('model={:s}', 'vae'), ('z={:02d}', args.z), ('run={:04d}', args.run) ] model_name = '_'.join([t.format(v) for (t, v) in layout]) pprint(vars(args)) print('Model name:', model_name) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') train_loader, labeled_subset, _ = ut.get_mnist_data(device, use_test_subset=True) vae = VAE(z_dim=args.z, name=model_name).to(device) if args.train: writer = ut.prepare_writer(model_name, overwrite_existing=True) train(model=vae, train_loader=train_loader, labeled_subset=labeled_subset, device=device, tqdm=tqdm.tqdm, writer=writer, iter_max=args.iter_max, iter_save=args.iter_save) ut.evaluate_lower_bound(vae, labeled_subset, run_iwae=args.train == 2) x = vae.sample_x(100).view(100, 1, 28, 28) db.printTensor(x) ImUtil.showBatch(x, show=True) input('Press key to exit') else: ut.load_model_by_name(vae, global_step=args.iter_max) ut.evaluate_lower_bound(vae, labeled_subset, run_iwae=True)
('run={:04d}', args.run)] model_name = '_'.join([t.format(v) for (t, v) in layout]) pprint(vars(args)) print('Model name:', model_name) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') train_loader, labeled_subset, _ = ut.get_mnist_data(device, use_test_subset=True) vae = VAE(z_dim=args.z, name=model_name).to(device) if args.train: writer = ut.prepare_writer(model_name, overwrite_existing=True) train(model=vae, train_loader=train_loader, labeled_subset=labeled_subset, device=device, tqdm=tqdm.tqdm, writer=writer, iter_max=args.iter_max, iter_save=args.iter_save) ut.evaluate_lower_bound(vae, labeled_subset, run_iwae=args.train == 2) else: ut.load_model_by_name(vae, global_step=args.iter_max) # Set run_iwae to false so I could generate the images ut.evaluate_lower_bound(vae, labeled_subset, run_iwae=False) samples = vae.sample_x(200) img = samples.view(200, 1, 28, 28) utils.save_image(img, "VAEDigitsGrid.png", nrow=20)
default=10000, help="Save model every n iterations") parser.add_argument('--run', type=int, default=0, help="Run ID. In case you want to run replicates") args = parser.parse_args() layout = [('model={:s}', 'vae'), ('z={:02d}', args.z), ('run={:04d}', args.run)] model_name = '_'.join([t.format(v) for (t, v) in layout]) pprint(vars(args)) print('Model name:', model_name) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') train_loader, labeled_subset, _ = ut.get_mnist_data(device, use_test_subset=True) vae = VAE(z_dim=args.z, name=model_name).to(device) ut.load_model_by_name(vae, global_step=args.iter_max) ut.evaluate_lower_bound(vae, labeled_subset, run_iwae=False) samples = torch.reshape(vae.sample_x(200), (10, 20, 28, 28)) #print(torch.reshape(vae.sample_x(200), (200, 28, 28))) f, axarr = plt.subplots(10, 20) for i in range(samples.shape[0]): for j in range(samples.shape[1]): axarr[i, j].imshow(samples[i, j].detach().numpy()) axarr[i, j].axis('off') plt.show()
('run={:04d}', args.run)] model_name = '_'.join([t.format(v) for (t, v) in layout]) pprint(vars(args)) print('Model name:', model_name) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') train_loader, labeled_subset, _ = ut.get_mnist_data(device, use_test_subset=True) vae = VAE(z_dim=args.z, name=model_name).to(device) if args.train: writer = ut.prepare_writer(model_name, overwrite_existing=True) train(model=vae, train_loader=train_loader, labeled_subset=labeled_subset, device=device, tqdm=tqdm.tqdm, writer=writer, iter_max=args.iter_max, iter_save=args.iter_save) ut.evaluate_lower_bound(vae, labeled_subset, run_iwae=args.train == 2) else: ut.load_model_by_name(vae, global_step=args.iter_max) ut.evaluate_lower_bound(vae, labeled_subset, run_iwae=True) if args.sample: with torch.no_grad(): images = vae.sample_x(200) save_image(images.view(200, 1, 28, 28), 'vae_sample.png', nrow=20)