class MEModel(Model): def __init__(self, *args): Model.__init__(self, *args) self.global_info = {} self.stoichiometric_data = DictList() self.complex_data = DictList() self.modification_data = DictList() self.translation_data = DictList() self.transcription_data = DictList() self.generic_data = DictList() self.tRNA_data = DictList() self.translocation_data = DictList() self.posttranslation_data = DictList() self.subreaction_data = DictList() self.process_data = DictList() # create the biomass/dilution constraint self._biomass = Constraint("biomass") self._biomass_dilution = SummaryVariable("biomass_dilution") self._biomass_dilution.add_metabolites({self._biomass: -1}) self.add_reaction(self._biomass_dilution) self._biomass_dilution.upper_bound = mu self._biomass_dilution.lower_bound = mu # maintenance energy self._gam = 0. self._ngam = 0. # Unmodeled protein is handled by converting protein_biomass to # biomass, and requiring production of the appropriate amount of dummy # protein self._unmodeled_protein_fraction = None self._protein_biomass = Constraint("protein_biomass") self._protein_biomass_dilution = SummaryVariable( "protein_biomass_dilution") self._protein_biomass_dilution.add_metabolites({ self._protein_biomass: -1, self._biomass: 1, }) self._mRNA_biomass = Constraint("mRNA_biomass") self._mRNA_biomass_dilution = SummaryVariable("mRNA_biomass_dilution") self._mRNA_biomass_dilution.add_metabolites({ self._mRNA_biomass: -1, self._biomass: 1, }) self._tRNA_biomass = Constraint("tRNA_biomass") self._tRNA_biomass_dilution = SummaryVariable("tRNA_biomass_dilution") self._tRNA_biomass_dilution.add_metabolites({ self._tRNA_biomass: -1, self._biomass: 1, }) self._rRNA_biomass = Constraint("rRNA_biomass") self._rRNA_biomass_dilution = SummaryVariable("rRNA_biomass_dilution") self._rRNA_biomass_dilution.add_metabolites({ self._rRNA_biomass: -1, self._biomass: 1, }) self._ncRNA_biomass = Constraint("ncRNA_biomass") self._ncRNA_biomass_dilution = SummaryVariable( "ncRNA_biomass_dilution") self._ncRNA_biomass_dilution.add_metabolites({ self._ncRNA_biomass: -1, self._biomass: 1, }) self._DNA_biomass = Constraint("DNA_biomass") self._DNA_biomass_dilution = SummaryVariable("DNA_biomass_dilution") self._DNA_biomass_dilution.add_metabolites({ self._DNA_biomass: -1, self._biomass: 1, }) self.add_reactions( (self._protein_biomass_dilution, self._mRNA_biomass_dilution, self._tRNA_biomass_dilution, self._rRNA_biomass_dilution, self._ncRNA_biomass_dilution, self._DNA_biomass_dilution)) @property def unmodeled_protein(self): return self.metabolites.get_by_id("protein_dummy") @property def unmodeled_protein_fraction(self): return self._unmodeled_protein_fraction @property def unmodeled_protein_biomass(self): return self.metabolites.get_by_id('dummy_protein_biomass') @unmodeled_protein_fraction.setter def unmodeled_protein_fraction(self, value): # see the Biomass_formulations for an explanation amount = value / (1 - value) self._protein_biomass_dilution.add_metabolites( {self.unmodeled_protein_biomass: -amount}, combine=False) self._protein_biomass_dilution.add_metabolites( {self._biomass: 1 + amount}, combine=False) self._unmodeled_protein_fraction = value @property def gam(self): return self._gam @gam.setter def gam(self, value): if 'GAM' not in self.reactions: warn('Adding GAM reaction to model') self.add_reaction(SummaryVariable("GAM")) self.reactions.GAM.lower_bound = mu atp_hydrolysis = { 'atp_c': -1, 'h2o_c': -1, 'adp_c': 1, 'h_c': 1, 'pi_c': 1 } for met, coeff in iteritems(atp_hydrolysis): self.reactions.GAM.add_metabolites({met: value * coeff}, combine=False) self._gam = value @property def ngam(self): return self._ngam @ngam.setter def ngam(self, value): if 'ATPM' not in self.reactions: warn('Adding ATPM reaction to model') atp_hydrolysis = { 'atp_c': -1, 'h2o_c': -1, 'adp_c': 1, 'h_c': 1, 'pi_c': 1 } self.add_reaction(SummaryVariable("ATPM")) self.reactions.ATPM.add_metabolites(atp_hydrolysis) self.reactions.ATPM.lower_bound = value self._ngam = value def get_metabolic_flux(self, solution=None): """extract the flux state for metabolic reactions""" if solution is None: solution = self.solution if solution.status != "optimal": raise ValueError("solution status '%s' is not 'optimal'" % solution.status) flux_dict = {r.id: 0 for r in self.stoichiometric_data} for reaction in self.reactions: if isinstance(reaction, MetabolicReaction): m_reaction_id = reaction.stoichiometric_data.id if reaction.reverse: flux_dict[m_reaction_id] -= solution.x_dict[reaction.id] else: flux_dict[m_reaction_id] += solution.x_dict[reaction.id] elif reaction.id.startswith("EX_") or reaction.id.startswith("DM"): flux_dict[reaction.id] = solution.x_dict[reaction.id] return flux_dict def get_transcription_flux(self, solution=None): """extract the transcription flux state""" if solution is None: solution = self.solution if solution.status != "optimal": raise ValueError("solution status '%s' is not 'optimal'" % solution.status) flux_dict = {} for reaction in self.reactions: if isinstance(reaction, TranscriptionReaction): for rna_id in reaction.transcription_data.RNA_products: locus_id = rna_id.replace("RNA_", "", 1) if locus_id not in flux_dict: flux_dict[locus_id] = 0 flux_dict[locus_id] += solution.x_dict[reaction.id] return flux_dict def get_translation_flux(self, solution=None): """extract the translation flux state""" if solution is None: solution = self.solution if solution.status != "optimal": raise ValueError("solution status '%s' is not 'optimal'" % solution.status) flux_dict = {r.id: 0 for r in self.translation_data} for reaction in self.reactions: if isinstance(reaction, TranslationReaction): protein_id = reaction.translation_data.id flux_dict[protein_id] += solution.x_dict[reaction.id] return flux_dict def construct_S(self, growth_rate): """build the stoichiometric matrix at a specific growth rate""" # intialize to 0 S = dok_matrix((len(self.metabolites), len(self.reactions))) # populate with stoichiometry for i, r in enumerate(self.reactions): for met, value in iteritems(r._metabolites): met_index = self.metabolites.index(met) if hasattr(value, "subs"): S[met_index, i] = float(value.subs(mu, growth_rate)) else: S[met_index, i] = float(value) return S def construct_attribute_vector(self, attr_name, growth_rate): """build a vector of a reaction attribute at a specific growth rate Mainly used for upper and lower bounds""" return array([ float(value.subs(mu, growth_rate)) if hasattr(value, "subs") else float(value) for value in self.reactions.list_attr(attr_name) ]) def compute_solution_error(self, solution=None): errors = {} if solution is None: solution = self.solution S = self.construct_S(solution.f) lb = self.construct_attribute_vector("lower_bound", solution.f) ub = self.construct_attribute_vector("upper_bound", solution.f) x = array(solution.x) err = abs(S * x) errors["max_error"] = err.max() errors["sum_error"] = err.sum() ub_err = min(ub - x) errors["upper_bound_error"] = abs(ub_err) if ub_err < 0 else 0 lb_err = min(x - lb) errors["lower_bound_error"] = abs(lb_err) if lb_err < 0 else 0 return errors def update(self): """updates all component reactions""" for r in self.reactions: if hasattr(r, "update"): r.update() def prune(self, skip=[]): """remove all unused metabolites and reactions This should be run after the model is fully built. It will be difficult to add new content to the model once this has been run. skip: [str] List of complexes/proteins/mRNAs/TUs to remain unpruned from model. """ complex_data_list = [ i.id for i in self.complex_data if i.id not in skip ] for c_d in complex_data_list: c = self.complex_data.get_by_id(c_d) cplx = c.complex if len(cplx.reactions) == 1: list(cplx.reactions)[0].delete(remove_orphans=True) self.complex_data.remove(self.complex_data.get_by_id(c_d)) for p in self.metabolites.query('_folded'): if 'partially' not in p.id and p.id not in skip: delete = True for rxn in p._reaction: try: if p in rxn.reactants: delete = False except Exception as e: print(rxn) raise e if delete: while len(p._reaction) > 0: list(p._reaction)[0].delete(remove_orphans=True) for data in self.posttranslation_data.query(p.id): self.posttranslation_data.remove(data.id) for p in self.metabolites.query(re.compile('^protein_')): if isinstance(p, ProcessedProtein) and p.id not in skip: delete = True for rxn in p._reaction: try: if p in rxn.reactants: delete = False except Exception as e: print(rxn) raise e if delete: while len(p._reaction) > 0: list(p._reaction)[0].delete(remove_orphans=True) for data in self.posttranslation_data.query(p.id): self.posttranslation_data.remove(data.id) for p in self.metabolites.query(re.compile('^protein_')): if isinstance(p, TranslatedGene) and p.id not in skip: delete = True for rxn in p._reaction: try: if p in rxn.reactants and not rxn.id.startswith( 'degradation'): delete = False except Exception as e: print(rxn) raise e if delete: while len(p._reaction) > 0: list(p._reaction)[0].delete(remove_orphans=True) p_id = p.id.replace('protein_', '') for data in self.translation_data.query(p_id): self.translation_data.remove(data.id) removed_RNA = set() for m in list(self.metabolites.query(re.compile("^RNA_"))): if m.id in skip: delete = False else: delete = True for rxn in m._reaction: if m in rxn.reactants and not rxn.id.startswith('DM_'): delete = False if delete: try: self.reactions.get_by_id('DM_' + m.id).remove_from_model( remove_orphans=True) if m in self.metabolites: m.remove_from_model(method='subtractive') except KeyError: pass else: removed_RNA.add(m.id) for t in self.reactions.query('transcription_TU'): if t.id in skip: delete = False else: delete = True for product in t.products: if isinstance(product, TranscribedGene): delete = False t_process_id = t.id.replace('transcription_', '') if delete: t.remove_from_model(remove_orphans=True) self.transcription_data.remove(t_process_id) else: # gets rid of the removed RNA from the products self.transcription_data.get_by_id( t_process_id).RNA_products.difference_update(removed_RNA) # update to update the TranscriptionReaction mRNA biomass # stoichiometry with new RNA_products if not delete: t.update() def remove_genes_from_model(self, gene_list): for gene in gene_list: self.metabolites.get_by_id('RNA_' + gene).remove_from_model( method='subtractive') protein = self.metabolites.get_by_id('protein_' + gene) for cplx in protein.complexes: print('Complex (%s) removed from model' % cplx.id) for rxn in cplx.metabolic_reactions: try: self.stoichiometric_data.remove(rxn.id.split('_')[0]) except ValueError: pass rxn.remove_from_model() protein.remove_from_model(method='destructive') # Remove all transcription reactions that now do not form a used # transcript for t in self.reactions.query('transcription_TU'): delete = True for product in t.products: if isinstance(product, TranscribedGene): delete = False if delete: t.remove_from_model(remove_orphans=True) t_process_id = t.id.replace('transcription_', '') self.transcription_data.remove(t_process_id) def set_SASA_keffs(self, avg_keff): SASA_list = [] for rxn in self.reactions: if hasattr(rxn, 'keff') and rxn.complex_data is not None: weight = rxn.complex_data.complex.mass SASA = weight**(3. / 4.) if SASA == 0: warn('Keff not updated for %s' % rxn) else: SASA_list.append(SASA) for data in self.process_data: cplx_mw = 0. if isinstance(data, TranslocationData): continue if hasattr(data, 'keff') and data.enzyme is not None: if type(data.enzyme) == str: cplxs = [data.enzyme] else: cplxs = data.enzyme for cplx in cplxs: if cplx in self.complex_data: try: cplx_mw += self.metabolites.get_by_id(cplx).mass \ ** (3. / 4) except: warn('Complex (%s) cannot access mass' % cplx) elif cplx.split('_mod_')[0] in self.complex_data: cplx_mw += self.metabolites.get_by_id( cplx.split('_mod_')[0]).mass**(3. / 4) SASA_list.append(cplx_mw) avg_SASA = array(SASA_list).mean() # redo scaling average SASA to 65. for rxn in self.reactions: if hasattr(rxn, 'keff') and rxn.complex_data is not None: weight = rxn.complex_data.complex.mass SASA = weight**(3. / 4.) if SASA == 0: SASA = avg_SASA rxn.keff = SASA * avg_keff / avg_SASA for data in self.process_data: SASA = 0. if isinstance(data, TranslocationData): continue if hasattr(data, 'keff') and data.enzyme is not None: if data.enzyme == str: cplxs = [data.enzyme] else: cplxs = data.enzyme for cplx in cplxs: if cplx in self.complex_data: SASA += self.metabolites.get_by_id(cplx).mass**(3. / 4) elif cplx.split('_mod_')[0] in self.complex_data: SASA += self.metabolites.get_by_id( cplx.split('_mod_')[0]).mass**(3. / 4) if SASA == 0: SASA = avg_SASA data.keff = SASA * avg_keff / avg_SASA self.update()
class MEmodel(Model): def __init__(self, *args): Model.__init__(self, *args) self.global_info = {} self.stoichiometric_data = DictList() self.complex_data = DictList() self.modification_data = DictList() self.translation_data = DictList() self.transcription_data = DictList() self.generic_data = DictList() self.tRNA_data = DictList() self.translocation_data = DictList() self.posttranslation_data = DictList() self.subreaction_data = DictList() self.process_data = DictList() # create the biomass/dilution constraint self._biomass = Constraint("biomass") self._biomass_dilution = SummaryVariable("biomass_dilution") self._biomass_dilution.add_metabolites({self._biomass: -1}) self.add_reaction(self._biomass_dilution) self._biomass_dilution.upper_bound = mu self._biomass_dilution.lower_bound = mu # Unmodeled protein is handled by converting protein_biomass to # biomass, and requiring production of the appropriate amount of dummy # protein self._unmodeled_protein_fraction = None self._protein_biomass = Constraint("protein_biomass") self._protein_biomass_dilution = SummaryVariable("protein_biomass_dilution") self._protein_biomass_dilution.add_metabolites({ self._protein_biomass: -1, self._biomass: 1, }) self._mRNA_biomass = Constraint("mRNA_biomass") self._mRNA_biomass_dilution = SummaryVariable("mRNA_biomass_dilution") self._mRNA_biomass_dilution.add_metabolites({ self._mRNA_biomass: -1, self._biomass: 1, }) self._tRNA_biomass = Constraint("tRNA_biomass") self._tRNA_biomass_dilution = SummaryVariable("tRNA_biomass_dilution") self._tRNA_biomass_dilution.add_metabolites({ self._tRNA_biomass: -1, self._biomass: 1, }) self._rRNA_biomass = Constraint("rRNA_biomass") self._rRNA_biomass_dilution = SummaryVariable("rRNA_biomass_dilution") self._rRNA_biomass_dilution.add_metabolites({ self._rRNA_biomass: -1, self._biomass: 1, }) self._ncRNA_biomass = Constraint("ncRNA_biomass") self._ncRNA_biomass_dilution = SummaryVariable("ncRNA_biomass_dilution") self._ncRNA_biomass_dilution.add_metabolites({ self._ncRNA_biomass: -1, self._biomass: 1, }) self.add_reactions((self._protein_biomass_dilution, self._mRNA_biomass_dilution, self._tRNA_biomass_dilution, self._rRNA_biomass_dilution, self._ncRNA_biomass_dilution)) self._DNA_biomass = Constraint("DNA_biomass") self._DNA_biomass_dilution = SummaryVariable("DNA_biomass_dilution") self._DNA_biomass_dilution.add_metabolites({ self._DNA_biomass: -1e-3, self._biomass: 1e-3, }) self._DNA_biomass_dilution.lower_bound = mu self._DNA_biomass_dilution.upper_bound = mu @property def unmodeled_protein(self): return self.metabolites.get_by_id("protein_dummy") @property def unmodeled_protein_fraction(self): return self._unmodeled_protein_fraction @unmodeled_protein_fraction.setter def unmodeled_protein_fraction(self, value): # proportion = value / (1 - value) # see the Biomass_formulations for an explanation amount = value / self.unmodeled_protein.mass self._protein_biomass_dilution.add_metabolites( {self.unmodeled_protein: -amount}, combine=False) self._protein_biomass_dilution.add_metabolites( {self._biomass: 1+value}, combine=False) self._unmodeled_protein_fraction = value def get_metabolic_flux(self, solution=None): """extract the flux state for metabolic reactions""" if solution is None: solution = self.solution if solution.status != "optimal": raise ValueError("solution status '%s' is not 'optimal'" % solution.status) flux_dict = {r.id: 0 for r in self.stoichiometric_data} for reaction in self.reactions: if isinstance(reaction, MetabolicReaction): m_reaction_id = reaction.stoichiometric_data.id if reaction.reverse: flux_dict[m_reaction_id] -= solution.x_dict[reaction.id] else: flux_dict[m_reaction_id] += solution.x_dict[reaction.id] elif reaction.id.startswith("EX_") or reaction.id.startswith("DM"): flux_dict[reaction.id] = solution.x_dict[reaction.id] return flux_dict def get_transcription_flux(self, solution=None): """extract the transcription flux state""" if solution is None: solution = self.solution if solution.status != "optimal": raise ValueError("solution status '%s' is not 'optimal'" % solution.status) flux_dict = {} for reaction in self.reactions: if isinstance(reaction, TranscriptionReaction): for rna_id in reaction.transcription_data.RNA_products: locus_id = rna_id.replace("RNA_", "", 1) if locus_id not in flux_dict: flux_dict[locus_id] = 0 flux_dict[locus_id] += solution.x_dict[reaction.id] return flux_dict def get_translation_flux(self, solution=None): """extract the translation flux state""" if solution is None: solution = self.solution if solution.status != "optimal": raise ValueError("solution status '%s' is not 'optimal'" % solution.status) flux_dict = {r.id: 0 for r in self.translation_data} for reaction in self.reactions: if isinstance(reaction, TranslationReaction): protein_id = reaction.translation_data.id flux_dict[protein_id] += solution.x_dict[reaction.id] return flux_dict def construct_S(self, growth_rate): """build the stoichiometric matrix at a specific growth rate""" # intialize to 0 S = dok_matrix((len(self.metabolites), len(self.reactions))) # populate with stoichiometry for i, r in enumerate(self.reactions): for met, value in r._metabolites.iteritems(): met_index = self.metabolites.index(met) if hasattr(value, "subs"): S[met_index, i] = float(value.subs(mu, growth_rate)) else: S[met_index, i] = float(value) return S def construct_attribute_vector(self, attr_name, growth_rate): """build a vector of a reaction attribute at a specific growth rate Mainly used for upper and lower bounds""" return array([float(value.subs(mu, growth_rate)) if hasattr(value, "subs") else float(value) for value in self.reactions.list_attr(attr_name)]) def compute_solution_error(self, solution=None): errors = {} if solution is None: solution = self.solution S = self.construct_S(solution.f) lb = self.construct_attribute_vector("lower_bound", solution.f) ub = self.construct_attribute_vector("upper_bound", solution.f) x = array(solution.x) err = abs(S * x) errors["max_error"] = err.max() errors["sum_error"] = err.sum() ub_err = min(ub - x) errors["upper_bound_error"] = abs(ub_err) if ub_err < 0 else 0 lb_err = min(x - lb) errors["lower_bound_error"] = abs(lb_err) if lb_err < 0 else 0 return errors def update(self): """updates all component reactions""" for r in self.reactions: if hasattr(r, "update"): r.update() def prune(self): """remove all unused metabolites and reactions This should be run after the model is fully built. It will be difficult to add new content to the model once this has been run. """ complex_data_list = [i.id for i in self.complex_data] for c_d in complex_data_list: c = self.complex_data.get_by_id(c_d) cplx = c.complex if len(cplx.reactions) == 1: list(cplx.reactions)[0].delete(remove_orphans=True) self.complex_data.remove(self.complex_data.get_by_id(c_d)) for p in self.metabolites.query(re.compile('^protein_')): if isinstance(p, ProcessedProtein): delete = True for rxn in p._reaction: try: if p in rxn.reactants: delete = False except Exception as e: print(rxn) raise e if delete: while len(p._reaction) > 0: list(p._reaction)[0].delete(remove_orphans=True) for data in self.posttranslation_data.query(p.id): self.posttranslation_data.remove(data.id) for p in self.metabolites.query(re.compile('^protein_')): if isinstance(p, TranslatedGene): delete = True for rxn in p._reaction: try: if p in rxn.reactants and not rxn.id.startswith('degradation'): delete = False except Exception as e: print(rxn) raise e if delete: while len(p._reaction) > 0: list(p._reaction)[0].delete(remove_orphans=True) p_id = p.id.replace('protein_', '') for data in self.translation_data.query(p_id): self.translation_data.remove(data.id) removed_RNA = set() for m in list(self.metabolites.query(re.compile("^RNA_"))): delete = True for rxn in m._reaction: if m in rxn.reactants and not rxn.id.startswith('DM_'): delete = False if delete: try: self.reactions.get_by_id('DM_' + m.id).remove_from_model( remove_orphans=True) if m in self.metabolites: m.remove_from_model(method='subtractive') except KeyError: pass else: removed_RNA.add(m.id) for t in self.reactions.query('transcription_TU'): delete = True for product in t.products: if isinstance(product, TranscribedGene): delete = False t_process_id = t.id.replace('transcription_', '') if delete: t.remove_from_model(remove_orphans=True) self.transcription_data.remove(t_process_id) else: # gets rid of the removed RNA from the products self.transcription_data.get_by_id( t_process_id).RNA_products.difference_update(removed_RNA) def remove_genes_from_model(self, gene_list): for gene in gene_list: self.metabolites.get_by_id('RNA_'+gene).remove_from_model(method='subtractive') protein = self.metabolites.get_by_id('protein_'+gene) for cplx in protein.complexes: print cplx for rxn in cplx.metabolic_reactions: try: self.stoichiometric_data.remove(rxn.id.split('_')[0]) except ValueError: pass rxn.remove_from_model() protein.remove_from_model(method='destructive') # Remove all transcription reactions that now do not form a used # transcript for t in self.reactions.query('transcription_TU'): delete = True for product in t.products: if isinstance(product, TranscribedGene): delete = False if delete: t.remove_from_model(remove_orphans=True) t_process_id = t.id.replace('transcription_', '') self.transcription_data.remove(t_process_id) def get_biomass_composition(self, solution=None): if solution is None: solution = self.solution biomass_composition = defaultdict(float) for met, stoich in self._protein_biomass_dilution.metabolites.items(): if abs(stoich) < 1: weight = self.unmodeled_protein.mass biomass_composition['Unmodeled Protein'] = \ solution.x_dict['protein_biomass_dilution'] * \ abs(stoich) * weight biomass_composition['Protein'] = \ solution.x_dict['protein_biomass_dilution'] biomass_composition['tRNA'] = \ solution.x_dict['tRNA_biomass_dilution'] biomass_composition['mRNA'] = \ solution.x_dict['mRNA_biomass_dilution'] biomass_composition['ncRNA'] = \ solution.x_dict['ncRNA_biomass_dilution'] biomass_composition['rRNA'] = \ solution.x_dict['rRNA_biomass_dilution'] biomass_composition['Other'] = \ solution.x_dict['biomass_component_dilution'] return biomass_composition def RNA_to_protein_ratio(self, solution=None): composition = self.get_biomass_composition(solution=solution) RNA_to_protein = (composition['mRNA'] + composition['tRNA'] + composition['rRNA'] + composition['ncRNA']) / \ (composition['Protein'] + composition['Unmodeled Protein']) return RNA_to_protein def get_RNA_fractions_dict(self, solution=None): RNA_fractions = {} composition = self.get_biomass_composition(solution=solution) tRNA_to_RNA = (composition['tRNA']) / ( composition['mRNA'] + composition['tRNA'] + composition['rRNA'] + composition['ncRNA']) RNA_fractions['tRNA'] = tRNA_to_RNA rRNA_to_RNA = (composition['rRNA']) / ( composition['mRNA'] + composition['tRNA'] + composition['rRNA'] + composition['ncRNA']) RNA_fractions['rRNA'] = rRNA_to_RNA mRNA_to_RNA = (composition['mRNA']) / ( composition['mRNA'] + composition['tRNA'] + composition['rRNA'] + composition['ncRNA']) RNA_fractions['mRNA'] = mRNA_to_RNA ncRNA_to_RNA = (composition['ncRNA']) / ( composition['mRNA'] + composition['tRNA'] + composition['rRNA'] + composition['ncRNA']) RNA_fractions['ncRNA'] = ncRNA_to_RNA return RNA_fractions def make_biomass_composition_piechart(self, solution=None): try: import brewer2mpl except ImportError: color_map = None else: color_map = brewer2mpl.wesanderson.Zissou.mpl_colormap try: import pandas except ImportError: raise Exception("Pandas must be installed to get biomass piechart") if solution is None: solution = self.solution summary = {} summary['Biomass composition'] = \ self.get_biomass_composition(solution=solution) frame = pandas.DataFrame.from_dict(summary) / solution.f print 'Total biomass sum =', frame.sum().values[0] return frame.plot(kind='pie', subplots=True, legend=None, colormap=color_map)
class MEmodel(Model): def __init__(self, *args): Model.__init__(self, *args) self.global_info = {} self.stoichiometric_data = DictList() self.complex_data = DictList() self.modification_data = DictList() self.translation_data = DictList() self.transcription_data = DictList() self.generic_data = DictList() self.tRNA_data = DictList() self.translocation_data = DictList() self.posttranslation_data = DictList() self.subreaction_data = DictList() self.process_data = DictList() # create the biomass/dilution constraint self._biomass = Constraint("biomass") self._biomass_dilution = SummaryVariable("biomass_dilution") self._biomass_dilution.add_metabolites({self._biomass: -1}) self.add_reaction(self._biomass_dilution) self._biomass_dilution.upper_bound = mu self._biomass_dilution.lower_bound = mu # Unmodeled protein is handled by converting protein_biomass to # biomass, and requiring production of the appropriate amount of dummy # protein self._unmodeled_protein_fraction = None self._protein_biomass = Constraint("protein_biomass") self._protein_biomass_dilution = SummaryVariable( "protein_biomass_dilution") self._protein_biomass_dilution.add_metabolites({ self._protein_biomass: -1, self._biomass: 1, }) self._mRNA_biomass = Constraint("mRNA_biomass") self._mRNA_biomass_dilution = SummaryVariable("mRNA_biomass_dilution") self._mRNA_biomass_dilution.add_metabolites({ self._mRNA_biomass: -1, self._biomass: 1, }) self._tRNA_biomass = Constraint("tRNA_biomass") self._tRNA_biomass_dilution = SummaryVariable("tRNA_biomass_dilution") self._tRNA_biomass_dilution.add_metabolites({ self._tRNA_biomass: -1, self._biomass: 1, }) self._rRNA_biomass = Constraint("rRNA_biomass") self._rRNA_biomass_dilution = SummaryVariable("rRNA_biomass_dilution") self._rRNA_biomass_dilution.add_metabolites({ self._rRNA_biomass: -1, self._biomass: 1, }) self._ncRNA_biomass = Constraint("ncRNA_biomass") self._ncRNA_biomass_dilution = SummaryVariable( "ncRNA_biomass_dilution") self._ncRNA_biomass_dilution.add_metabolites({ self._ncRNA_biomass: -1, self._biomass: 1, }) self.add_reactions( (self._protein_biomass_dilution, self._mRNA_biomass_dilution, self._tRNA_biomass_dilution, self._rRNA_biomass_dilution, self._ncRNA_biomass_dilution)) self._DNA_biomass = Constraint("DNA_biomass") self._DNA_biomass_dilution = SummaryVariable("DNA_biomass_dilution") self._DNA_biomass_dilution.add_metabolites({ self._DNA_biomass: -1e-3, self._biomass: 1e-3, }) self._DNA_biomass_dilution.lower_bound = mu self._DNA_biomass_dilution.upper_bound = mu @property def unmodeled_protein(self): return self.metabolites.get_by_id("protein_dummy") @property def unmodeled_protein_fraction(self): return self._unmodeled_protein_fraction @unmodeled_protein_fraction.setter def unmodeled_protein_fraction(self, value): # proportion = value / (1 - value) # see the Biomass_formulations for an explanation amount = value / self.unmodeled_protein.mass self._protein_biomass_dilution.add_metabolites( {self.unmodeled_protein: -amount}, combine=False) self._protein_biomass_dilution.add_metabolites( {self._biomass: 1 + value}, combine=False) self._unmodeled_protein_fraction = value def get_metabolic_flux(self, solution=None): """extract the flux state for metabolic reactions""" if solution is None: solution = self.solution if solution.status != "optimal": raise ValueError("solution status '%s' is not 'optimal'" % solution.status) flux_dict = {r.id: 0 for r in self.stoichiometric_data} for reaction in self.reactions: if isinstance(reaction, MetabolicReaction): m_reaction_id = reaction.stoichiometric_data.id if reaction.reverse: flux_dict[m_reaction_id] -= solution.x_dict[reaction.id] else: flux_dict[m_reaction_id] += solution.x_dict[reaction.id] elif reaction.id.startswith("EX_") or reaction.id.startswith("DM"): flux_dict[reaction.id] = solution.x_dict[reaction.id] return flux_dict def get_transcription_flux(self, solution=None): """extract the transcription flux state""" if solution is None: solution = self.solution if solution.status != "optimal": raise ValueError("solution status '%s' is not 'optimal'" % solution.status) flux_dict = {} for reaction in self.reactions: if isinstance(reaction, TranscriptionReaction): for rna_id in reaction.transcription_data.RNA_products: locus_id = rna_id.replace("RNA_", "", 1) if locus_id not in flux_dict: flux_dict[locus_id] = 0 flux_dict[locus_id] += solution.x_dict[reaction.id] return flux_dict def get_translation_flux(self, solution=None): """extract the translation flux state""" if solution is None: solution = self.solution if solution.status != "optimal": raise ValueError("solution status '%s' is not 'optimal'" % solution.status) flux_dict = {r.id: 0 for r in self.translation_data} for reaction in self.reactions: if isinstance(reaction, TranslationReaction): protein_id = reaction.translation_data.id flux_dict[protein_id] += solution.x_dict[reaction.id] return flux_dict def construct_S(self, growth_rate): """build the stoichiometric matrix at a specific growth rate""" # intialize to 0 S = dok_matrix((len(self.metabolites), len(self.reactions))) # populate with stoichiometry for i, r in enumerate(self.reactions): for met, value in r._metabolites.iteritems(): met_index = self.metabolites.index(met) if hasattr(value, "subs"): S[met_index, i] = float(value.subs(mu, growth_rate)) else: S[met_index, i] = float(value) return S def construct_attribute_vector(self, attr_name, growth_rate): """build a vector of a reaction attribute at a specific growth rate Mainly used for upper and lower bounds""" return array([ float(value.subs(mu, growth_rate)) if hasattr(value, "subs") else float(value) for value in self.reactions.list_attr(attr_name) ]) def compute_solution_error(self, solution=None): errors = {} if solution is None: solution = self.solution S = self.construct_S(solution.f) lb = self.construct_attribute_vector("lower_bound", solution.f) ub = self.construct_attribute_vector("upper_bound", solution.f) x = array(solution.x) err = abs(S * x) errors["max_error"] = err.max() errors["sum_error"] = err.sum() ub_err = min(ub - x) errors["upper_bound_error"] = abs(ub_err) if ub_err < 0 else 0 lb_err = min(x - lb) errors["lower_bound_error"] = abs(lb_err) if lb_err < 0 else 0 return errors def update(self): """updates all component reactions""" for r in self.reactions: if hasattr(r, "update"): r.update() def prune(self): """remove all unused metabolites and reactions This should be run after the model is fully built. It will be difficult to add new content to the model once this has been run. """ complex_data_list = [i.id for i in self.complex_data] for c_d in complex_data_list: c = self.complex_data.get_by_id(c_d) cplx = c.complex if len(cplx.reactions) == 1: list(cplx.reactions)[0].delete(remove_orphans=True) self.complex_data.remove(self.complex_data.get_by_id(c_d)) for p in self.metabolites.query(re.compile('^protein_')): if isinstance(p, ProcessedProtein): delete = True for rxn in p._reaction: try: if p in rxn.reactants: delete = False except Exception as e: print(rxn) raise e if delete: while len(p._reaction) > 0: list(p._reaction)[0].delete(remove_orphans=True) for data in self.posttranslation_data.query(p.id): self.posttranslation_data.remove(data.id) for p in self.metabolites.query(re.compile('^protein_')): if isinstance(p, TranslatedGene): delete = True for rxn in p._reaction: try: if p in rxn.reactants and not rxn.id.startswith( 'degradation'): delete = False except Exception as e: print(rxn) raise e if delete: while len(p._reaction) > 0: list(p._reaction)[0].delete(remove_orphans=True) p_id = p.id.replace('protein_', '') for data in self.translation_data.query(p_id): self.translation_data.remove(data.id) removed_RNA = set() for m in list(self.metabolites.query(re.compile("^RNA_"))): delete = True for rxn in m._reaction: if m in rxn.reactants and not rxn.id.startswith('DM_'): delete = False if delete: try: self.reactions.get_by_id('DM_' + m.id).remove_from_model( remove_orphans=True) if m in self.metabolites: m.remove_from_model(method='subtractive') except KeyError: pass else: removed_RNA.add(m.id) for t in self.reactions.query('transcription_TU'): delete = True for product in t.products: if isinstance(product, TranscribedGene): delete = False t_process_id = t.id.replace('transcription_', '') if delete: t.remove_from_model(remove_orphans=True) self.transcription_data.remove(t_process_id) else: # gets rid of the removed RNA from the products self.transcription_data.get_by_id( t_process_id).RNA_products.difference_update(removed_RNA) def remove_genes_from_model(self, gene_list): for gene in gene_list: self.metabolites.get_by_id('RNA_' + gene).remove_from_model( method='subtractive') protein = self.metabolites.get_by_id('protein_' + gene) for cplx in protein.complexes: print cplx for rxn in cplx.metabolic_reactions: try: self.stoichiometric_data.remove(rxn.id.split('_')[0]) except ValueError: pass rxn.remove_from_model() protein.remove_from_model(method='destructive') # Remove all transcription reactions that now do not form a used # transcript for t in self.reactions.query('transcription_TU'): delete = True for product in t.products: if isinstance(product, TranscribedGene): delete = False if delete: t.remove_from_model(remove_orphans=True) t_process_id = t.id.replace('transcription_', '') self.transcription_data.remove(t_process_id) def get_biomass_composition(self, solution=None): if solution is None: solution = self.solution biomass_composition = defaultdict(float) for met, stoich in self._protein_biomass_dilution.metabolites.items(): if abs(stoich) < 1: weight = self.unmodeled_protein.mass biomass_composition['Unmodeled Protein'] = \ solution.x_dict['protein_biomass_dilution'] * \ abs(stoich) * weight biomass_composition['Protein'] = \ solution.x_dict['protein_biomass_dilution'] biomass_composition['tRNA'] = \ solution.x_dict['tRNA_biomass_dilution'] biomass_composition['mRNA'] = \ solution.x_dict['mRNA_biomass_dilution'] biomass_composition['ncRNA'] = \ solution.x_dict['ncRNA_biomass_dilution'] biomass_composition['rRNA'] = \ solution.x_dict['rRNA_biomass_dilution'] biomass_composition['Other'] = \ solution.x_dict['biomass_component_dilution'] return biomass_composition def RNA_to_protein_ratio(self, solution=None): composition = self.get_biomass_composition(solution=solution) RNA_to_protein = (composition['mRNA'] + composition['tRNA'] + composition['rRNA'] + composition['ncRNA']) / \ (composition['Protein'] + composition['Unmodeled Protein']) return RNA_to_protein def get_RNA_fractions_dict(self, solution=None): RNA_fractions = {} composition = self.get_biomass_composition(solution=solution) tRNA_to_RNA = ( composition['tRNA']) / (composition['mRNA'] + composition['tRNA'] + composition['rRNA'] + composition['ncRNA']) RNA_fractions['tRNA'] = tRNA_to_RNA rRNA_to_RNA = ( composition['rRNA']) / (composition['mRNA'] + composition['tRNA'] + composition['rRNA'] + composition['ncRNA']) RNA_fractions['rRNA'] = rRNA_to_RNA mRNA_to_RNA = ( composition['mRNA']) / (composition['mRNA'] + composition['tRNA'] + composition['rRNA'] + composition['ncRNA']) RNA_fractions['mRNA'] = mRNA_to_RNA ncRNA_to_RNA = (composition['ncRNA']) / ( composition['mRNA'] + composition['tRNA'] + composition['rRNA'] + composition['ncRNA']) RNA_fractions['ncRNA'] = ncRNA_to_RNA return RNA_fractions def make_biomass_composition_piechart(self, solution=None): try: import brewer2mpl except ImportError: color_map = None else: color_map = brewer2mpl.wesanderson.Zissou.mpl_colormap try: import pandas except ImportError: raise Exception("Pandas must be installed to get biomass piechart") if solution is None: solution = self.solution summary = {} summary['Biomass composition'] = \ self.get_biomass_composition(solution=solution) frame = pandas.DataFrame.from_dict(summary) / solution.f print 'Total biomass sum =', frame.sum().values[0] return frame.plot(kind='pie', subplots=True, legend=None, colormap=color_map)
class MEModel(Model): def __init__(self, *args): Model.__init__(self, *args) self.global_info = {} self.process_data = DictList() # create the biomass/dilution constraint self._biomass = Constraint("biomass") self._biomass_dilution = SummaryVariable("biomass_dilution") self._biomass_dilution.add_metabolites({self._biomass: -1}) self.add_reactions([self._biomass_dilution]) self._biomass_dilution.upper_bound = mu self._biomass_dilution.lower_bound = mu # maintenance energy self._gam = 0. self._ngam = 0. # Unmodeled protein is handled by converting protein_biomass to # biomass, and requiring production of the appropriate amount of dummy # protein self._unmodeled_protein_fraction = None def add_biomass_constraints_to_model(self, biomass_types): for biomass_type in biomass_types: if '_biomass' not in biomass_type: raise ValueError('Biomass types should be suffixed with ' '"_biomass"') constraint_obj = Constraint(biomass_type) summary_variable_obj = SummaryVariable("%s_to_biomass" % biomass_type) summary_variable_obj.add_metabolites({ constraint_obj: -1, self._biomass: 1 }) self.add_reactions([summary_variable_obj]) @property def unmodeled_protein(self): return self.metabolites.get_by_id("protein_dummy") @property def unmodeled_protein_fraction(self): return self._unmodeled_protein_fraction @property def unmodeled_protein_biomass(self): return self.metabolites.get_by_id('unmodeled_protein_biomass') @unmodeled_protein_fraction.setter def unmodeled_protein_fraction(self, value): if 'protein_biomass_to_biomass' not in self.reactions: raise UserWarning("Must add SummaryVariable handling the protein" "biomass constraint (via " ":meth:`add_biomass_constraints_to_model`) " "before defining the unmodeled protein fraction") # see the Biomass_formulations for an explanation amount = value / (1 - value) self.reactions.protein_biomass_to_biomass.add_metabolites( {self.unmodeled_protein_biomass: -amount}, combine=False) self.reactions.protein_biomass_to_biomass.add_metabolites( {self._biomass: 1 + amount}, combine=False) self._unmodeled_protein_fraction = value @property def gam(self): return self._gam @gam.setter def gam(self, value): if 'GAM' not in self.reactions: warn('Adding GAM reaction to model') self.add_reactions([SummaryVariable("GAM")]) self.reactions.GAM.lower_bound = mu atp_hydrolysis = { 'atp_c': -1, 'h2o_c': -1, 'adp_c': 1, 'h_c': 1, 'pi_c': 1 } for met, coeff in iteritems(atp_hydrolysis): self.reactions.GAM.add_metabolites({met: value * coeff}, combine=False) self._gam = value @property def ngam(self): return self._ngam @ngam.setter def ngam(self, value): if 'ATPM' not in self.reactions: warn('Adding ATPM reaction to model') atp_hydrolysis = { 'atp_c': -1, 'h2o_c': -1, 'adp_c': 1, 'h_c': 1, 'pi_c': 1 } self.add_reactions([SummaryVariable("ATPM")]) self.reactions.ATPM.add_metabolites(atp_hydrolysis) self.reactions.ATPM.lower_bound = value self._ngam = value @property def stoichiometric_data(self): for data in self.process_data: if isinstance(data, processdata.StoichiometricData): yield data @property def complex_data(self): for data in self.process_data: if isinstance(data, processdata.ComplexData): yield data @property def translation_data(self): for data in self.process_data: if isinstance(data, processdata.TranslationData): yield data @property def transcription_data(self): for data in self.process_data: if isinstance(data, processdata.TranscriptionData): yield data @property def generic_data(self): for data in self.process_data: if isinstance(data, processdata.GenericData): yield data @property def tRNA_data(self): for data in self.process_data: if isinstance(data, processdata.tRNAData): yield data @property def translocation_data(self): for data in self.process_data: if isinstance(data, processdata.TranslocationData): yield data @property def posttranslation_data(self): for data in self.process_data: if isinstance(data, processdata.PostTranslationData): yield data @property def subreaction_data(self): for data in self.process_data: if isinstance(data, processdata.SubreactionData): yield data def get_metabolic_flux(self, solution=None): """extract the flux state for metabolic reactions""" if solution is None: solution = self.solution if solution.status != "optimal": raise ValueError("solution status '%s' is not 'optimal'" % solution.status) flux_dict = {r.id: 0 for r in self.stoichiometric_data} for reaction in self.reactions: if isinstance(reaction, MetabolicReaction): m_reaction_id = reaction.stoichiometric_data.id if reaction.reverse: flux_dict[m_reaction_id] -= solution.x_dict[reaction.id] else: flux_dict[m_reaction_id] += solution.x_dict[reaction.id] elif reaction.id.startswith("EX_") or reaction.id.startswith("DM"): flux_dict[reaction.id] = solution.x_dict[reaction.id] return flux_dict def get_transcription_flux(self, solution=None): """extract the transcription flux state""" if solution is None: solution = self.solution if solution.status != "optimal": raise ValueError("solution status '%s' is not 'optimal'" % solution.status) flux_dict = {} for reaction in self.reactions: if isinstance(reaction, TranscriptionReaction): for rna_id in reaction.transcription_data.RNA_products: locus_id = rna_id.replace("RNA_", "", 1) if locus_id not in flux_dict: flux_dict[locus_id] = 0 flux_dict[locus_id] += solution.x_dict[reaction.id] return flux_dict def get_translation_flux(self, solution=None): """extract the translation flux state""" if solution is None: solution = self.solution if solution.status != "optimal": raise ValueError("solution status '%s' is not 'optimal'" % solution.status) flux_dict = {r.id: 0 for r in self.translation_data} for reaction in self.reactions: if isinstance(reaction, TranslationReaction): protein_id = reaction.translation_data.id flux_dict[protein_id] += solution.x_dict[reaction.id] return flux_dict def construct_s_matrix(self, growth_rate): """build the stoichiometric matrix at a specific growth rate""" # intialize to 0 s = dok_matrix((len(self.metabolites), len(self.reactions))) # populate with stoichiometry for i, r in enumerate(self.reactions): for met, value in iteritems(r._metabolites): met_index = self.metabolites.index(met) if hasattr(value, "subs"): s[met_index, i] = float(value.subs(mu, growth_rate)) else: s[met_index, i] = float(value) return s def construct_attribute_vector(self, attr_name, growth_rate): """build a vector of a reaction attribute at a specific growth rate Mainly used for upper and lower bounds""" return array([ float(value.subs(mu, growth_rate)) if hasattr(value, "subs") else float(value) for value in self.reactions.list_attr(attr_name) ]) def compute_solution_error(self, solution=None): errors = {} if solution is None: solution = self.solution s = self.construct_s_matrix(solution.f) lb = self.construct_attribute_vector("lower_bound", solution.f) ub = self.construct_attribute_vector("upper_bound", solution.f) x = array(solution.x) err = abs(s * x) errors["max_error"] = err.max() errors["sum_error"] = err.sum() ub_err = min(ub - x) errors["upper_bound_error"] = abs(ub_err) if ub_err < 0 else 0 lb_err = min(x - lb) errors["lower_bound_error"] = abs(lb_err) if lb_err < 0 else 0 return errors def update(self): """updates all component reactions""" for r in self.reactions: if hasattr(r, "update"): r.update() def prune(self, skip=None): """remove all unused metabolites and reactions This should be run after the model is fully built. It will be difficult to add new content to the model once this has been run. skip: list List of complexes/proteins/mRNAs/TUs to remain unpruned from model. """ if not skip: skip = [] complex_data_list = [ i.id for i in self.complex_data if i.id not in skip ] for c_d in complex_data_list: c = self.process_data.get_by_id(c_d) cplx = c.complex if len(cplx.reactions) == 1: list(cplx.reactions)[0].delete(remove_orphans=True) self.process_data.remove(self.process_data.get_by_id(c_d)) for p in self.metabolites.query('_folded'): if 'partially' not in p.id and p.id not in skip: delete = True for rxn in p.reactions: if rxn.metabolites[p] < 0: delete = False break if delete: while len(p.reactions) > 0: list(p.reactions)[0].delete(remove_orphans=True) for data in self.process_data.query(p.id): self.process_data.remove(data.id) for p in self.metabolites.query(re.compile('^protein_')): if isinstance(p, ProcessedProtein) and p.id not in skip: delete = True for rxn in p.reactions: if rxn.metabolites[p] < 0: delete = False break if delete: for rxn in list(p.reactions): self.process_data.remove(rxn.posttranslation_data.id) rxn.delete(remove_orphans=True) for p in self.metabolites.query(re.compile('^protein_')): if isinstance(p, TranslatedGene) and p.id not in skip: delete = True for rxn in p.reactions: if rxn.metabolites[p] < 0 and not rxn.id.startswith( 'degradation'): delete = False break if delete: for rxn in list(p.reactions): p_id = p.id.replace('protein_', '') data = self.process_data.get_by_id(p_id) self.process_data.remove(data.id) rxn.delete(remove_orphans=True) removed_rna = set() for m in list(self.metabolites.query(re.compile("^RNA_"))): delete = False if m.id in skip else True for rxn in m.reactions: if rxn.metabolites[m] < 0 and not rxn.id.startswith('DM_'): delete = False if delete: try: self.reactions.get_by_id('DM_' + m.id).remove_from_model( remove_orphans=True) if m in self.metabolites: # Defaults to subtractive when removing reaction m.remove_from_model() except KeyError: pass else: removed_rna.add(m.id) for t in self.reactions.query('transcription_TU'): if t.id in skip: delete = False else: delete = True for product in t.products: if isinstance(product, TranscribedGene): delete = False t_process_id = t.id.replace('transcription_', '') if delete: t.remove_from_model(remove_orphans=True) self.process_data.remove(t_process_id) else: # gets rid of the removed RNA from the products self.process_data.get_by_id( t_process_id).RNA_products.difference_update(removed_rna) # update to update the TranscriptionReaction mRNA biomass # stoichiometry with new RNA_products if not delete: t.update() def remove_genes_from_model(self, gene_list): for gene in gene_list: # defaults to subtractive when removing model self.metabolites.get_by_id('RNA_' + gene).remove_from_model() protein = self.metabolites.get_by_id('protein_' + gene) for cplx in protein.complexes: print('Complex (%s) removed from model' % cplx.id) for rxn in cplx.metabolic_reactions: try: self.process_data.remove(rxn.id.split('_')[0]) except ValueError: pass rxn.remove_from_model() # If cannot import SymbolicParameter, assume using cobrapy # versions <= 0.5.11 try: from optlang.interface import SymbolicParameter except ImportError: protein.remove_from_model(method='destructive') else: protein.remove_from_model(destructive=True) # Remove all transcription reactions that now do not form a used # transcript for t in self.reactions.query('transcription_TU'): delete = True for product in t.products: if isinstance(product, TranscribedGene): delete = False if delete: t.remove_from_model(remove_orphans=True) t_process_id = t.id.replace('transcription_', '') self.process_data.remove(t_process_id) def set_sasa_keffs(self, avg_keff): sasa_list = [] for rxn in self.reactions: if hasattr(rxn, 'keff') and rxn.complex_data is not None: weight = rxn.complex_data.complex.mass sasa = weight**(3. / 4.) if sasa == 0: warn('Keff not updated for %s' % rxn) else: sasa_list.append(sasa) for data in self.process_data: cplx_mw = 0. if isinstance(data, processdata.TranslocationData): continue if hasattr(data, 'keff') and data.enzyme is not None: if type(data.enzyme) == str: cplxs = [data.enzyme] else: cplxs = data.enzyme for cplx in cplxs: if cplx in self.process_data: try: cplx_mw += self.metabolites.get_by_id(cplx).mass \ ** (3. / 4) except: warn('Complex (%s) cannot access mass' % cplx) elif cplx.split('_mod_')[0] in self.process_data: cplx_mw += self.metabolites.get_by_id( cplx.split('_mod_')[0]).mass**(3. / 4) sasa_list.append(cplx_mw) avg_sasa = array(sasa_list).mean() # redo scaling average SASA to 65. for rxn in self.reactions: if hasattr(rxn, 'keff') and rxn.complex_data is not None: weight = rxn.complex_data.complex.mass sasa = weight**(3. / 4.) if sasa == 0: sasa = avg_sasa rxn.keff = sasa * avg_keff / avg_sasa for data in self.process_data: sasa = 0. if isinstance(data, processdata.TranslocationData): continue if hasattr(data, 'keff') and data.enzyme is not None: if data.enzyme == str: cplxs = [data.enzyme] else: cplxs = data.enzyme for cplx in cplxs: if cplx in self.process_data: sasa += \ self.metabolites.get_by_id(cplx).mass ** (3. / 4) elif cplx.split('_mod_')[0] in self.process_data: sasa += self.metabolites.get_by_id( cplx.split('_mod_')[0]).mass**(3. / 4) if sasa == 0: sasa = avg_sasa data.keff = sasa * avg_keff / avg_sasa self.update()