コード例 #1
0
ファイル: test_customized_data.py プロジェクト: jkx19/cogdl
def test_customized_graph_dataset():
    result = experiment(model="gin",
                        task="graph_classification",
                        dataset="mygraphdataset",
                        degree_feature=True,
                        max_epoch=10)
    result = list(result.values())[0][0]
    assert result["Acc"] >= 0
コード例 #2
0
def test_customized_graph_dataset_graph2vec():
    dataset = MyGraphClassificationDataset()
    result = experiment(model="graph2vec",
                        dataset=dataset,
                        degree_node_features=False,
                        epochs=10,
                        cpu=True)
    result = list(result.values())[0][0]
    assert result["acc"] >= 0
コード例 #3
0
ファイル: test_experiments.py プロジェクト: Aliang-CN/cogdl
def test_experiment():
    results = experiment(task="node_classification",
                         dataset="cora",
                         model="gcn",
                         hidden_size=32,
                         max_epoch=10,
                         cpu=True)

    assert ("cora", "gcn") in results
    assert results[("cora", "gcn")][0]["Acc"] > 0
コード例 #4
0
ファイル: test_experiments.py プロジェクト: rpatil524/cogdl
def test_autognn_experiment():
    results = experiment(
        dataset="cora",
        model="autognn",
        seed=[1],
        n_trials=10,
        epochs=2,
        cpu=True,
    )
    assert ("cora", "autognn") in results
    assert results[("cora", "autognn")][0]["test_acc"] > 0
コード例 #5
0
ファイル: test_experiments.py プロジェクト: rpatil524/cogdl
def test_auto_experiment():
    def search_space_example(trial):
        return {
            "lr":
            trial.suggest_categorical("lr", [1e-3, 5e-3, 1e-2]),
            "hidden_size":
            trial.suggest_categorical("hidden_size", [16, 32, 64, 128]),
            "dropout":
            trial.suggest_uniform("dropout", 0.5, 0.9),
        }

    results = experiment(
        dataset="cora",
        model="gcn",
        seed=[1, 2],
        n_trials=2,
        epochs=10,
        search_space=search_space_example,
        cpu=True,
    )

    assert ("cora", "gcn") in results
    assert results[("cora", "gcn")][0]["test_acc"] > 0
コード例 #6
0
ファイル: test_experiments.py プロジェクト: Aliang-CN/cogdl
def test_auto_experiment():
    def func_search_example(trial):
        return {
            "lr":
            trial.suggest_categorical("lr", [1e-3, 5e-3, 1e-2]),
            "hidden_size":
            trial.suggest_categorical("hidden_size", [16, 32, 64, 128]),
            "dropout":
            trial.suggest_uniform("dropout", 0.5, 0.9),
        }

    results = experiment(
        task="node_classification",
        dataset="cora",
        model="gcn",
        seed=[1, 2],
        n_trials=2,
        max_epoch=10,
        func_search=func_search_example,
        cpu=True,
    )

    assert ("cora", "gcn") in results
    assert results[("cora", "gcn")][0]["Acc"] > 0
コード例 #7
0
ファイル: custom_dataset.py プロジェクト: rpatil524/cogdl
        # load or generate your dataset
        edge_index = torch.randint(0, num_nodes, (2, num_edges))
        x = torch.randn(num_nodes, feat_dim)
        y = torch.randint(0, 2, (num_nodes, ))

        # set train/val/test mask in node_classification task
        train_mask = torch.zeros(num_nodes).bool()
        train_mask[0:int(0.3 * num_nodes)] = True
        val_mask = torch.zeros(num_nodes).bool()
        val_mask[int(0.3 * num_nodes):int(0.7 * num_nodes)] = True
        test_mask = torch.zeros(num_nodes).bool()
        test_mask[int(0.7 * num_nodes):] = True
        data = Graph(x=x,
                     edge_index=edge_index,
                     y=y,
                     train_mask=train_mask,
                     val_mask=val_mask,
                     test_mask=test_mask)
        return data


if __name__ == "__main__":
    # Train customized dataset via defining a new class
    dataset = MyNodeClassificationDataset()
    experiment(dataset=dataset, model="gcn")

    # Train customized dataset via feeding the graph data to NodeDataset
    data = generate_random_graph(num_nodes=100, num_edges=300, num_feats=30)
    dataset = NodeDataset(data=data)
    experiment(dataset=dataset, model="gcn")