num_workers=0, num_rep=20, prob_rotate=1, max_angel=180, sagittal_size=dis_model.sagittal_size, transverse_size=dis_model.transverse_size, k_nearest=dis_model.k_nearest, sagittal_shift=dis_model.sagittal_shift, pin_memory=False, sampling_strategy=None) # 设定验证参数 valid_evaluator = Evaluator( dis_model, valid_studies, '../data/lumbar_train51_annotation.json', num_rep=5, max_dist=6, ) # 每个batch要训练的步骤 step_per_batch = len(train_dataloader) # 设置Adam优化器,以及学习率 optimizer = torch.optim.AdamW(dis_model.parameters(), lr=1e-5) # 设置最大训练轮次 max_step = 30 * step_per_batch # 训练 fit_result = torch_utils.fit( dis_model, train_data=train_dataloader, valid_data=None,
batch_size=8, num_workers=0, num_rep=20, prob_rotate=1, max_angel=180, sagittal_size=dis_model.sagittal_size, transverse_size=dis_model.sagittal_size, k_nearest=0, max_dist=6, sagittal_shift=1, pin_memory=False) # 设定验证参数 valid_evaluator = Evaluator(dis_model, valid_studies, '../data/lumbar_train51_annotation.json', num_rep=20, max_dist=6, metric='key point recall') # 每个batch要训练的步骤 step_per_batch = len(train_dataloader) # 设置Adam优化器,以及学习率 optimizer = torch.optim.AdamW(dis_model.parameters(), lr=1e-5) # 设置最大训练轮次 max_step = 50 * step_per_batch # 训练 fit_result = torch_utils.fit( dis_model, train_data=train_dataloader, valid_data=None, optimizer=optimizer,