コード例 #1
0
    def test_step(self, batch, batch_idx):

        data, target = batch
        logits = self.student(data)
        # loss = F.cross_entropy(logits, target)
        loss = utils.focal_loss(logits, target, gamma=2, ignore_index=255)
        self.test_loss += loss.item()
        self.test_metrics.update(
            logits.max(1)[1].detach().cpu().numpy().astype('uint8'),
            target.detach().cpu().numpy().astype('uint8'))
コード例 #2
0
 def test_step(self, batch, batch_idx):
     '''
     Perform a single forward pass on test batch
     '''
     data, target = batch
     logits = self.model(data)
     loss = utils.focal_loss(logits, target, gamma=2, ignore_index=255)
     self.test_loss += loss.item()
     self.test_metrics.update(
         logits.max(1)[1].detach().cpu().numpy().astype('uint8'),
         target.detach().cpu().numpy().astype('uint8'))
コード例 #3
0
    def test_step(self, batch, batch_idx):

        data, target = batch
        s_logits = self.model(data)
        ce_loss = utils.focal_loss(s_logits, target, gamma=2, ignore_index=255)
        with torch.no_grad():
            t_logits = self.teacher(data)
        kd_loss = utils.soft_cross_entropy(s_logits, t_logits)
        # loss = kd_loss
        loss = ce_loss + self.hparams.kd_weight * kd_loss
        self.test_loss += loss.item()
        self.test_ce_loss += ce_loss.item()
        self.test_kd_loss += kd_loss.item()
        self.test_metrics.update(
            s_logits.max(1)[1].detach().cpu().numpy().astype('uint8'),
            target.detach().cpu().numpy().astype('uint8'))
コード例 #4
0
    def train_step(self, batch, batch_idx):
        '''
        Perform a single step (Forward and backward) of train on a given batch
        Log necessary metrics
        '''

        data, target = batch
        self.optimizer.zero_grad()
        logits = self.model(data)
        loss = utils.focal_loss(logits, target, gamma=2, ignore_index=255)
        self.train_loss += loss.item()
        loss.backward()
        self.optimizer.step()
        self.train_metrics.update(
            logits.max(1)[1].detach().cpu().numpy().astype('uint8'),
            target.detach().cpu().numpy().astype('uint8'))