コード例 #1
0
ファイル: test_f2py.py プロジェクト: yangyang2000/respy
    def test_7(self):
        """ This is a special test for auxiliary functions related to the
        interpolation setup.
        """
        # Impose constraints
        constr = dict()
        constr['periods'] = np.random.randint(2, 5)

        # Construct a random initialization file
        generate_init(constr)

        # Extract required information
        respy_obj = RespyCls('test.respy.ini')

        # Extract class attributes
        is_debug, num_periods = dist_class_attributes(respy_obj, 'is_debug',
                                                      'num_periods')

        # Write out a grid for the interpolation
        max_states_period = write_interpolation_grid('test.respy.ini')

        # Draw random request for testing
        num_states = np.random.randint(1, max_states_period)
        candidates = list(range(num_states))

        period = np.random.randint(1, num_periods)
        num_points_interp = np.random.randint(1, num_states + 1)

        # Check function for random choice and make sure that there are no
        # duplicates.
        f90 = fort_debug.wrapper_random_choice(candidates, num_states,
                                               num_points_interp)
        np.testing.assert_equal(len(set(f90)), len(f90))
        np.testing.assert_equal(len(f90), num_points_interp)

        # Check the standard cases of the function.
        args = (num_points_interp, num_states, period, is_debug, num_periods)
        f90 = fort_debug.wrapper_get_simulated_indicator(*args)

        np.testing.assert_equal(len(f90), num_states)
        np.testing.assert_equal(np.all(f90) in [0, 1], True)

        # Test the standardization across PYTHON, F2PY, and FORTRAN
        # implementations. This is possible as we write out an interpolation
        # grid to disk which is used for both functions.
        base_args = (num_points_interp, num_states, period, is_debug)
        args = base_args
        py = get_simulated_indicator(*args)
        args = base_args + (num_periods, )
        f90 = fort_debug.wrapper_get_simulated_indicator(*args)
        np.testing.assert_array_equal(f90, 1 * py)
        os.unlink('interpolation.txt')

        # Special case where number of interpolation points are same as the
        # number of candidates. In that case the returned indicator
        # should be all TRUE.
        args = (num_states, num_states, period, True, num_periods)
        f90 = fort_debug.wrapper_get_simulated_indicator(*args)
        np.testing.assert_equal(sum(f90), num_states)
コード例 #2
0
ファイル: test_f2py.py プロジェクト: restudToolbox/package
    def test_7(self):
        """ This is a special test for auxiliary functions related to the
        interpolation setup.
        """
        # Impose constraints
        constr = dict()
        constr['periods'] = np.random.randint(2, 5)

        # Construct a random initialization file
        generate_init(constr)

        # Extract required information
        respy_obj = RespyCls('test.respy.ini')

        # Extract class attributes
        is_debug, num_periods = dist_class_attributes(respy_obj,
                'is_debug', 'num_periods')

        # Write out a grid for the interpolation
        max_states_period = write_interpolation_grid('test.respy.ini')

        # Draw random request for testing
        num_states = np.random.randint(1, max_states_period)
        candidates = list(range(num_states))

        period = np.random.randint(1, num_periods)
        num_points_interp = np.random.randint(1, num_states + 1)

        # Check function for random choice and make sure that there are no
        # duplicates.
        f90 = fort_debug.wrapper_random_choice(candidates, num_states, num_points_interp)
        np.testing.assert_equal(len(set(f90)), len(f90))
        np.testing.assert_equal(len(f90), num_points_interp)

        # Check the standard cases of the function.
        args = (num_points_interp, num_states, period, is_debug, num_periods)
        f90 = fort_debug.wrapper_get_simulated_indicator(*args)

        np.testing.assert_equal(len(f90), num_states)
        np.testing.assert_equal(np.all(f90) in [0, 1], True)

        # Test the standardization across PYTHON, F2PY, and FORTRAN
        # implementations. This is possible as we write out an interpolation
        # grid to disk which is used for both functions.
        base_args = (num_points_interp, num_states, period, is_debug)
        args = base_args
        py = get_simulated_indicator(*args)
        args = base_args + (num_periods, )
        f90 = fort_debug.wrapper_get_simulated_indicator(*args)
        np.testing.assert_array_equal(f90, 1*py)
        os.unlink('interpolation.txt')

        # Special case where number of interpolation points are same as the
        # number of candidates. In that case the returned indicator
        # should be all TRUE.
        args = (num_states, num_states, period, True, num_periods)
        f90 = fort_debug.wrapper_get_simulated_indicator(*args)
        np.testing.assert_equal(sum(f90), num_states)
コード例 #3
0
    def test_1(self):
        """ Testing the equality of an evaluation of the criterion function for
        a random request.
        """
        # Run evaluation for multiple random requests.
        is_deterministic = np.random.choice([True, False], p=[0.10, 0.9])
        is_interpolated = np.random.choice([True, False], p=[0.10, 0.9])
        is_myopic = np.random.choice([True, False], p=[0.10, 0.9])
        max_draws = np.random.randint(10, 100)

        # Generate random initialization file
        constr = dict()
        constr['is_deterministic'] = is_deterministic
        constr['flag_parallelism'] = False
        constr['is_myopic'] = is_myopic
        constr['max_draws'] = max_draws
        constr['maxfun'] = 0

        init_dict = generate_random_dict(constr)

        # The use of the interpolation routines is a another special case.
        # Constructing a request that actually involves the use of the
        # interpolation routine is a little involved as the number of
        # interpolation points needs to be lower than the actual number of
        # states. And to know the number of states each period, I need to
        # construct the whole state space.
        if is_interpolated:
            # Extract from future initialization file the information
            # required to construct the state space. The number of periods
            # needs to be at least three in order to provide enough state
            # points.
            num_periods = np.random.randint(3, 6)
            edu_start = init_dict['EDUCATION']['start']
            edu_max = init_dict['EDUCATION']['max']
            min_idx = min(num_periods, (edu_max - edu_start + 1))

            max_states_period = pyth_create_state_space(
                num_periods, edu_start, edu_max, min_idx)[3]

            # Updates to initialization dictionary that trigger a use of the
            # interpolation code.
            init_dict['BASICS']['periods'] = num_periods
            init_dict['INTERPOLATION']['flag'] = True
            init_dict['INTERPOLATION']['points'] = \
                np.random.randint(10, max_states_period)

        # Print out the relevant initialization file.
        print_init_dict(init_dict)

        # Write out random components and interpolation grid to align the
        # three implementations.
        num_periods = init_dict['BASICS']['periods']
        write_draws(num_periods, max_draws)
        write_interpolation_grid('test.respy.ini')

        # Clean evaluations based on interpolation grid,
        base_val, base_data = None, None

        for version in ['PYTHON', 'FORTRAN']:
            respy_obj = RespyCls('test.respy.ini')

            # Modify the version of the program for the different requests.
            respy_obj.unlock()
            respy_obj.set_attr('version', version)
            respy_obj.lock()

            # Solve the model
            respy_obj = simulate(respy_obj)

            # This parts checks the equality of simulated dataset for the
            # different versions of the code.
            data_frame = pd.read_csv('data.respy.dat', delim_whitespace=True)

            if base_data is None:
                base_data = data_frame.copy()

            assert_frame_equal(base_data, data_frame)

            # This part checks the equality of an evaluation of the
            # criterion function.
            _, crit_val = estimate(respy_obj)

            if base_val is None:
                base_val = crit_val

            np.testing.assert_allclose(base_val,
                                       crit_val,
                                       rtol=1e-05,
                                       atol=1e-06)

            # We know even more for the deterministic case.
            if constr['is_deterministic']:
                assert (crit_val in [-1.0, 0.0])
コード例 #4
0
ファイル: test_f2py.py プロジェクト: restudToolbox/package
    def test_5(self):
        """ This methods ensures that the core functions yield the same
        results across implementations.
        """

        # Generate random initialization file
        generate_init()

        # Perform toolbox actions
        respy_obj = RespyCls('test.respy.ini')

        # Ensure that backward induction routines use the same grid for the
        # interpolation.
        max_states_period = write_interpolation_grid('test.respy.ini')

        # Extract class attributes
        num_periods, edu_start, edu_max, min_idx, model_paras, num_draws_emax, \
        is_debug, delta, is_interpolated, num_points_interp, is_myopic, num_agents_sim, \
        num_draws_prob, tau, paras_fixed, seed_sim = \
            dist_class_attributes(
            respy_obj, 'num_periods', 'edu_start', 'edu_max', 'min_idx',
            'model_paras', 'num_draws_emax', 'is_debug', 'delta',
            'is_interpolated', 'num_points_interp', 'is_myopic', 'num_agents_sim',
            'num_draws_prob', 'tau', 'paras_fixed', 'seed_sim')

        # Write out random components and interpolation grid to align the
        # three implementations.
        max_draws = max(num_agents_sim, num_draws_emax, num_draws_prob)
        write_draws(num_periods, max_draws)
        periods_draws_emax = read_draws(num_periods, num_draws_emax)
        periods_draws_prob = read_draws(num_periods, num_draws_prob)
        periods_draws_sims = read_draws(num_periods, num_agents_sim)

        # Extract coefficients
        coeffs_a, coeffs_b, coeffs_edu, coeffs_home, shocks_cholesky = dist_model_paras(
            model_paras, True)

        # Check the full solution procedure
        base_args = (coeffs_a, coeffs_b, coeffs_edu, coeffs_home, shocks_cholesky,
        is_interpolated, num_draws_emax, num_periods, num_points_interp, is_myopic,
        edu_start, is_debug, edu_max, min_idx, delta)

        fort, _ = resfort_interface(respy_obj, 'simulate')
        pyth = pyth_solve(*base_args + (periods_draws_emax,))
        f2py = fort_debug.f2py_solve(*base_args + (periods_draws_emax, max_states_period))

        for alt in [f2py, fort]:
            for i in range(5):
                np.testing.assert_allclose(pyth[i], alt[i])

        # Distribute solution arguments for further use in simulation test.
        periods_payoffs_systematic, _, mapping_state_idx, periods_emax, states_all = pyth

        args = (periods_payoffs_systematic, mapping_state_idx, \
            periods_emax, states_all, shocks_cholesky, num_periods, edu_start,
            edu_max, delta, num_agents_sim, periods_draws_sims, seed_sim)

        pyth = pyth_simulate(*args)

        f2py = fort_debug.f2py_simulate(*args)
        np.testing.assert_allclose(pyth, f2py)

        data_array = pyth

        base_args = (coeffs_a, coeffs_b, coeffs_edu, coeffs_home, shocks_cholesky,
         is_interpolated, num_draws_emax, num_periods, num_points_interp, is_myopic,
         edu_start, is_debug, edu_max, min_idx, delta, data_array, num_agents_sim,
         num_draws_prob, tau)

        args = base_args + (periods_draws_emax, periods_draws_prob)
        pyth = pyth_evaluate(*args)

        args = base_args + (periods_draws_emax, periods_draws_prob)
        f2py = fort_debug.f2py_evaluate(*args)

        np.testing.assert_allclose(pyth, f2py)

        # Evaluation of criterion function
        x0 = get_optim_paras(coeffs_a, coeffs_b, coeffs_edu, coeffs_home,
            shocks_cholesky, 'all', paras_fixed, is_debug)

        args = (
        is_interpolated, num_draws_emax, num_periods, num_points_interp, is_myopic,
        edu_start, is_debug, edu_max, min_idx, delta, data_array, num_agents_sim,
        num_draws_prob, tau, periods_draws_emax, periods_draws_prob)

        pyth = pyth_criterion(x0, *args)
        f2py = fort_debug.f2py_criterion(x0, *args)
        np.testing.assert_allclose(pyth, f2py)
コード例 #5
0
ファイル: test_f2py.py プロジェクト: restudToolbox/package
    def test_4(self):
        """ Testing the core functions of the solution step for the equality
        of results between the PYTHON and FORTRAN implementations.
        """

        # Generate random initialization file
        generate_init()

        # Perform toolbox actions
        respy_obj = RespyCls('test.respy.ini')

        # Ensure that backward induction routines use the same grid for the
        # interpolation.
        write_interpolation_grid('test.respy.ini')

        # Extract class attributes
        num_periods, edu_start, edu_max, min_idx, model_paras, num_draws_emax, \
            seed_emax, is_debug, delta, is_interpolated, num_points_interp, = \
                dist_class_attributes(respy_obj,
                    'num_periods', 'edu_start', 'edu_max', 'min_idx',
                    'model_paras', 'num_draws_emax', 'seed_emax', 'is_debug',
                    'delta', 'is_interpolated', 'num_points_interp')

        # Auxiliary objects
        coeffs_a, coeffs_b, coeffs_edu, coeffs_home, shocks_cholesky = \
            dist_model_paras(model_paras, is_debug)

        # Check the state space creation.
        args = (num_periods, edu_start, edu_max, min_idx)
        pyth = pyth_create_state_space(*args)
        f2py = fort_debug.f2py_create_state_space(*args)
        for i in range(4):
            np.testing.assert_allclose(pyth[i], f2py[i])

        # Carry some results from the state space creation for future use.
        states_all, states_number_period = pyth[:2]
        mapping_state_idx, max_states_period = pyth[2:]

        # Cutting to size
        states_all = states_all[:, :max(states_number_period), :]

        # Check calculation of systematic components of payoffs.
        args = (num_periods, states_number_period, states_all, edu_start,
            coeffs_a, coeffs_b, coeffs_edu, coeffs_home, max_states_period)
        pyth = pyth_calculate_payoffs_systematic(*args)
        f2py = fort_debug.f2py_calculate_payoffs_systematic(*args)
        np.testing.assert_allclose(pyth, f2py)

        # Carry some results from the systematic payoff calculation for
        # future use and create the required set of disturbances.
        periods_draws_emax = create_draws(num_periods, num_draws_emax,
            seed_emax, is_debug)

        periods_payoffs_systematic = pyth

        # Check backward induction procedure.
        args = (num_periods, max_states_period, periods_draws_emax,
            num_draws_emax, states_number_period, periods_payoffs_systematic,
            edu_max, edu_start, mapping_state_idx, states_all, delta,
            is_debug, is_interpolated, num_points_interp, shocks_cholesky)

        pyth = pyth_backward_induction(*args)

        f2py = fort_debug.f2py_backward_induction(*args)
        np.testing.assert_allclose(pyth, f2py)
コード例 #6
0
ファイル: test_f2py.py プロジェクト: yangyang2000/respy
    def test_5(self):
        """ This methods ensures that the core functions yield the same
        results across implementations.
        """

        # Generate random initialization file
        generate_init()

        # Perform toolbox actions
        respy_obj = RespyCls('test.respy.ini')

        # Ensure that backward induction routines use the same grid for the
        # interpolation.
        max_states_period = write_interpolation_grid('test.respy.ini')

        # Extract class attributes
        num_periods, edu_start, edu_max, min_idx, model_paras, num_draws_emax, \
        is_debug, delta, is_interpolated, num_points_interp, is_myopic, num_agents_sim, \
        num_draws_prob, tau, paras_fixed, seed_sim = \
            dist_class_attributes(
            respy_obj, 'num_periods', 'edu_start', 'edu_max', 'min_idx',
            'model_paras', 'num_draws_emax', 'is_debug', 'delta',
            'is_interpolated', 'num_points_interp', 'is_myopic', 'num_agents_sim',
            'num_draws_prob', 'tau', 'paras_fixed', 'seed_sim')

        # Write out random components and interpolation grid to align the
        # three implementations.
        max_draws = max(num_agents_sim, num_draws_emax, num_draws_prob)
        write_draws(num_periods, max_draws)
        periods_draws_emax = read_draws(num_periods, num_draws_emax)
        periods_draws_prob = read_draws(num_periods, num_draws_prob)
        periods_draws_sims = read_draws(num_periods, num_agents_sim)

        # Extract coefficients
        coeffs_a, coeffs_b, coeffs_edu, coeffs_home, shocks_cholesky = dist_model_paras(
            model_paras, True)

        # Check the full solution procedure
        base_args = (coeffs_a, coeffs_b, coeffs_edu, coeffs_home,
                     shocks_cholesky, is_interpolated, num_draws_emax,
                     num_periods, num_points_interp, is_myopic, edu_start,
                     is_debug, edu_max, min_idx, delta)

        fort, _ = resfort_interface(respy_obj, 'simulate')
        pyth = pyth_solve(*base_args + (periods_draws_emax, ))
        f2py = fort_debug.f2py_solve(*base_args +
                                     (periods_draws_emax, max_states_period))

        for alt in [f2py, fort]:
            for i in range(5):
                np.testing.assert_allclose(pyth[i], alt[i])

        # Distribute solution arguments for further use in simulation test.
        periods_payoffs_systematic, _, mapping_state_idx, periods_emax, states_all = pyth

        args = (periods_payoffs_systematic, mapping_state_idx, \
            periods_emax, states_all, shocks_cholesky, num_periods, edu_start,
            edu_max, delta, num_agents_sim, periods_draws_sims, seed_sim)

        pyth = pyth_simulate(*args)

        f2py = fort_debug.f2py_simulate(*args)
        np.testing.assert_allclose(pyth, f2py)

        data_array = pyth

        base_args = (coeffs_a, coeffs_b, coeffs_edu, coeffs_home,
                     shocks_cholesky, is_interpolated, num_draws_emax,
                     num_periods, num_points_interp, is_myopic, edu_start,
                     is_debug, edu_max, min_idx, delta, data_array,
                     num_agents_sim, num_draws_prob, tau)

        args = base_args + (periods_draws_emax, periods_draws_prob)
        pyth = pyth_evaluate(*args)

        args = base_args + (periods_draws_emax, periods_draws_prob)
        f2py = fort_debug.f2py_evaluate(*args)

        np.testing.assert_allclose(pyth, f2py)

        # Evaluation of criterion function
        x0 = get_optim_paras(coeffs_a, coeffs_b, coeffs_edu, coeffs_home,
                             shocks_cholesky, 'all', paras_fixed, is_debug)

        args = (is_interpolated, num_draws_emax, num_periods,
                num_points_interp, is_myopic, edu_start, is_debug, edu_max,
                min_idx, delta, data_array, num_agents_sim, num_draws_prob,
                tau, periods_draws_emax, periods_draws_prob)

        pyth = pyth_criterion(x0, *args)
        f2py = fort_debug.f2py_criterion(x0, *args)
        np.testing.assert_allclose(pyth, f2py)
コード例 #7
0
ファイル: test_f2py.py プロジェクト: yangyang2000/respy
    def test_4(self):
        """ Testing the core functions of the solution step for the equality
        of results between the PYTHON and FORTRAN implementations.
        """

        # Generate random initialization file
        generate_init()

        # Perform toolbox actions
        respy_obj = RespyCls('test.respy.ini')

        # Ensure that backward induction routines use the same grid for the
        # interpolation.
        write_interpolation_grid('test.respy.ini')

        # Extract class attributes
        num_periods, edu_start, edu_max, min_idx, model_paras, num_draws_emax, \
            seed_emax, is_debug, delta, is_interpolated, num_points_interp, = \
                dist_class_attributes(respy_obj,
                    'num_periods', 'edu_start', 'edu_max', 'min_idx',
                    'model_paras', 'num_draws_emax', 'seed_emax', 'is_debug',
                    'delta', 'is_interpolated', 'num_points_interp')

        # Auxiliary objects
        coeffs_a, coeffs_b, coeffs_edu, coeffs_home, shocks_cholesky = \
            dist_model_paras(model_paras, is_debug)

        # Check the state space creation.
        args = (num_periods, edu_start, edu_max, min_idx)
        pyth = pyth_create_state_space(*args)
        f2py = fort_debug.f2py_create_state_space(*args)
        for i in range(4):
            np.testing.assert_allclose(pyth[i], f2py[i])

        # Carry some results from the state space creation for future use.
        states_all, states_number_period = pyth[:2]
        mapping_state_idx, max_states_period = pyth[2:]

        # Cutting to size
        states_all = states_all[:, :max(states_number_period), :]

        # Check calculation of systematic components of payoffs.
        args = (num_periods, states_number_period, states_all, edu_start,
                coeffs_a, coeffs_b, coeffs_edu, coeffs_home, max_states_period)
        pyth = pyth_calculate_payoffs_systematic(*args)
        f2py = fort_debug.f2py_calculate_payoffs_systematic(*args)
        np.testing.assert_allclose(pyth, f2py)

        # Carry some results from the systematic payoff calculation for
        # future use and create the required set of disturbances.
        periods_draws_emax = create_draws(num_periods, num_draws_emax,
                                          seed_emax, is_debug)

        periods_payoffs_systematic = pyth

        # Check backward induction procedure.
        args = (num_periods, max_states_period, periods_draws_emax,
                num_draws_emax, states_number_period,
                periods_payoffs_systematic, edu_max, edu_start,
                mapping_state_idx, states_all, delta, is_debug,
                is_interpolated, num_points_interp, shocks_cholesky)

        pyth = pyth_backward_induction(*args)

        f2py = fort_debug.f2py_backward_induction(*args)
        np.testing.assert_allclose(pyth, f2py)
コード例 #8
0
    def test_1(self):
        """ Testing the equality of an evaluation of the criterion function for
        a random request.
        """
        # Run evaluation for multiple random requests.
        is_deterministic = np.random.choice([True, False], p=[0.10, 0.9])
        is_interpolated = np.random.choice([True, False], p=[0.10, 0.9])
        is_myopic = np.random.choice([True, False], p=[0.10, 0.9])
        max_draws = np.random.randint(10, 100)

        # Generate random initialization file
        constr = dict()
        constr['is_deterministic'] = is_deterministic
        constr['flag_parallelism'] = False
        constr['is_myopic'] = is_myopic
        constr['max_draws'] = max_draws
        constr['maxfun'] = 0

        init_dict = generate_random_dict(constr)

        # The use of the interpolation routines is a another special case.
        # Constructing a request that actually involves the use of the
        # interpolation routine is a little involved as the number of
        # interpolation points needs to be lower than the actual number of
        # states. And to know the number of states each period, I need to
        # construct the whole state space.
        if is_interpolated:
            # Extract from future initialization file the information
            # required to construct the state space. The number of periods
            # needs to be at least three in order to provide enough state
            # points.
            num_periods = np.random.randint(3, 6)
            edu_start = init_dict['EDUCATION']['start']
            edu_max = init_dict['EDUCATION']['max']
            min_idx = min(num_periods, (edu_max - edu_start + 1))

            max_states_period = pyth_create_state_space(num_periods, edu_start,
                edu_max, min_idx)[3]

            # Updates to initialization dictionary that trigger a use of the
            # interpolation code.
            init_dict['BASICS']['periods'] = num_periods
            init_dict['INTERPOLATION']['flag'] = True
            init_dict['INTERPOLATION']['points'] = \
                np.random.randint(10, max_states_period)

        # Print out the relevant initialization file.
        print_init_dict(init_dict)

        # Write out random components and interpolation grid to align the
        # three implementations.
        num_periods = init_dict['BASICS']['periods']
        write_draws(num_periods, max_draws)
        write_interpolation_grid('test.respy.ini')

        # Clean evaluations based on interpolation grid,
        base_val, base_data = None, None

        for version in ['PYTHON', 'FORTRAN']:
            respy_obj = RespyCls('test.respy.ini')

            # Modify the version of the program for the different requests.
            respy_obj.unlock()
            respy_obj.set_attr('version', version)
            respy_obj.lock()

            # Solve the model
            respy_obj = simulate(respy_obj)

            # This parts checks the equality of simulated dataset for the
            # different versions of the code.
            data_frame = pd.read_csv('data.respy.dat', delim_whitespace=True)

            if base_data is None:
                base_data = data_frame.copy()

            assert_frame_equal(base_data, data_frame)

            # This part checks the equality of an evaluation of the
            # criterion function.
            _, crit_val = estimate(respy_obj)

            if base_val is None:
                base_val = crit_val

            np.testing.assert_allclose(base_val, crit_val, rtol=1e-05,
                                       atol=1e-06)

            # We know even more for the deterministic case.
            if constr['is_deterministic']:
                assert (crit_val in [-1.0, 0.0])