')][:-4] 
            ax[0].set_title(filename)  
            ax[0].plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3)
            ax[1].plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3)
            # save figure
            fig.savefig(os.path.join(fp,settings['inputs']['sitename'] + filename[:19] +'.jpg'), dpi=150)
            # clear axes
            for cax in fig.axes:
               cax.clear()
   
    # close the figure at the end
    plt.close()
コード例 #5
0
def merge_overlapping_images(metadata, inputs):
    """
    Merge simultaneous overlapping images that cover the area of interest.
    When the area of interest is located at the boundary between 2 images, there
    will be overlap between the 2 images and both will be downloaded from Google
    Earth Engine. This function merges the 2 images, so that the area of interest
    is covered by only 1 image.

    KV WRL 2018

    Arguments:
    -----------
    metadata: dict
        contains all the information about the satellite images that were downloaded
    inputs: dict with the following keys
        'sitename': str
            name of the site
        'polygon': list
            polygon containing the lon/lat coordinates to be extracted,
            longitudes in the first column and latitudes in the second column,
            there are 5 pairs of lat/lon with the fifth point equal to the first point:
            ```
            polygon = [[[151.3, -33.7],[151.4, -33.7],[151.4, -33.8],[151.3, -33.8],
            [151.3, -33.7]]]
            ```
        'dates': list of str
            list that contains 2 strings with the initial and final dates in
            format 'yyyy-mm-dd':
            ```
            dates = ['1987-01-01', '2018-01-01']
            ```
        'sat_list': list of str
            list that contains the names of the satellite missions to include:
            ```
            sat_list = ['L5', 'L7', 'L8', 'S2']
            ```
        'filepath_data': str
            filepath to the directory where the images are downloaded

    Returns:
    -----------
    metadata_updated: dict
        updated metadata

    """

    # only for Sentinel-2 at this stage (not sure if this is needed for Landsat images)
    sat = 'S2'
    filepath = os.path.join(inputs['filepath'], inputs['sitename'])
    filenames = metadata[sat]['filenames']

    # find the pairs of images that are within 5 minutes of each other
    time_delta = 5 * 60  # 5 minutes in seconds
    dates = metadata[sat]['dates'].copy()
    pairs = []
    for i, date in enumerate(metadata[sat]['dates']):
        # dummy value so it does not match it again
        dates[i] = pytz.utc.localize(datetime(1, 1, 1) + timedelta(days=i + 1))
        # calculate time difference
        time_diff = np.array(
            [np.abs((date - _).total_seconds()) for _ in dates])
        # find the matching times and add to pairs list
        boolvec = time_diff <= time_delta
        if np.sum(boolvec) == 0:
            continue
        else:
            idx_dup = np.where(boolvec)[0][0]
            pairs.append([i, idx_dup])
    # because they could be triplicates in S2 images, adjust the pairs for consecutive merges
    for i in range(1, len(pairs)):
        if pairs[i - 1][1] == pairs[i][0]:
            pairs[i][0] = pairs[i - 1][0]
    # check also for quadruplicates and remove them
    pair_first = [_[0] for _ in pairs]
    for idx in np.unique(pair_first):
        # quadruplicate if trying to merge 3 times the same image with a successive
        if sum(pair_first == idx) == 3:
            # remove the last image: 3 .tif files + the .txt file
            idx_last = [pairs[_]
                        for _ in np.where(pair_first == idx)[0]][-1][1]
            fn_im = [
                os.path.join(filepath, 'S2', '10m', filenames[idx_last]),
                os.path.join(filepath, 'S2', '20m',
                             filenames[idx_last].replace('10m', '20m')),
                os.path.join(filepath, 'S2', '60m',
                             filenames[idx_last].replace('10m', '60m')),
                os.path.join(
                    filepath, 'S2', 'meta',
                    filenames[idx_last].replace('_10m',
                                                '').replace('.tif', '.txt'))
            ]
            for k in range(4):
                os.chmod(fn_im[k], 0o777)
                os.remove(fn_im[k])
            # remove that pair from the list
            pairs.pop(np.where(pair_first == idx)[0][-1])
    # for each pair of image, first check if one image completely contains the other
    # in that case keep the larger image. Otherwise merge the two images.
    for i, pair in enumerate(pairs):
        # get filenames of all the files corresponding to the each image in the pair
        fn_im = []
        for index in range(len(pair)):
            fn_im.append([
                os.path.join(filepath, 'S2', '10m', filenames[pair[index]]),
                os.path.join(filepath, 'S2', '20m',
                             filenames[pair[index]].replace('10m', '20m')),
                os.path.join(filepath, 'S2', '60m',
                             filenames[pair[index]].replace('10m', '60m')),
                os.path.join(
                    filepath, 'S2', 'meta',
                    filenames[pair[index]].replace('_10m',
                                                   '').replace('.tif', '.txt'))
            ])
        # get polygon for first image
        polygon0 = SDS_tools.get_image_bounds(fn_im[0][0])
        im_epsg0 = metadata[sat]['epsg'][pair[0]]
        # get polygon for second image
        polygon1 = SDS_tools.get_image_bounds(fn_im[1][0])
        im_epsg1 = metadata[sat]['epsg'][pair[1]]
        # check if epsg are the same
        if not im_epsg0 == im_epsg1:
            print(
                'WARNING: there was an error as two S2 images do not have the same epsg,'
                +
                ' please open an issue on Github at https://github.com/kvos/CoastSat/issues'
                + ' and include your script so we can find out what happened.')
            break
        # check if one image contains the other one
        if polygon0.contains(polygon1):
            # if polygon0 contains polygon1, remove files for polygon1
            for k in range(4):  # remove the 3 .tif files + the .txt file
                os.chmod(fn_im[1][k], 0o777)
                os.remove(fn_im[1][k])
            # print('removed 1')
            continue
        elif polygon1.contains(polygon0):
            # if polygon1 contains polygon0, remove image0
            for k in range(4):  # remove the 3 .tif files + the .txt file
                os.chmod(fn_im[0][k], 0o777)
                os.remove(fn_im[0][k])
            # print('removed 0')
            # adjust the order in case of triplicates
            if i + 1 < len(pairs):
                if pairs[i + 1][0] == pair[0]: pairs[i + 1][0] = pairs[i][1]
            continue
        # otherwise merge the two images after masking the nodata values
        else:
            for index in range(len(pair)):
                # read image
                im_ms, georef, cloud_mask, im_extra, im_QA, im_nodata = SDS_preprocess.preprocess_single(
                    fn_im[index], sat, False)
                # in Sentinel2 images close to the edge of the image there are some artefacts,
                # that are squares with constant pixel intensities. They need to be masked in the
                # raster (GEOTIFF). It can be done using the image standard deviation, which
                # indicates values close to 0 for the artefacts.
                if len(im_ms) > 0:
                    # calculate image std for the first 10m band
                    im_std = SDS_tools.image_std(im_ms[:, :, 0], 1)
                    # convert to binary
                    im_binary = np.logical_or(im_std < 1e-6, np.isnan(im_std))
                    # dilate to fill the edges (which have high std)
                    mask10 = morphology.dilation(im_binary,
                                                 morphology.square(3))
                    # mask the 10m .tif file (add no_data where mask is True)
                    SDS_tools.mask_raster(fn_im[index][0], mask10)
                    # now calculate the mask for the 20m band (SWIR1)
                    # for the older version of the ee api calculate the image std again
                    if int(ee.__version__[-3:]) <= 201:
                        # calculate std to create another mask for the 20m band (SWIR1)
                        im_std = SDS_tools.image_std(im_extra, 1)
                        im_binary = np.logical_or(im_std < 1e-6,
                                                  np.isnan(im_std))
                        mask20 = morphology.dilation(im_binary,
                                                     morphology.square(3))
                    # for the newer versions just resample the mask for the 10m bands
                    else:
                        # create mask for the 20m band (SWIR1) by resampling the 10m one
                        mask20 = ndimage.zoom(mask10, zoom=1 / 2, order=0)
                        mask20 = transform.resize(mask20,
                                                  im_extra.shape,
                                                  mode='constant',
                                                  order=0,
                                                  preserve_range=True)
                        mask20 = mask20.astype(bool)
                    # mask the 20m .tif file (im_extra)
                    SDS_tools.mask_raster(fn_im[index][1], mask20)
                    # create a mask for the 60m QA band by resampling the 20m one
                    mask60 = ndimage.zoom(mask20, zoom=1 / 3, order=0)
                    mask60 = transform.resize(mask60,
                                              im_QA.shape,
                                              mode='constant',
                                              order=0,
                                              preserve_range=True)
                    mask60 = mask60.astype(bool)
                    # mask the 60m .tif file (im_QA)
                    SDS_tools.mask_raster(fn_im[index][2], mask60)
                    # make a figure for quality control/debugging
                    # im_RGB = SDS_preprocess.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9)
                    # fig,ax= plt.subplots(2,3,tight_layout=True)
                    # ax[0,0].imshow(im_RGB)
                    # ax[0,0].set_title('RGB original')
                    # ax[1,0].imshow(mask10)
                    # ax[1,0].set_title('Mask 10m')
                    # ax[0,1].imshow(mask20)
                    # ax[0,1].set_title('Mask 20m')
                    # ax[1,1].imshow(mask60)
                    # ax[1,1].set_title('Mask 60 m')
                    # ax[0,2].imshow(im_QA)
                    # ax[0,2].set_title('Im QA')
                    # ax[1,2].imshow(im_nodata)
                    # ax[1,2].set_title('Im nodata')
                else:
                    continue

            # once all the pairs of .tif files have been masked with no_data, merge the using gdal_merge
            fn_merged = os.path.join(filepath, 'merged.tif')
            for k in range(3):
                # merge masked bands
                gdal_merge.main(
                    ['', '-o', fn_merged, '-n', '0', fn_im[0][k], fn_im[1][k]])
                # remove old files
                os.chmod(fn_im[0][k], 0o777)
                os.remove(fn_im[0][k])
                os.chmod(fn_im[1][k], 0o777)
                os.remove(fn_im[1][k])
                # rename new file
                fn_new = fn_im[0][k].split('.')[0] + '_merged.tif'
                os.chmod(fn_merged, 0o777)
                os.rename(fn_merged, fn_new)

            # open both metadata files
            metadict0 = dict([])
            with open(fn_im[0][3], 'r') as f:
                metadict0['filename'] = f.readline().split('\t')[1].replace(
                    '\n', '')
                metadict0['acc_georef'] = float(
                    f.readline().split('\t')[1].replace('\n', ''))
                metadict0['epsg'] = int(f.readline().split('\t')[1].replace(
                    '\n', ''))
            metadict1 = dict([])
            with open(fn_im[1][3], 'r') as f:
                metadict1['filename'] = f.readline().split('\t')[1].replace(
                    '\n', '')
                metadict1['acc_georef'] = float(
                    f.readline().split('\t')[1].replace('\n', ''))
                metadict1['epsg'] = int(f.readline().split('\t')[1].replace(
                    '\n', ''))
            # check if both images have the same georef accuracy
            if np.any(
                    np.array([
                        metadict0['acc_georef'], metadict1['acc_georef']
                    ]) == -1):
                metadict0['georef'] = -1
            # add new name
            metadict0['filename'] = metadict0['filename'].split(
                '.')[0] + '_merged.tif'
            # remove the old metadata.txt files
            os.chmod(fn_im[0][3], 0o777)
            os.remove(fn_im[0][3])
            os.chmod(fn_im[1][3], 0o777)
            os.remove(fn_im[1][3])
            # rewrite the .txt file with a new metadata file
            fn_new = fn_im[0][3].split('.')[0] + '_merged.txt'
            with open(fn_new, 'w') as f:
                for key in metadict0.keys():
                    f.write('%s\t%s\n' % (key, metadict0[key]))

            # update filenames list (in case there are triplicates)
            filenames[pair[0]] = metadict0['filename']

    print(
        '%d out of %d Sentinel-2 images were merged (overlapping or duplicate)'
        % (len(pairs), len(filenames)))

    # update the metadata dict
    metadata_updated = get_metadata(inputs)

    return metadata_updated
コード例 #6
0
ファイル: SDS_download.py プロジェクト: sheex2018/CoastSat
def merge_overlapping_images(metadata,inputs):
    """
    When the area of interest is located at the boundary between 2 images, there will be overlap 
    between the 2 images and both will be downloaded from Google Earth Engine. This function 
    merges the 2 images, so that the area of interest is covered by only 1 image.
    
    KV WRL 2018
        
    Arguments:
    -----------
        metadata: dict
            contains all the information about the satellite images that were downloaded
        inputs: dict 
            dictionnary that contains the following fields:
        'sitename': str
            String containig the name of the site
        'polygon': list
            polygon containing the lon/lat coordinates to be extracted,
            longitudes in the first column and latitudes in the second column,
            there are 5 pairs of lat/lon with the fifth point equal to the first point.
            e.g. [[[151.3, -33.7],[151.4, -33.7],[151.4, -33.8],[151.3, -33.8],
            [151.3, -33.7]]]
        'dates': list of str
            list that contains 2 strings with the initial and final dates in format 'yyyy-mm-dd'
            e.g. ['1987-01-01', '2018-01-01']
        'sat_list': list of str
            list that contains the names of the satellite missions to include 
            e.g. ['L5', 'L7', 'L8', 'S2']
        'filepath_data': str
            Filepath to the directory where the images are downloaded
        
    Returns:
    -----------
        metadata_updated: dict
            updated metadata with the information of the merged images
            
    """

    # only for Sentinel-2 at this stage (not sure if this is needed for Landsat images)
    sat = 'S2'
    filepath = os.path.join(inputs['filepath'], inputs['sitename'])
    
    # find the images that are overlapping (same date in S2 filenames)
    filenames = metadata[sat]['filenames']
    filenames_copy = filenames.copy()
    # loop through all the filenames and find the pairs of overlapping images (same date and time of acquisition)
    pairs = []
    for i,fn in enumerate(filenames):
        filenames_copy[i] = []
        # find duplicate
        boolvec = [fn[:22] == _[:22] for _ in filenames_copy]
        if np.any(boolvec):
            idx_dup = np.where(boolvec)[0][0]
            if len(filenames[i]) > len(filenames[idx_dup]): 
                pairs.append([idx_dup,i])
            else:
                pairs.append([i,idx_dup])
                
    # for each pair of images, merge them into one complete image
    for i,pair in enumerate(pairs):
        
        fn_im = []
        for index in range(len(pair)):            
            # read image
            fn_im.append([os.path.join(filepath, 'S2', '10m', filenames[pair[index]]),
                  os.path.join(filepath, 'S2', '20m',  filenames[pair[index]].replace('10m','20m')),
                  os.path.join(filepath, 'S2', '60m',  filenames[pair[index]].replace('10m','60m')),
                  os.path.join(filepath, 'S2', 'meta', filenames[pair[index]].replace('_10m','').replace('.tif','.txt'))])
            im_ms, georef, cloud_mask, im_extra, im_QA, im_nodata = SDS_preprocess.preprocess_single(fn_im[index], sat, False) 
        
            # in Sentinel2 images close to the edge of the image there are some artefacts, 
            # that are squares with constant pixel intensities. They need to be masked in the 
            # raster (GEOTIFF). It can be done using the image standard deviation, which 
            # indicates values close to 0 for the artefacts.
            
            # First mask the 10m bands
            if len(im_ms) > 0:
                im_std = SDS_tools.image_std(im_ms[:,:,0],1)
                im_binary = np.logical_or(im_std < 1e-6, np.isnan(im_std))
                mask = morphology.dilation(im_binary, morphology.square(3))
                for k in range(im_ms.shape[2]):
                    im_ms[mask,k] = np.nan
                
                SDS_tools.mask_raster(fn_im[index][0], mask)
                
                # Then mask the 20m band
                im_std = SDS_tools.image_std(im_extra,1)
                im_binary = np.logical_or(im_std < 1e-6, np.isnan(im_std))
                mask = morphology.dilation(im_binary, morphology.square(3))     
                im_extra[mask] = np.nan
                
                SDS_tools.mask_raster(fn_im[index][1], mask) 
            else:
                continue
            
            # make a figure for quality control
#            plt.figure()
#            plt.subplot(221)
#            plt.imshow(im_ms[:,:,[2,1,0]])
#            plt.title('imRGB')
#            plt.subplot(222)
#            plt.imshow(im20, cmap='gray')
#            plt.title('im20')
#            plt.subplot(223)
#            plt.imshow(imQA, cmap='gray')
#            plt.title('imQA')
#            plt.subplot(224)
#            plt.title(fn_im[index][0][-30:])
                        
        # merge masked 10m bands
        fn_merged = os.path.join(os.getcwd(), 'merged.tif')
        gdal_merge.main(['', '-o', fn_merged, '-n', '0', fn_im[0][0], fn_im[1][0]])
        os.chmod(fn_im[0][0], 0o777)
        os.remove(fn_im[0][0])
        os.chmod(fn_im[1][0], 0o777)
        os.remove(fn_im[1][0])
        os.rename(fn_merged, fn_im[0][0])
        
        # merge masked 20m band (SWIR band)
        fn_merged = os.path.join(os.getcwd(), 'merged.tif')
        gdal_merge.main(['', '-o', fn_merged, '-n', '0', fn_im[0][1], fn_im[1][1]])
        os.chmod(fn_im[0][1], 0o777)
        os.remove(fn_im[0][1])
        os.chmod(fn_im[1][1], 0o777)
        os.remove(fn_im[1][1])
        os.rename(fn_merged, fn_im[0][1])
    
        # merge QA band (60m band)
        fn_merged = os.path.join(os.getcwd(), 'merged.tif')
        gdal_merge.main(['', '-o', fn_merged, '-n', 'nan', fn_im[0][2], fn_im[1][2]])
        os.chmod(fn_im[0][2], 0o777)
        os.remove(fn_im[0][2])
        os.chmod(fn_im[1][2], 0o777)
        os.remove(fn_im[1][2])
        os.rename(fn_merged, fn_im[0][2])
        
        # remove the metadata .txt file of the duplicate image
        os.chmod(fn_im[1][3], 0o777)
        os.remove(fn_im[1][3])
          
    print('%d pairs of overlapping Sentinel-2 images were merged' % len(pairs))
    
    # update the metadata dict (delete all the duplicates)
    metadata_updated = copy.deepcopy(metadata)
    filenames_copy = metadata_updated[sat]['filenames']
    index_list = []
    for i in range(len(filenames_copy)):
            if filenames_copy[i].find('dup') == -1:
                index_list.append(i)
    for key in metadata_updated[sat].keys():
        metadata_updated[sat][key] = [metadata_updated[sat][key][_] for _ in index_list]
        
    return metadata_updated 
コード例 #7
0
ファイル: SDS_shoreline.py プロジェクト: zj-bohr/CoastSat
def extract_shorelines(metadata, settings):
    """
    Main function to extract shorelines from satellite images

    KV WRL 2018

    Arguments:
    -----------
    metadata: dict
        contains all the information about the satellite images that were downloaded
    settings: dict with the following keys
        'inputs': dict
            input parameters (sitename, filepath, polygon, dates, sat_list)
        'cloud_thresh': float
            value between 0 and 1 indicating the maximum cloud fraction in 
            the cropped image that is accepted
        'cloud_mask_issue': boolean
            True if there is an issue with the cloud mask and sand pixels
            are erroneously being masked on the images
        'buffer_size': int
            size of the buffer (m) around the sandy pixels over which the pixels 
            are considered in the thresholding algorithm
        'min_beach_area': int
            minimum allowable object area (in metres^2) for the class 'sand',
            the area is converted to number of connected pixels
        'min_length_sl': int
            minimum length (in metres) of shoreline contour to be valid
        'sand_color': str
            default', 'dark' (for grey/black sand beaches) or 'bright' (for white sand beaches)
        'output_epsg': int
            output spatial reference system as EPSG code
        'check_detection': bool
            if True, lets user manually accept/reject the mapped shorelines
        'save_figure': bool
            if True, saves a -jpg file for each mapped shoreline
        'adjust_detection': bool
            if True, allows user to manually adjust the detected shoreline
            
    Returns:
    -----------
    output: dict
        contains the extracted shorelines and corresponding dates + metadata

    """

    sitename = settings['inputs']['sitename']
    filepath_data = settings['inputs']['filepath']
    filepath_models = os.path.join(os.getcwd(), 'classification', 'models')
    # initialise output structure
    output = dict([])
    # create a subfolder to store the .jpg images showing the detection
    filepath_jpg = os.path.join(filepath_data, sitename, 'jpg_files', 'detection')
    if not os.path.exists(filepath_jpg):
            os.makedirs(filepath_jpg)
    # close all open figures
    plt.close('all')

    print('Mapping shorelines:')

    # loop through satellite list
    for satname in metadata.keys():

        # get images
        filepath = SDS_tools.get_filepath(settings['inputs'],satname)
        filenames = metadata[satname]['filenames']

        # initialise the output variables
        output_timestamp = []  # datetime at which the image was acquired (UTC time)
        output_shoreline = []  # vector of shoreline points
        output_filename = []   # filename of the images from which the shorelines where derived
        output_cloudcover = [] # cloud cover of the images
        output_geoaccuracy = []# georeferencing accuracy of the images
        output_idxkeep = []    # index that were kept during the analysis (cloudy images are skipped)
        output_t_mndwi = []    # MNDWI threshold used to map the shoreline
        
        # load classifiers (if sklearn version above 0.20, learn the new files)
        str_new = ''
        if not sklearn.__version__[:4] == '0.20':
            str_new = '_new'
        if satname in ['L5','L7','L8']:
            pixel_size = 15
            if settings['sand_color'] == 'dark':
                clf = joblib.load(os.path.join(filepath_models, 'NN_4classes_Landsat_dark%s.pkl'%str_new))
            elif settings['sand_color'] == 'bright':
                clf = joblib.load(os.path.join(filepath_models, 'NN_4classes_Landsat_bright%s.pkl'%str_new))
            else:
                clf = joblib.load(os.path.join(filepath_models, 'NN_4classes_Landsat%s.pkl'%str_new))

        elif satname == 'S2':
            pixel_size = 10
            clf = joblib.load(os.path.join(filepath_models, 'NN_4classes_S2%s.pkl'%str_new))

        # convert settings['min_beach_area'] and settings['buffer_size'] from metres to pixels
        buffer_size_pixels = np.ceil(settings['buffer_size']/pixel_size)
        min_beach_area_pixels = np.ceil(settings['min_beach_area']/pixel_size**2)

        # loop through the images
        for i in range(len(filenames)):

            print('\r%s:   %d%%' % (satname,int(((i+1)/len(filenames))*100)), end='')

            # get image filename
            fn = SDS_tools.get_filenames(filenames[i],filepath, satname)
            # preprocess image (cloud mask + pansharpening/downsampling)
            im_ms, georef, cloud_mask, im_extra, im_QA, im_nodata = SDS_preprocess.preprocess_single(fn, satname, settings['cloud_mask_issue'])
            # get image spatial reference system (epsg code) from metadata dict
            image_epsg = metadata[satname]['epsg'][i]
            
            # compute cloud_cover percentage (with no data pixels)
            cloud_cover_combined = np.divide(sum(sum(cloud_mask.astype(int))),
                                    (cloud_mask.shape[0]*cloud_mask.shape[1]))
            if cloud_cover_combined > 0.99: # if 99% of cloudy pixels in image skip
                continue
            # remove no data pixels from the cloud mask 
            # (for example L7 bands of no data should not be accounted for)
            cloud_mask_adv = np.logical_xor(cloud_mask, im_nodata) 
            # compute updated cloud cover percentage (without no data pixels)
            cloud_cover = np.divide(sum(sum(cloud_mask_adv.astype(int))),
                                    (cloud_mask.shape[0]*cloud_mask.shape[1]))
            # skip image if cloud cover is above user-defined threshold
            if cloud_cover > settings['cloud_thresh']:
                continue

            # calculate a buffer around the reference shoreline (if any has been digitised)
            im_ref_buffer = create_shoreline_buffer(cloud_mask.shape, georef, image_epsg,
                                                    pixel_size, settings)

            # classify image in 4 classes (sand, whitewater, water, other) with NN classifier
            im_classif, im_labels = classify_image_NN(im_ms, im_extra, cloud_mask,
                                    min_beach_area_pixels, clf)
            
            # if adjust_detection is True, let the user adjust the detected shoreline
            if settings['adjust_detection']:
                date = filenames[i][:19]
                skip_image, shoreline, t_mndwi = adjust_detection(im_ms, cloud_mask, im_labels,
                                                                  im_ref_buffer, image_epsg, georef,
                                                                  settings, date, satname, buffer_size_pixels)
                # if the user decides to skip the image, continue and do not save the mapped shoreline
                if skip_image:
                    continue
                
            # otherwise map the contours automatically with one of the two following functions:
            # if there are pixels in the 'sand' class --> use find_wl_contours2 (enhanced)
            # otherwise use find_wl_contours2 (traditional)
            else:
                try: # use try/except structure for long runs
                    if sum(sum(im_labels[:,:,0])) < 10 : # minimum number of sand pixels
                        # compute MNDWI image (SWIR-G)
                        im_mndwi = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask)
                        # find water contours on MNDWI grayscale image
                        contours_mwi, t_mndwi = find_wl_contours1(im_mndwi, cloud_mask, im_ref_buffer)
                    else:
                        # use classification to refine threshold and extract the sand/water interface
                        contours_mwi, t_mndwi = find_wl_contours2(im_ms, im_labels, cloud_mask,
                                                                  buffer_size_pixels, im_ref_buffer)
                except:
                    print('Could not map shoreline for this image: ' + filenames[i])
                    continue
    
                # process the water contours into a shoreline
                shoreline = process_shoreline(contours_mwi, cloud_mask, georef, image_epsg, settings)
    
                # visualise the mapped shorelines, there are two options:
                # if settings['check_detection'] = True, shows the detection to the user for accept/reject
                # if settings['save_figure'] = True, saves a figure for each mapped shoreline
                if settings['check_detection'] or settings['save_figure']:
                    date = filenames[i][:19]
                    if not settings['check_detection']:
                        plt.ioff() # turning interactive plotting off
                    skip_image = show_detection(im_ms, cloud_mask, im_labels, shoreline,
                                                image_epsg, georef, settings, date, satname)
                    # if the user decides to skip the image, continue and do not save the mapped shoreline
                    if skip_image:
                        continue

            # append to output variables
            output_timestamp.append(metadata[satname]['dates'][i])
            output_shoreline.append(shoreline)
            output_filename.append(filenames[i])
            output_cloudcover.append(cloud_cover)
            output_geoaccuracy.append(metadata[satname]['acc_georef'][i])
            output_idxkeep.append(i)
            output_t_mndwi.append(t_mndwi)

        # create dictionnary of output
        output[satname] = {
                'dates': output_timestamp,
                'shorelines': output_shoreline,
                'filename': output_filename,
                'cloud_cover': output_cloudcover,
                'geoaccuracy': output_geoaccuracy,
                'idx': output_idxkeep,
                'MNDWI_threshold': output_t_mndwi,
                }
        print('')

    # close figure window if still open
    if plt.get_fignums():
        plt.close()

    # change the format to have one list sorted by date with all the shorelines (easier to use)
    output = SDS_tools.merge_output(output)

    # save outputput structure as output.pkl
    filepath = os.path.join(filepath_data, sitename)
    with open(os.path.join(filepath, sitename + '_output.pkl'), 'wb') as f:
        pickle.dump(output, f)

    return output
コード例 #8
0
ファイル: SDS_shoreline.py プロジェクト: VHeimhuber/CoastSat
def create_training_data(metadata, settings):
    """
    Function that lets user visually inspect satellite images and decide if 
    entrance is open or closed.
    
    This can be done for the entire dataset or to a limited number of images, which will then be used to train the machine learning classifier for open vs. closed

    VH WRL 2020

    Arguments:
    -----------
        metadata: dict
            contains all the information about the satellite images that were downloaded

        settings: dict
            contains the following fields:
        sitename: str
            String containig the name of the site
        cloud_mask_issue: boolean
            True if there is an issue with the cloud mask and sand pixels are being masked on the images
        check_detection: boolean
            True to show each invidual satellite image and let the user decide if the entrance was open or closed
    Returns:
    -----------
        output: dict
            contains the training data set for all inspected images

    """

    sitename = settings['inputs']['sitename']
    filepath_data = settings['inputs']['filepath']

    print('Generating traning data for entrance state at: ' + sitename)
    print(
        'Manually inspect each image to create training data. Press esc once a satisfactory number of images was inspected'
    )

    #load shapefile that conta0ins specific shapes for each ICOLL site as per readme file
    Allsites = gpd.read_file(
        os.path.join(os.getcwd(), 'Sites', 'All_sites9.shp'))  #.iloc[:,-4:]
    Site_shps = Allsites.loc[(Allsites.Sitename == sitename)]
    layers = Site_shps['layer'].values

    # initialise output data structure
    Training = {}

    # create a subfolder to store the .jpg images showing the detection + csv file of the generated training dataset
    csv_out_path = os.path.join(
        filepath_data, sitename,
        'results_' + settings['inputs']['analysis_vrs'])
    if not os.path.exists(csv_out_path):
        os.makedirs(csv_out_path)
    jpg_out_path = os.path.join(
        filepath_data, sitename, 'jpg_files',
        'classified_' + settings['inputs']['analysis_vrs'])
    if not os.path.exists(jpg_out_path):
        os.makedirs(jpg_out_path)

    # close all open figures
    plt.close('all')

    # loop through the user selecte satellites
    for satname in settings['inputs']['sat_list']:

        # get images
        filepath = SDS_tools.get_filepath(settings['inputs'], satname)
        filenames = metadata[satname]['filenames']

        #randomize the time step to create a more independent training data set
        epsg_dict = dict(zip(filenames, metadata[satname]['epsg']))
        if settings['shuffle_training_imgs'] == True:
            filenames = random.sample(filenames, len(filenames))

        # load classifiers and
        if satname in ['L5', 'L7', 'L8']:
            pixel_size = 15
            if settings['dark_sand']:
                clf = joblib.load(
                    os.path.join(os.getcwd(), 'classifiers',
                                 'NN_4classes_Landsat_dark.pkl'))
            elif settings['color_sand']:
                clf = joblib.load(
                    os.path.join(os.getcwd(), 'classifiers',
                                 'NN_4classes_Landsat_diff_col_beaches.pkl'))
            else:
                clf = joblib.load(
                    os.path.join(os.getcwd(), 'classifiers',
                                 'NN_4classes_Landsat_SEA.pkl'))
        elif satname == 'S2':
            pixel_size = 10
            clf = joblib.load(
                os.path.join(os.getcwd(), 'classifiers',
                             'NN_4classes_S2_SEA.pkl'))

        # convert settings['min_beach_area'] and settings['buffer_size'] from metres to pixels
        min_beach_area_pixels = np.ceil(settings['min_beach_area'] /
                                        pixel_size**2)

        ##########################################
        #loop through all images and store results in pd DataFrame
        ##########################################
        plt.close()
        keep_checking = 'True'
        for i in range(len(filenames)):
            if keep_checking == 'True':
                print('\r%s:   %d%%' %
                      (satname, int(((i + 1) / len(filenames)) * 100)),
                      end='')

                # get image filename
                fn = SDS_tools.get_filenames(filenames[i], filepath, satname)
                date = filenames[i][:19]

                # preprocess image (cloud mask + pansharpening/downsampling)
                im_ms, georef, cloud_mask, im_extra, imQA, im_nodata = SDS_preprocess.preprocess_single(
                    fn, satname, settings['cloud_mask_issue'])

                # calculate cloud cover
                cloud_cover = np.divide(
                    sum(sum(cloud_mask.astype(int))),
                    (cloud_mask.shape[0] * cloud_mask.shape[1]))

                #skip image if cloud cover is above threshold
                if cloud_cover > settings[
                        'cloud_thresh']:  #####!!!!!##### Intermediate
                    continue

                #load boundary shapefiles for each scene and reproject according to satellite image epsg
                shapes = SDS_tools.load_shapes_as_ndarrays_2(
                    layers, Site_shps, satname, sitename,
                    settings['shapefile_EPSG'], georef, metadata,
                    epsg_dict[filenames[i]])
                #get the min and max corner (in pixel coordinates) of the entrance area that will be used for plotting the data for visual inspection
                Xmin, Xmax, Ymin, Ymax = SDS_tools.get_bounding_box_minmax(
                    shapes['entrance_bounding_box'])

                # classify image in 4 classes (sand, vegetation, water, other) with NN classifier
                im_classif, im_labels = classify_image_NN(
                    im_ms, im_extra, cloud_mask, min_beach_area_pixels, clf)

                #Manually check entrance state to generate training data
                if settings['check_detection'] or settings['save_figure']:
                    vis_open_vs_closed, skip_image, keep_checking = set_openvsclosed(
                        im_ms, settings['inputs'], jpg_out_path, cloud_mask,
                        im_labels, georef, settings, date, satname, Xmin, Xmax,
                        Ymin, Ymax)
                #add results to intermediate list
                Training[date] = satname, vis_open_vs_closed, skip_image

    Training_df = pd.DataFrame(Training).transpose()
    Training_df.columns = ['satname', 'Entrance_state', 'skip image']
    Training_df.to_csv(
        os.path.join(csv_out_path, sitename + '_visual_training_data.csv'))
    return Training_df
コード例 #9
0
def evaluate_classifier(classifier, metadata, settings):
    """
    Interactively visualise the new classifier.

    KV WRL 2018

    Arguments:
    -----------
        classifier: joblib object
            Multilayer Perceptron to be used for image classification
        metadata: dict
            contains all the information about the satellite images that were downloaded
        settings: dict
            contains the following fields:
        cloud_thresh: float
            value between 0 and 1 indicating the maximum cloud fraction in the image that is accepted
        sitename: string
            name of the site (also name of the folder where the images are stored)
        cloud_mask_issue: boolean
            True if there is an issue with the cloud mask and sand pixels are being masked on the images
        labels: dict
            the label name (key) and label number (value) for each class
        filepath_train: str
            directory in which to save the labelled data

    Returns:
    -----------

    """
    # create folder
    fp = os.path.join(os.getcwd(), 'evaluation')
    if not os.path.exists(fp):
        os.makedirs(fp)

    # initialize figure
    fig, ax = plt.subplots(1,
                           2,
                           figsize=[17, 10],
                           sharex=True,
                           sharey=True,
                           constrained_layout=True)
    mng = plt.get_current_fig_manager()
    mng.window.showMaximized()

    # create colormap for labels
    cmap = cm.get_cmap('tab20c')
    colorpalette = cmap(np.arange(0, 13, 1))
    colours = np.zeros((3, 4))
    colours[0, :] = colorpalette[5]
    colours[1, :] = np.array([204 / 255, 1, 1, 1])
    colours[2, :] = np.array([0, 91 / 255, 1, 1])
    # loop through satellites
    for satname in metadata.keys():
        filepath = SDS_tools.get_filepath(settings['inputs'], satname)
        filenames = metadata[satname]['filenames']

        # load classifiers and
        if satname in ['L5', 'L7', 'L8']:
            pixel_size = 15
        elif satname == 'S2':
            pixel_size = 10
        # convert settings['min_beach_area'] and settings['buffer_size'] from metres to pixels
        buffer_size_pixels = np.ceil(settings['buffer_size'] / pixel_size)
        min_beach_area_pixels = np.ceil(settings['min_beach_area'] /
                                        pixel_size**2)

        # loop through images
        for i in range(len(filenames)):
            # image filename
            fn = SDS_tools.get_filenames(filenames[i], filepath, satname)
            # read and preprocess image
            im_ms, georef, cloud_mask, im_extra, im_QA, im_nodata = SDS_preprocess.preprocess_single(
                fn, satname, settings['cloud_mask_issue'])
            image_epsg = metadata[satname]['epsg'][i]
            # calculate cloud cover
            cloud_cover = np.divide(
                sum(sum(cloud_mask.astype(int))),
                (cloud_mask.shape[0] * cloud_mask.shape[1]))
            # skip image if cloud cover is above threshold
            if cloud_cover > settings['cloud_thresh']:
                continue
            # calculate a buffer around the reference shoreline (if any has been digitised)
            im_ref_buffer = SDS_shoreline.create_shoreline_buffer(
                cloud_mask.shape, georef, image_epsg, pixel_size, settings)
            # classify image in 4 classes (sand, whitewater, water, other) with NN classifier
            im_classif, im_labels = SDS_shoreline.classify_image_NN(
                im_ms, im_extra, cloud_mask, min_beach_area_pixels, classifier)
            # there are two options to map the contours:
            # if there are pixels in the 'sand' class --> use find_wl_contours2 (enhanced)
            # otherwise use find_wl_contours2 (traditional)
            try:  # use try/except structure for long runs
                if sum(sum(im_labels[:, :, 0])) < 10:
                    # compute MNDWI image (SWIR-G)
                    im_mndwi = SDS_tools.nd_index(im_ms[:, :, 4],
                                                  im_ms[:, :, 1], cloud_mask)
                    # find water contours on MNDWI grayscale image
                    contours_mwi = SDS_shoreline.find_wl_contours1(
                        im_mndwi, cloud_mask, im_ref_buffer)
                else:
                    # use classification to refine threshold and extract the sand/water interface
                    contours_wi, contours_mwi = SDS_shoreline.find_wl_contours2(
                        im_ms, im_labels, cloud_mask, buffer_size_pixels,
                        im_ref_buffer)
            except:
                print('Could not map shoreline for this image: ' +
                      filenames[i])
                continue
            # process the water contours into a shoreline
            shoreline = SDS_shoreline.process_shoreline(
                contours_mwi, cloud_mask, georef, image_epsg, settings)
            try:
                sl_pix = SDS_tools.convert_world2pix(
                    SDS_tools.convert_epsg(shoreline, settings['output_epsg'],
                                           image_epsg)[:, [0, 1]], georef)
            except:
                # if try fails, just add nan into the shoreline vector so the next parts can still run
                sl_pix = np.array([[np.nan, np.nan], [np.nan, np.nan]])
            # make a plot
            im_RGB = SDS_preprocess.rescale_image_intensity(
                im_ms[:, :, [2, 1, 0]], cloud_mask, 99.9)
            # create classified image
            im_class = np.copy(im_RGB)
            for k in range(0, im_labels.shape[2]):
                im_class[im_labels[:, :, k], 0] = colours[k, 0]
                im_class[im_labels[:, :, k], 1] = colours[k, 1]
                im_class[im_labels[:, :, k], 2] = colours[k, 2]
            # show images
            ax[0].imshow(im_RGB)
            ax[1].imshow(im_RGB)
            ax[1].imshow(im_class, alpha=0.5)
            ax[0].axis('off')
            ax[1].axis('off')
            filename = filenames[i][:filenames[i].find('.')][:-4]
            ax[0].set_title(filename)
            ax[0].plot(sl_pix[:, 0], sl_pix[:, 1], 'k.', markersize=3)
            ax[1].plot(sl_pix[:, 0], sl_pix[:, 1], 'k.', markersize=3)
            # save figure
            fig.savefig(os.path.join(
                fp, settings['inputs']['sitename'] + filename[:19] + '.jpg'),
                        dpi=150)
            # clear axes
            for cax in fig.axes:
                cax.clear()

    # close the figure at the end
    plt.close()