p = 1.0 - (nbits * 2) / float(numeff) #.05 * abs(numeff-2) else: p = 0 return bestfit + (.45 / float(numtf)) + (.45 * p) return bestfit if __name__ == '__main__': #log.setLevel(logging.DEBUG) #random.seed(1234*int(os.getenv('SGE_TASK_ID'))) #p = BooleanProb(evaluate) evalf = partial(evaluate, nbits=2) #mapfun = getoutputp0p1) cfg = loadconfig(parsecmd()) p = BooleanProb(2, evalf) edw = EvoDevoWorkbench(cfg, p) #p.eval_ = bindparams(edw.arnconfig, p.eval_) edw.run() #f = open('genome.save','w') #f.write(edw.best.phenotype.code.bin) #zzf.close #plot_ = bindparams(edw.arnconfig, plotindividual) #plot_(edw.best.phenotype) #genresult = test(ewd.best.circuit, range(2,20)) #print 'Generalization: ' #print genresult
#ok = testmp(phenotype, intinps) # if ok > bestfit: # bestfit = ok # bestout = eff # #print 'best output index is now ',eff #phenotype.output_idx = bestout #else: #print 'output index is ', phenotype.output_idx #bestfit = testmp(phenotype, intinps) bestfit =testmp(phenotype, intinps) return len(intinps) - bestfit if __name__ == '__main__': #p = BooleanProb(evaluate) evalf = partial(evaluate, nbits=6) cfg = loadconfig(parsecmd()) #mapfun = getoutputp0p1) p = Multiplexer(6,evalf) edw = EvoDevoWorkbench(cfg,p) #p.eval_ = bindparams(edw.arnconfig, p.eval_) edw.run() #f = open('genome.save','w') #f.write(edw.best.phenotype.code.bin) #zzf.close #plot_ = bindparams(edw.arnconfig, plotindividual) #plot_(edw.best.phenotype) #genresult = test(ewd.best.circuit, range(2,20)) #print 'Generalization: ' #print genresult