コード例 #1
0
def test_OpenMMReporter():
    """
    test the OpenMMReporter object for its ability to make appropriate trajectory writes for particles.
    use the harmonic oscillator testsystem

    NOTE : this class will conduct dynamics on 5 particles defined by the harmonic oscillator testsystem in accordance with the coddiwomple.openmm.propagators.OMMBIP
    equipped with the coddiwomple.openmm.integrators.OMMLI integrator, but will NOT explicitly conduct a full test on the propagators or integrators.
    """
    from coddiwomple.openmm.propagators import OMMBIP
    from coddiwomple.openmm.integrators import OMMLI

    temperature = 300 * unit.kelvin
    pressure = None
    from coddiwomple.openmm.states import OpenMMPDFState, OpenMMParticleState
    from coddiwomple.particles import Particle
    from coddiwomple.openmm.reporters import OpenMMReporter
    import shutil

    #create the default get_harmonic_testsystem
    testsystem, period, collision_rate, timestep, alchemical_functions = get_harmonic_testsystem(temperature = temperature)

    #create a particle state and 5 particles
    particles = []
    for i in range(5):
        particle_state = OpenMMParticleState(positions = testsystem.positions) #make a particle state
        particle = Particle(index = i, record_state=False, iteration = 0)
        particle.update_state(particle_state)
        particles.append(particle)

    #since we are copying over the positions, we need a simple assert statement to make sure that the id(hex(particle_state.positions)) are separate in memory
    position_hexes = [hex(id(particle.state.positions)) for particle in particles]
    assert len(position_hexes) == len(list(set(position_hexes))), f"positions are copied identically; this is a problem"

    #create a pdf_state
    pdf_state = OpenMMPDFState(system = testsystem.system, alchemical_composability = HarmonicAlchemicalState, temperature = temperature, pressure = pressure)

    #create an integrator
    integrator = OMMLI(temperature=temperature, collision_rate=collision_rate, timestep=timestep)

    #create a propagator
    propagator = OMMBIP(openmm_pdf_state = pdf_state, integrator = integrator)

    steps_per_application = 100

    #the only thing we want to do here is to run independent md for each of the particles and save trajectories; at the end, we will delete the directory and the traj files
    temp_traj_dir, temp_traj_prefix = os.path.join(os.getcwd(), 'test_dir'), 'traj_prefix'
    reporter = OpenMMReporter(trajectory_directory = 'test_dir', trajectory_prefix='traj_prefix', md_topology=testsystem.mdtraj_topology)
    assert reporter.write_traj

    num_applications=10
    for application_index in range(num_applications):
        returnables = [propagator.apply(particle.state, n_steps=100, reset_integrator=True, apply_pdf_to_context=True, randomize_velocities=True) for particle in particles]
        _save=True if application_index == num_applications-1 else False
        reporter.record(particles, save_to_disk=_save)
    assert reporter.hex_counter == len(reporter.hex_dict)
    assert os.path.exists(temp_traj_dir)
    assert os.listdir(temp_traj_dir) is not None

    #then we can delete
    shutil.rmtree(temp_traj_dir)
コード例 #2
0
def test_OpenMMParticleState():
    """
    conduct a class-wide test on coddiwomple.openmm.states.OpenMMParticleState with the `get_harmonic_testsystem` testsystem
    this will assert successes on __init__, as well as _all_ methods in the coddiwomple.particles.Particle class
    """
    temperature = 300 * unit.kelvin
    pressure = None
    from coddiwomple.openmm.states import OpenMMPDFState, OpenMMParticleState
    from coddiwomple.particles import Particle

    #create the default get_harmonic_testsystem
    testsystem, period, collision_rate, timestep, alchemical_functions = get_harmonic_testsystem(temperature = temperature)

    #test __init__ method
    particle_state = OpenMMParticleState(positions = testsystem.positions) #make a particle state
    particle = Particle(index = 0, record_state=False, iteration = 0)

    #test update_state
    assert particle.state is None
    assert not particle._record_states
    particle.update_state(particle_state)
    assert particle.state is not None

    #test update_iteration
    assert particle.iteration == 0
    particle.update_iteration()
    assert particle.iteration == 1

    #test update ancestry
    assert particle.ancestry == [0]
    particle.update_ancestry(1)
    assert particle.ancestry == [0,1]
コード例 #3
0
def test_OMMBIP():
    """
    test OMMBIP (OpenMMBaseIntegratorPropagator) in the baoab regime on the harmonic test system;
    specifically, we validate the init, apply, _get_global_integrator_variables, _get_context_parameters methods.
    For the sake of testing all of the internal methods, we equip an OMMLI integrator
    """
    from coddiwomple.openmm.propagators import OMMBIP
    from coddiwomple.openmm.integrators import OMMLI

    temperature = 300 * unit.kelvin
    pressure = None
    from coddiwomple.openmm.states import OpenMMPDFState, OpenMMParticleState

    #create the default get_harmonic_testsystem
    testsystem, period, collision_rate, timestep, alchemical_functions = get_harmonic_testsystem(temperature = temperature)

    particle_state = OpenMMParticleState(positions = testsystem.positions) #make a particle state

    num_applications = 100

    #create a pdf_state
    pdf_state = OpenMMPDFState(system = testsystem.system, alchemical_composability = HarmonicAlchemicalState, temperature = temperature, pressure = pressure)

    #create an integrator
    integrator = OMMLI(temperature=temperature, collision_rate=collision_rate, timestep=timestep)

    #create a propagator
    propagator = OMMBIP(openmm_pdf_state = pdf_state, integrator = integrator)

    #check the __init__ method for appropriate equipment
    assert hex(id(propagator.pdf_state)) == hex(id(pdf_state)) #the defined pdf state is tethered to the propagator (this is VERY important for SMC)

    #conduct null application
    prior_reduced_potential = pdf_state.reduced_potential(particle_state)
    return_state, proposal_work = propagator.apply(particle_state, n_steps=0)
    assert proposal_work == 0. #there is no proposal work if returnable_key is None
    assert pdf_state.reduced_potential(particle_state) == prior_reduced_potential
    propagator_state = propagator.context.getState(getEnergy=True)
    assert np.isclose(propagator_state.getPotentialEnergy()*pdf_state.beta,  pdf_state.reduced_potential(particle_state))

    #check context update internals
    prior_reduced_potential = pdf_state.reduced_potential(particle_state)
    parameters = pdf_state.get_parameters() #change an alchemical parameter
    parameters['testsystems_HarmonicOscillator_U0'] = 1. #update parameter dict
    pdf_state.set_parameters(parameters) #set new params

    _ = propagator.apply(particle_state, n_steps=0, apply_pdf_to_context=False) # if we do not apply to context, then the internal_context should not be modified
    assert propagator._get_context_parameters()['testsystems_HarmonicOscillator_U0'] == 0.
    assert np.isclose(propagator.context.getState(getEnergy=True).getPotentialEnergy()*pdf_state.beta, prior_reduced_potential)
    _ = propagator.apply(particle_state, n_steps=0, apply_pdf_to_context=True) # if we do apply to context, then the internal_context should be modified
    assert propagator._get_context_parameters()['testsystems_HarmonicOscillator_U0'] == 1.
    assert np.isclose(prior_reduced_potential + 1.0 * unit.kilojoules_per_mole * pdf_state.beta, propagator.context.getState(getEnergy=True).getPotentialEnergy()*pdf_state.beta)


    #check gettable integrator variables
    integrator_vars = propagator._get_global_integrator_variables()

    #check propagator stability with integrator reset and velocity randomization
    _ = propagator.apply(particle_state, n_steps=1000, reset_integrator=True, apply_pdf_to_context=True, randomize_velocities=True)
コード例 #4
0
ファイル: test_propagation.py プロジェクト: LIVazquezS/qmlify
def propagator_testprep():
    """
    wrapper that outputs all necessary Propagator (and subclass) inputs for testing (the test system is butane solvated in tip3p)

    returns
        pdf_state : coddiwomple.OpenMMPDFState
            subclass of openmmtools.states.ThermodynamicState of the system object
        pdf_state_subset : coddiwomple.OpenMMPDFState
            subclass of openmmtools.states.ThermodynamicState of the system_subset object
        integrator : qmlify.propagation.Integrator
            integrator that equips the Propagator
        ani_handler : qmlify.ANI_force_and_energy
            handler of the ani components
        atom_map : dict
            index map of {md_top_atom_index : md_subset_top_atom_index} of the matching atoms where key is the index of the md_topology atom and the value is the index of the matching md_subset_topology atom
        particle : coddiwomple.particles.Particle
            particle containing a coddiwomple.openmm.OpenMMParticleState (subclass of openmmtools.states.SamplerState)
    """
    import mdtraj as md
    from coddiwomple.particles import Particle
    from coddiwomple.openmm.states import OpenMMParticleState
    from qmlify.utils import generate_propagator_inputs

    vac_sys_pos_top, sol_sys_pos_top = generate_testsystem()
    vac_system, vac_positions, vac_topology = vac_sys_pos_top
    sol_system, sol_positions, sol_topology = sol_sys_pos_top

    md_topology = md.Topology.from_openmm(sol_topology)
    md_subset_topology = md.Topology.from_openmm(vac_topology)
    pdf_state, pdf_state_subset, integrator, ani_handler, atom_map = generate_propagator_inputs(system = sol_system,
                                                                                                system_subset = vac_system,
                                                                                                md_topology = md_topology,
                                                                                                md_subset_topology = md_subset_topology)
    particle = Particle(0)
    box_vectors = sol_system.getDefaultPeriodicBoxVectors()
    particle_state = OpenMMParticleState(positions = sol_positions, box_vectors = box_vectors)
    particle.update_state(particle_state)

    return pdf_state, pdf_state_subset, integrator, ani_handler, atom_map, particle
コード例 #5
0
def test_OpenMMPDFState():
    """
    conduct a class-wide test on coddiwomple.openmm.states.OpenMMPDFState with the `get_harmonic_testsystem` testsystem
    this will assert successes on __init__, set_parameters, get_parameters, reduced_potential methods
    """
    temperature = 300 * unit.kelvin
    pressure = None
    from coddiwomple.openmm.states import OpenMMPDFState, OpenMMParticleState

    #create the default get_harmonic_testsystem
    testsystem, period, collision_rate, timestep, alchemical_functions = get_harmonic_testsystem(temperature = temperature)

    #test init method
    pdf_state = OpenMMPDFState(system = testsystem.system, alchemical_composability = HarmonicAlchemicalState, temperature = temperature, pressure = pressure)
    assert isinstance(pdf_state._internal_context, openmm.Context)
    print(f"pdf_state parameters: {pdf_state._parameters}")

    #test set_parameters
    new_parameters = {key : 1.0 for key, val in pdf_state._parameters.items() if val is not None}
    pdf_state.set_parameters(new_parameters) #this should set the new parameters, but now we have to make sure that the context actually has those parameters bound
    swig_parameters = pdf_state._internal_context.getParameters()
    context_parameters = {q: swig_parameters[q] for q in swig_parameters}
    assert context_parameters['testsystems_HarmonicOscillator_x0'] == 1.
    assert context_parameters['testsystems_HarmonicOscillator_U0'] == 1.

    #test get_parameters
    returnable_parameters = pdf_state.get_parameters()
    assert len(returnable_parameters) == 2
    assert returnable_parameters['testsystems_HarmonicOscillator_x0'] == 1.
    assert returnable_parameters['testsystems_HarmonicOscillator_U0'] == 1.

    #test reduced_potential
    particle_state = OpenMMParticleState(positions = testsystem.positions) #make a particle state so that we can compute a reduced potential
    reduced_potential = pdf_state.reduced_potential(particle_state)
    externally_computed_reduced_potential = pdf_state._internal_context.getState(getEnergy=True).getPotentialEnergy()*pdf_state.beta
    assert np.isclose(reduced_potential, externally_computed_reduced_potential)
コード例 #6
0
def run(setup_dict):
    """
    execute a Propagator
    """
    import torchani
    from simtk import unit
    import sys
    import numpy as np
    import mdtraj as md
    from coddiwomple.particles import Particle
    from coddiwomple.openmm.states import OpenMMParticleState
    from qmlify.utils import load_yaml, deserialize_xml, position_extractor, generate_propagator_inputs, depickle

    #pull systems
    system = deserialize_xml(setup_dict['system'])
    system_subset = deserialize_xml(setup_dict['subset_system'])

    #load topologies
    md_topology = md.Topology.from_openmm(depickle(setup_dict['topology']))
    md_subset_topology = md.Topology.from_openmm(
        depickle(setup_dict['subset_topology']))

    #load positions and box vectors
    positions, box_vectors = position_extractor(
        positions_cache_filename=setup_dict['positions_cache_filename'],
        index_to_extract=setup_dict['position_extraction_index'])
    positions *= unit.nanometers
    if box_vectors is not None: box_vectors *= unit.nanometers

    #integrator integrator_kwargs
    default_integrator_kwargs = {
        'temperature': 300.0 * unit.kelvin,
        'collision_rate': 1.0 / unit.picoseconds,
        'timestep': 1.0 * unit.femtoseconds,
        'splitting': "V R O R F",
        'constraint_tolerance': 1e-6,
        'pressure': 1.0 * unit.atmosphere
    }
    if 'integrator_kwargs' in setup_dict.keys():
        integrator_kwargs = setup_dict['integrator_kwargs']
        if integrator_kwargs is not None:
            if 'temperature' in integrator_kwargs.keys():
                integrator_kwargs['temperature'] *= unit.kelvin
            if 'collision_rate' in integrator_kwargs.keys():
                integrator_kwargs['collision_rate'] /= unit.picoseconds
            if 'timestep' in integrator_kwargs.keys():
                integrator_kwargs['timestep'] *= unit.femtoseconds
            if 'pressure' in integrator_kwargs.keys(
            ) and integrator_kwargs['pressure'] is not None:
                integrator_kwargs['pressure'] *= unit.atmosphere
            default_integrator_kwargs.update(integrator_kwargs)

    pdf_state, pdf_state_subset, integrator, ani_handler, atom_map = generate_propagator_inputs(
        system=system,
        system_subset=system_subset,
        md_topology=md_topology,
        md_subset_topology=md_subset_topology,
        ani_model=torchani.models.ANI2x(),
        integrator_kwargs=default_integrator_kwargs)

    if setup_dict['direction'] == 'forward':
        from qmlify.propagation import Propagator
        prop = Propagator
    elif setup_dict['direction'] == 'backward':
        from qmlify.propagation import BackwardPropagator
        prop = BackwardPropagator
    elif setup_dict['direction'] == 'ani_endstate':
        from qmlify.propagation import ANIPropagator
        prop = ANIPropagator
    else:
        raise Exception(
            f"{setup_dict['direction']} is not valid. allowed directions are 'forward', 'backward', 'ani_endstate'"
        )

    propagator = prop(openmm_pdf_state=pdf_state,
                      openmm_pdf_state_subset=pdf_state_subset,
                      subset_indices_map=atom_map,
                      integrator=integrator,
                      ani_handler=ani_handler,
                      context_cache=None,
                      reassign_velocities=True,
                      n_restart_attempts=0)

    particle = Particle(0)
    particle_state = OpenMMParticleState(positions=positions,
                                         box_vectors=box_vectors)
    particle.update_state(particle_state)
    particle_state, _return_dict = propagator.apply(
        particle_state,
        n_steps=setup_dict['num_steps'],
        reset_integrator=True,
        apply_pdf_to_context=True)
    if box_vectors is None:
        particle_state.box_vectors = None

    work_array = np.array(propagator.state_works[0])

    if particle_state.box_vectors is not None:
        np.savez(setup_dict['out_positions_npz'],
                 positions=np.array([
                     particle_state.positions.value_in_unit_system(
                         unit.md_unit_system)
                 ]),
                 box_vectors=np.array([
                     particle_state.box_vectors.value_in_unit_system(
                         unit.md_unit_system)
                 ]))
    else:
        np.savez(setup_dict['out_positions_npz'],
                 positions=particle_state.positions.value_in_unit_system(
                     unit.md_unit_system))
    np.savez(setup_dict['out_works_npz'], works=work_array)
コード例 #7
0
ファイル: complete.py プロジェクト: choderalab/nn-endstates
def ANI_endstate_sampler(
                         system,
                         system_subset,
                         subset_indices_map,
                         positions_cache_filename,
                         md_topology,
                         index_to_run,
                         steps_per_application,
                         integrator_kwargs = {'temperature': 300.0 * unit.kelvin,
                                                      'collision_rate': 1.0 / unit.picoseconds,
                                                      'timestep': 2.0 * unit.femtoseconds,
                                                      'splitting': "V R O R F",
                                                      'constraint_tolerance': 1e-6,
                                                      'pressure': 1.0 * unit.atmosphere},
                        position_extractor = None
                        ):
    """
    conduct ani endstate sampling

    arguments
        system : openmm.System
            system
        system_subset : openmm.System
            subset system
        subset_indices_map : dict
            dict of {openmm_pdf_state atom_index : openmm_pdf_state_subset atom index}
        positions_cache_filename : str
            path to the cache positions
        index_to_run : int
            index of the positions to anneal
        number_of_applications : int
            number of applications of the propagator
        steps_per_application : int
            number of integration steps per application
        integrator_kwargs : dict, see default
            kwargs to pass to OMMLIAIS integrator
    """
    from coddiwomple.particles import Particle
    from coddiwomple.openmm.states import OpenMMParticleState, OpenMMPDFState
    #load the endstate cache
    traj = np.load(positions_cache_filename)
    positions = traj['positions'][index_to_run,:,:] * unit.nanometers
    if position_extractor is not None:
        positions = position_extractor(_positions)

    try:
        box_vectors = traj['box_vectors'][index_to_run,:,:] * unit.nanometers
    except Exception as e:
        box_vectors = None

    species_str = ''.join([atom.element.symbol for atom in md_topology.subset(list(subset_indices_map.keys())).atoms])
    _logger.info(f"species string: {species_str}")
    ani_handler = ANI1_force_and_energy(model = torchani.models.ANI1ccx(),
                                                 atoms=species_str,
                                                 platform='cpu',
                                                 temperature=integrator_kwargs['temperature'])

    #make thermostates
    pressure = integrator_kwargs['pressure'] if box_vectors is not None else None
    pdf_state = ThermodynamicState(system = system, temperature = integrator_kwargs['temperature'], pressure=pressure)
    pdf_state_subset = ThermodynamicState(system = system_subset, temperature = integrator_kwargs['temperature'], pressure = None)


    #make an integrator
    integrator = Integrator(**integrator_kwargs)

    #make a propagator
    propagator = ANIPropagator(openmm_pdf_state = pdf_state,
                 openmm_pdf_state_subset = pdf_state_subset,
                 subset_indices_map = subset_indices_map,
                 integrator = integrator,
                 ani_handler = ani_handler,
                 context_cache=None,
                 reassign_velocities=True,
                 n_restart_attempts=0,
                 reporter = None)


    particle = Particle(0)
    particle_state = OpenMMParticleState(positions = positions, box_vectors = box_vectors)
    particle.update_state(particle_state)
    particle_state, _return_dict = propagator.apply(particle_state, n_steps = steps_per_application, reset_integrator=True, apply_pdf_to_context=True)
    if box_vectors is None:
        particle_state.box_vectors=None
    
    return particle_state, np.array(propagator.state_works[0])
コード例 #8
0
ファイル: complete.py プロジェクト: choderalab/nn-endstates
def annealed_importance_sampling(direction,
                                 system,
                                 system_subset,
                                 subset_indices_map,
                                 positions_cache_filename,
                                 index_to_run,
                                 directory_name,
                                 trajectory_prefix,
                                 md_topology,
                                 steps_per_application,
                                 integrator_kwargs = {'temperature': 300.0 * unit.kelvin,
                                                      'collision_rate': 1.0 / unit.picoseconds,
                                                      'timestep': 1.0 * unit.femtoseconds,
                                                      'splitting': "V R O R F",
                                                      'constraint_tolerance': 1e-6,
                                                      'pressure': 1.0 * unit.atmosphere},
                                 save_indices = None,
                                 position_extractor = None,
                                 write_trajectory_interval=1
                                ):
    """
    conduct annealed importance sampling in the openmm regime; will write the accumulated work dictionary after each application

    arguments
        direction : str
            forward or backward
        system : openmm.System
            system
        system_subset : openmm.System
            subset system
        subset_indices_map : dict
            dict of {openmm_pdf_state atom_index : openmm_pdf_state_subset atom index}
        positions_cache_filename : str
            path to the cache positions
        index_to_run : int
            index of the positions to anneal
        directory_name : str
            directory that will be written to
        trajectory_prefix : str
            .pdb prefix
        md_topology : mdtraj.Topology
            topology that will write the trajectory
        save_indices : list
            list of indices that will be saved
        number_of_applications : int
            number of applications of the propagator
        steps_per_application : int
            number of integration steps per application
        integrator_kwargs : dict, see default
            kwargs to pass to OMMLIAIS integrator
        save_indices : list(int)
            list of indices of md_topology atoms to save to disk
        position_extractor : function, default None
            function to extract appropriate positons from the cache
        write_trajectory_interval : int
            frequency with which to write trajectory to disk
    """
    from coddiwomple.particles import Particle
    from coddiwomple.openmm.states import OpenMMParticleState, OpenMMPDFState
    #load the endstate cache
    traj = np.load(positions_cache_filename)
    positions = traj['positions'][index_to_run,:,:] * unit.nanometers
    if position_extractor is not None:
        positions = position_extractor(_positions)

    try:
        box_vectors = traj['box_vectors'][index_to_run,:,:] * unit.nanometers
    except Exception as e:
        box_vectors = None

    assert direction in ['forward', 'backward']

    #make a handle object for ANI
    species_str = ''.join([atom.element.symbol for atom in md_topology.subset(list(subset_indices_map.keys())).atoms])
    _logger.info(f"species string: {species_str}")
    ani_handler = ANI1_force_and_energy(model = torchani.models.ANI1ccx(),
                                                 atoms=species_str,
                                                 platform='cpu',
                                                 temperature=integrator_kwargs['temperature'])

    #make thermostates
    pressure = integrator_kwargs['pressure'] if box_vectors is not None else None
    pdf_state = ThermodynamicState(system = system, temperature = integrator_kwargs['temperature'], pressure=pressure)
    pdf_state_subset = ThermodynamicState(system = system_subset, temperature = integrator_kwargs['temperature'], pressure = None)

    #make a reporter
    saveable_topology = md_topology.subset(save_indices)
    reporter = OpenMMReporter(directory_name, trajectory_prefix, saveable_topology, subset_indices = save_indices)


    #make an integrator
    integrator = Integrator(**integrator_kwargs)

    #make a propagator
    if direction == 'forward':
        propagator = Propagator(openmm_pdf_state = pdf_state,
                     openmm_pdf_state_subset = pdf_state_subset,
                     subset_indices_map = subset_indices_map,
                     integrator = integrator,
                     ani_handler = ani_handler,
                     context_cache=None,
                     reassign_velocities=True,
                     n_restart_attempts=0,
                     reporter = reporter,
                     write_trajectory_interval = write_trajectory_interval)
    else:
        propagator = BackwardPropagator(openmm_pdf_state = pdf_state,
                     openmm_pdf_state_subset = pdf_state_subset,
                     subset_indices_map = subset_indices_map,
                     integrator = integrator,
                     ani_handler = ani_handler,
                     context_cache=None,
                     reassign_velocities=True,
                     n_restart_attempts=0,
                     reporter = reporter,
                     write_trajectory_interval = write_trajectory_interval)



    particle = Particle(0)
    particle_state = OpenMMParticleState(positions = positions, box_vectors = box_vectors)
    particle.update_state(particle_state)
    particle_state, _return_dict = propagator.apply(particle_state, n_steps = steps_per_application, reset_integrator=True, apply_pdf_to_context=True)
    if box_vectors is None:
        particle_state.box_vectors=None


    return particle_state, np.array(propagator.state_works[0])
コード例 #9
0
def endstate_equilibration(system,
                           endstate_positions,
                           box_vectors,
                           directory_name,
                           trajectory_prefix,
                           md_topology,
                           number_of_applications,
                           steps_per_application,
                           endstate_parameters = 0.0,
                           alchemical_composability = RelativeAlchemicalState):
    """
    conduct an endstate equilibration with pdf_state parameters defined by `endstate_parameters` with decorrelation
    that will be written to disk

    arguments
        system : openmm.System
            parameterizable system
        endstate_positions : np.ndarray(N,3) * unit.nanometers (or length units)
            starting positions that will be minimized and simulated
        box_vectors : np.ndarray(3,3) * unit.nanometers (or length units)
            starting box vectors
        directory_name : str
            directory that will be written to
        trajectory_prefix : str
            .pdb prefix
        md_topology : mdtraj.Topology
            topology that will write the trajectory
        number_of_applications : int
            number of applications of the propagator
        steps_per_application : int
            number of integration steps per application
        endstate_parameters : float
            endstate parameters
        alchemical_composability : openmmtools.alchemy.AlchemicalState
            composer for alchemical composability creation
    """
    from perses.dispersed.feptasks import minimize
    from perses.dispersed.utils import compute_timeseries
    import mdtraj.utils as mdtrajutils

    #determine pressure
    forces = {type(force).__name__: force for force in system.getForces()}
    if "MonteCarloBarostat" in list(forces.keys()):
        pressure = 1.0 * unit.atmosphere
    else:
        pressure = None
    print(f"pressure: {pressure}")

    particle_state = OpenMMParticleState(positions = endstate_positions,
                                         box_vectors =  np.array(system.getDefaultPeriodicBoxVectors()),
                                        )
    pdf_state = OpenMMPDFState(system = system,
                               alchemical_composability = alchemical_composability,
                               pressure=pressure)

    #set the pdf_state endstate parameters
    pdf_state_parameters = pdf_state.get_parameters()
    reset_pdf_state_parameters = {key: endstate_parameters for key in pdf_state_parameters.keys()}
    pdf_state.set_parameters(reset_pdf_state_parameters)

    langevin_integrator = OMMLI(temperature = pdf_state.temperature,
                                timestep = 2.0 * unit.femtoseconds)

    endstate_propagator = OMMBIP(openmm_pdf_state = pdf_state,
                                 integrator = langevin_integrator)

    reporter = OpenMMReporter(directory_name, trajectory_prefix, md_topology = md_topology)

    particle = Particle(0)
    particle.update_state(particle_state)
    reporter.record([particle])

    minimize(endstate_propagator.pdf_state, particle_state)

    potentials = []
    for i in tqdm.trange(number_of_applications):
        particle_state, _return_dict = endstate_propagator.apply(particle_state, n_steps = steps_per_application)
        reporter.record([particle])
        potentials.append(_return_dict['new_pe'])


    [t0, g, Neff_max, A_t, uncorrelated_indices] = compute_timeseries(np.array(potentials))
    print(f"t0: {t0}, g: {g}, Neff_max: {Neff_max}, A_t: {A_t}, uncorrelated_indices:{uncorrelated_indices}")
    particle_hex = hex(id(particle))
    reporter.hex_dict[particle_hex] = [[reporter.hex_dict[particle_hex][0][q] for q in uncorrelated_indices],
                                       [reporter.hex_dict[particle_hex][1][q] for q in uncorrelated_indices],
                                       [reporter.hex_dict[particle_hex][2][q] for q in uncorrelated_indices]]

    try:
        reporter._write_trajectory(particle_hex, f"{reporter.neq_traj_filename}.{format(reporter.hex_to_index[particle_hex], '04')}.pdb")
    except Exception as e:
        print(e)
コード例 #10
0
def mcmc_smc_resampler(system,
                       endstate_cache_filename,
                       directory_name,
                       trajectory_prefix,
                       md_topology,
                       number_of_particles,
                       parameter_sequence,
                       observable = nESS,
                       threshold = vanilla_floor_threshold,
                      alchemical_composability = RelativeAlchemicalState,
                      integrator_kwargs = {'temperature': 300.0 * unit.kelvin,
                                                      'collision_rate': 1.0 / unit.picoseconds,
                                                      'timestep': 2.0 * unit.femtoseconds,
                                                      'splitting': "V R O R V",
                                                      'constraint_tolerance': 1e-6},
                      record_state_work_interval = 1,
                      trajectory_write_interval = 1):
    """
    Conduct a single-direction annealing protocol in the AIS regime (wherein particle incremental weights are computed according to Eq. 31 of https://www.stats.ox.ac.uk/~doucet/delmoral_doucet_jasra_sequentialmontecarlosamplersJRSSB.pdf)
    with resampling.

    arguments
        system : openmm.System
            parameterizable system
        endstate_cache_filename : str
            path to the endstate cache pdb
        directory_name : str
            directory that will be written to
        trajectory_prefix : str
            .pdb prefix
        md_topology : mdtraj.Topology
            topology that will write the trajectory
        number_of_particles : int
            number of particles that will be used
        parameter_sequence : list of dict
            list of dictionary of parameters to be set
        observable : function
            function to compute observables on particles
        threshold : function
            function to compute a threshold on an observable
        alchemical_composability : openmmtools.alchemy.AlchemicalState
            composer for alchemical composability creation
        integrator_kwargs : dict, see default
            kwargs to pass to OMMLIAIS integrator
    """
    pressure = handle_pressure(system)
    print(f"pressure: {pressure}")

    traj = md.Trajectory.load(endstate_cache_filename)
    num_frames = traj.n_frames
    proposal_pdf_state = OpenMMPDFState(system = system, alchemical_composability = alchemical_composability, pressure=pressure)
    target_pdf_state = OpenMMPDFState(system = system, alchemical_composability = alchemical_composability, pressure = pressure)

    reporter = OpenMMReporter(directory_name, trajectory_prefix, md_topology = md_topology)

    integrator = OMMLI(**integrator_kwargs)
    propagator = OMMBIP(proposal_pdf_state, integrator)
    proposal_factory = ProposalFactory(parameter_sequence, propagator)
    target_factory = TargetFactory(target_pdf_state, parameter_sequence, termination_parameters = None)

    resampler = MultinomialResampler()

    particles = [Particle(index = idx) for idx in range(number_of_particles)]

    for idx in range(number_of_particles):
        random_frame = np.random.choice(range(num_frames))
        positions = traj.xyz[random_frame] * unit.nanometers
        box_vectors = traj.unitcell_vectors[random_frame]*unit.nanometers
        particle_state = OpenMMParticleState(positions=positions, box_vectors = box_vectors)
        proposal_factory.equip_initial_sample(particle = particles[idx],
                                          initial_particle_state = particle_state,
                                          generation_pdf = None)
        reporter.record(particles)

    while True: #be careful...
        try:
            [particle.update_iteration() for particle in particles]#update the iteration
            incremental_works = np.array([target_factory.compute_incremental_work(particle, neglect_proposal_work = True) for particle in particles]) #compute incremental works
            randomize_velocities = True if particles[0].iteration == 1 else False #whether to randomize velocities in the first iteration
            [proposal_factory.propagate(particle, randomize_velocities=randomize_velocities, apply_pdf_to_context=True) for particle in particles] #propagate particles (be sure to save to context)
            resampler.resample(particles, incremental_works, observable = observable, threshold = threshold, update_particle_indices = True) #attempt to resample particles

            #ask to terminate
            if all(target_factory.terminate(particle) for particle in particles):
                reporter.record(particles, save_to_disk=True)
                break
            else:
                #update the auxiliary works...
                [particle.zero_auxiliary_work() for particle in particles]
                [particle.update_auxiliary_work(-target_factory.pdf_state.reduced_potential(particle.state)) for particle in particles]
                reporter.record(particles)
        except Exception as e:
            print(f"error raised in iteration {particles[0].iteration}: {e}")
            break

    return particles
コード例 #11
0
def annealed_importance_sampling(system,
                                 endstate_cache_filename,
                                 directory_name,
                                 trajectory_prefix,
                                 md_topology,
                                 alchemical_functions,
                                 number_of_applications,
                                 steps_per_application,
                                 endstate_parameters,
                                 alchemical_composability = RelativeAlchemicalState,
                                 integrator_kwargs = {'temperature': 300.0 * unit.kelvin,
                                                      'collision_rate': 1.0 / unit.picoseconds,
                                                      'timestep': 2.0 * unit.femtoseconds,
                                                      'splitting': "P I H N S V R O R V",
                                                      'constraint_tolerance': 1e-6},
                                record_state_work_interval = 1,
                                trajectory_write_interval = 1,
                                ):
    """
    conduct annealed importance sampling in the openmm regime

    arguments
        system : openmm.System
            parameterizable system
        endstate_cache_filename : str
            path to the endstate cache pdb
        directory_name : str
            directory that will be written to
        trajectory_prefix : str
            .pdb prefix
        md_topology : mdtraj.Topology
            topology that will write the trajectory
        alchemical_functions : dict
            {pdf_parameter <str>: function <str>, lepton-readable}
        number_of_applications : int
            number of applications of the propagator
        steps_per_application : int
            number of integration steps per application
        endstate_parameters : float
            endstate parameters
        alchemical_composability : openmmtools.alchemy.AlchemicalState
            composer for alchemical composability creation
        integrator_kwargs : dict, see default
            kwargs to pass to OMMLIAIS integrator
    """
    #determine pressure
    pressure = handle_pressure(system)

    print(f"pressure: {pressure}")

    traj = md.Trajectory.load(endstate_cache_filename)

    num_frames = traj.n_frames
    pdf_state = OpenMMPDFState(system = system, alchemical_composability = alchemical_composability, pressure=pressure)

    #set the pdf_state endstate parameters
    pdf_state_parameters = pdf_state.get_parameters()
    reset_pdf_state_parameters = {key: endstate_parameters for key in pdf_state_parameters.keys()}
    pdf_state.set_parameters(reset_pdf_state_parameters)

    reporter = OpenMMReporter(directory_name, trajectory_prefix, md_topology = md_topology)

    ais_integrator = OMMLIAIS(
                             alchemical_functions,
                             steps_per_application,
                             **integrator_kwargs)

    ais_propagator = OMMAISPR(openmm_pdf_state = pdf_state,
                              integrator = ais_integrator,
                              record_state_work_interval = record_state_work_interval,
                              reporter = reporter,
                              trajectory_write_interval = trajectory_write_interval,
                              context_cache=None,
                              reassign_velocities=True,
                              n_restart_attempts=0)

    frames = np.random.choice(range(num_frames), number_of_applications)

    particle = Particle(0)

    for i in tqdm.trange(number_of_applications):
        pdf_state.set_parameters(reset_pdf_state_parameters)
        particle_state = OpenMMParticleState(positions = traj.xyz[frames[i]] * unit.nanometers, box_vectors = traj.unitcell_vectors[frames[i]]*unit.nanometers)
        particle.update_state(particle_state)
        try:
            _, _return_dict = ais_propagator.apply(particle_state, n_steps = steps_per_application, reset_integrator=True, apply_pdf_to_context=True)
        except Exception as e:
            print(e)


    return ais_propagator.state_works
コード例 #12
0
def test_OMMLI():
    """
    test OMMLI (OpenMMLangevinIntegrator) in the baoab regime on the harmonic test system;
    Specifically, we run MD to convergence and assert that the potential energy of the system and the standard
    deviation thereof is within a specified threshold.
    We also check the accumulation of shadow, proposal works, as well as the ability to reset, initialize, and subsume the integrator into an OMMBIP propagator
    """
    from coddiwomple.openmm.propagators import OMMBIP
    from coddiwomple.openmm.integrators import OMMLI
    import tqdm

    temperature = 300 * unit.kelvin
    pressure = None
    from coddiwomple.openmm.states import OpenMMPDFState, OpenMMParticleState
    from coddiwomple.particles import Particle

    #create the default get_harmonic_testsystem
    testsystem, period, collision_rate, timestep, alchemical_functions = get_harmonic_testsystem(temperature = temperature)

    particle_state = OpenMMParticleState(positions = testsystem.positions) #make a particle state
    particle = Particle(index = 0, record_state=False, iteration = 0)
    particle.update_state(particle_state)

    num_applications = 100

    #create a pdf_state
    pdf_state = OpenMMPDFState(system = testsystem.system, alchemical_composability = HarmonicAlchemicalState, temperature = temperature, pressure = pressure)

    #create an integrator
    integrator = OMMLI(temperature=temperature, collision_rate=collision_rate, timestep=timestep)

    #create a propagator
    propagator = OMMBIP(openmm_pdf_state = pdf_state, integrator = integrator)

    #expected reduced potential
    mean_reduced_potential = testsystem.get_potential_expectation(pdf_state) * pdf_state.beta
    std_dev_reduced_potential = testsystem.get_potential_standard_deviation(pdf_state) * pdf_state.beta

    reduced_pe = []

    #some sanity checks for propagator:
    global_integrator_variables_before_integration = propagator._get_global_integrator_variables()
    print(f"starting integrator variables: {global_integrator_variables_before_integration}")

    #some sanity checks for integrator:
    start_proposal_work = propagator.integrator._get_energy_with_units('proposal_work', dimensionless=True)
    start_shadow_work = propagator.integrator._get_energy_with_units('shadow_work', dimensionless=True)
    assert start_proposal_work == global_integrator_variables_before_integration['proposal_work']
    assert start_shadow_work == global_integrator_variables_before_integration['shadow_work']

    for app_num in tqdm.trange(num_applications):
        particle_state, proposal_work = propagator.apply(particle_state, n_steps=20, reset_integrator=False, apply_pdf_to_context=False, randomize_velocities=True)
        assert proposal_work==0. #this must be the case since we did not pass a 'returnable_key'

        #sanity checks for inter-application methods
        assert propagator.integrator._get_energy_with_units('proposal_work', dimensionless=True) != 0. #this cannot be zero after a step of MD without resets
        assert propagator.integrator._get_energy_with_units('shadow_work', dimensionless=True) != 0. #this cannot be zero after a step of MD without resets
        reduced_pe.append(pdf_state.reduced_potential(particle_state))


    tol=6 * std_dev_reduced_potential
    calc_mean_reduced_pe = np.mean(reduced_pe)
    calc_stddev_reduced_pe = np.std(reduced_pe)
    assert calc_mean_reduced_pe < mean_reduced_potential + tol and calc_mean_reduced_pe > mean_reduced_potential - tol, f"the mean reduced energy and standard deviation ({calc_mean_reduced_pe}, {calc_stddev_reduced_pe}) is outside the tolerance \
        of a theoretical mean potential energy of {mean_reduced_potential} +/- {tol}"
    print(f"the mean reduced energy/standard deviation is {calc_mean_reduced_pe, calc_stddev_reduced_pe} and the theoretical mean reduced energy and stddev are {mean_reduced_potential}")

    #some cleanup of the integrator
    propagator.integrator.reset() #this should reset proposal, shadow, and ghmc staticstics (we omit ghmc stats)
    assert propagator.integrator._get_energy_with_units('proposal_work', dimensionless=True) == 0. #this should be zero after a reset
    assert propagator.integrator._get_energy_with_units('shadow_work', dimensionless=True) == 0. #this should be zero after a reset