コード例 #1
0
ファイル: asa.py プロジェクト: yatisht/pycogent
def _prepare_asa(entities, symmetry_mode=None, crystal_mode=None, points=960, \
                **kwargs):
    """Prepares the atomic solvent-accessible surface area (ASA) calculation.
    
    Arguments:
    
        - entities: input entities for ASA calculation (most commondly a 
          structure entity).
        - symmetry_mode (str): One of 'uc', 'bio' or 'table'. This defines the 
          transformations of applied to the coordinates of the input entities. 
          It is one of 'bio', 'uc' or 'table'. Where 'bio' and 'uc' are 
          transformations to create the biological molecule or unit-cell from 
          the PDB header. The 'table' uses transformation matrices derived from 
          space-group information only using crystallographic tables(requires 
          ``cctbx``).
        - crystal_mode (int): Defines the number of unit-cells to expand the 
          initial unit-cell into. The number of unit-cells in each direction 
          i.e. 1 is makes a total of 27 unit cells: (-1, 0, 1) == 3, 3^3 == 27
        - points: number of points on atom spheres higher is slower but more 
          accurate.    

    Additional keyworded arguments are passed to the ``_run_asa`` function.
    """
    # generate uniform points on the unit-sphere
    spoints = sphere_points(points)
    # prepare entities for asa calculation
    # free-floating area mode
    result = {}
    atoms = einput(entities, 'A')
    if not symmetry_mode and not crystal_mode:

        coords = array(atoms.getData('coords', forgiving=False))
        coords = array([[coords]])  # fake 3D and 4D
        idx_to_id = dict(enumerate(atoms.getData('getFull_id', \
                                                forgiving=False, method=True)))
        asas = _run_asa(atoms, coords, spoints, **kwargs)
        for idx in xrange(asas.shape[0]):
            result[idx_to_id[idx]] = asas[idx]
    # crystal-contact area mode
    elif symmetry_mode in ('table', 'uc'):
        structure = einput(entities, 'S').values()[0]
        sh = structure.header
        coords = array(atoms.getData('coords', forgiving=False))
        idx_to_id = dict(enumerate(atoms.getData('getFull_id', \
                                                forgiving=False, method=True)))
        # expand to unit-cell, real 3D
        coords = coords_to_symmetry(coords, \
                                            sh[symmetry_mode + '_fmx'], \
                                            sh[symmetry_mode + '_omx'], \
                                            sh[symmetry_mode + '_mxs'], \
                                            symmetry_mode)
        # expand to crystal, real 4D
        if crystal_mode:
            coords = coords_to_crystal(coords, \
                                               sh[symmetry_mode + '_fmx'], \
                                               sh[symmetry_mode + '_omx'], \
                                               crystal_mode) # real 4D
        else:
            coords = array([coords])  # fake 4D
        asas = _run_asa(atoms, coords, spoints, **kwargs)
        for idx in xrange(asas.shape[0]):
            result[idx_to_id[idx]] = asas[idx]

    # biological area mode
    elif symmetry_mode == 'bio':
        structure = einput(entities, 'S').values()[0]
        chains = einput(entities, 'C')
        sh = structure.header
        start = 0
        for chain_ids, mx_num in sh['bio_cmx']:
            sel = chains.selectChildren(chain_ids, 'contains', 'id').values()
            atoms = einput(sel, 'A')
            coords = array(atoms.getData('coords', forgiving=False))
            idx_to_id = dict(enumerate(atoms.getData('getFull_id', \
                                              forgiving=False, method=True)))
            stop = start + mx_num
            coords = coords_to_symmetry(coords, \
                                               sh['uc_fmx'], \
                                               sh['uc_omx'], \
                                               sh['bio_mxs'][start:stop], \
                                               symmetry_mode)
            coords = array([coords])
            start = stop
            asas = _run_asa(atoms, coords, spoints, **kwargs)
            for idx in xrange(asas.shape[0]):
                result[idx_to_id[idx]] = asas[idx]
    return result
コード例 #2
0
ファイル: test_geometry.py プロジェクト: mikerobeson/pycogent
 def test_sphere_points(self):
     """tests sphere points"""
     self.assertEquals(sphere_points(1), array([[1., 0., 0.]]))
コード例 #3
0
ファイル: asa.py プロジェクト: miklou/pycogent
def _prepare_asa(entities, symmetry_mode=None, crystal_mode=None, points=960, \
                **kwargs):
    """Prepares the atomic solvent-accessible surface area (ASA) calculation.
    
    Arguments:
    
        - entities: input entities for ASA calculation (most commondly a 
          structure entity).
        - symmetry_mode (str): One of 'uc', 'bio' or 'table'. This defines the 
          transformations of applied to the coordinates of the input entities. 
          It is one of 'bio', 'uc' or 'table'. Where 'bio' and 'uc' are 
          transformations to create the biological molecule or unit-cell from 
          the PDB header. The 'table' uses transformation matrices derived from 
          space-group information only using crystallographic tables(requires 
          ``cctbx``).
        - crystal_mode (int): Defines the number of unit-cells to expand the 
          initial unit-cell into. The number of unit-cells in each direction 
          i.e. 1 is makes a total of 27 unit cells: (-1, 0, 1) == 3, 3^3 == 27
        - points: number of points on atom spheres higher is slower but more 
          accurate.    

    Additional keyworded arguments are passed to the ``_run_asa`` function.
    """
    # generate uniform points on the unit-sphere
    spoints = sphere_points(points)
    # prepare entities for asa calculation
    # free-floating area mode
    result = {}
    atoms = einput(entities, 'A')
    if not symmetry_mode and not crystal_mode:

        coords = array(atoms.getData('coords', forgiving=False))
        coords = array([[coords]]) # fake 3D and 4D
        idx_to_id = dict(enumerate(atoms.getData('getFull_id', \
                                                forgiving=False, method=True)))
        asas = _run_asa(atoms, coords, spoints, **kwargs)
        for idx in xrange(asas.shape[0]):
            result[idx_to_id[idx]] = asas[idx]
    # crystal-contact area mode    
    elif symmetry_mode in ('table', 'uc'):
        structure = einput(entities, 'S').values()[0]
        sh = structure.header
        coords = array(atoms.getData('coords', forgiving=False))
        idx_to_id = dict(enumerate(atoms.getData('getFull_id', \
                                                forgiving=False, method=True)))
        # expand to unit-cell, real 3D
        coords = coords_to_symmetry(coords, \
                                            sh[symmetry_mode + '_fmx'], \
                                            sh[symmetry_mode + '_omx'], \
                                            sh[symmetry_mode + '_mxs'], \
                                            symmetry_mode)
        # expand to crystal, real 4D
        if crystal_mode:
            coords = coords_to_crystal(coords, \
                                               sh[symmetry_mode + '_fmx'], \
                                               sh[symmetry_mode + '_omx'], \
                                               crystal_mode) # real 4D
        else:
            coords = array([coords]) # fake 4D
        asas = _run_asa(atoms, coords, spoints, **kwargs)
        for idx in xrange(asas.shape[0]):
            result[idx_to_id[idx]] = asas[idx]

     # biological area mode
    elif symmetry_mode == 'bio':
        structure = einput(entities, 'S').values()[0]
        chains = einput(entities, 'C')
        sh = structure.header
        start = 0
        for chain_ids, mx_num in sh['bio_cmx']:
            sel = chains.selectChildren(chain_ids, 'contains', 'id').values()
            atoms = einput(sel, 'A')
            coords = array(atoms.getData('coords', forgiving=False))
            idx_to_id = dict(enumerate(atoms.getData('getFull_id', \
                                              forgiving=False, method=True)))
            stop = start + mx_num
            coords = coords_to_symmetry(coords, \
                                               sh['uc_fmx'], \
                                               sh['uc_omx'], \
                                               sh['bio_mxs'][start:stop], \
                                               symmetry_mode)
            coords = array([coords])
            start = stop
            asas = _run_asa(atoms, coords, spoints, **kwargs)
            for idx in xrange(asas.shape[0]):
                result[idx_to_id[idx]] = asas[idx]
    return result
コード例 #4
0
 def test_sphere_points(self):
     """tests sphere points"""
     self.assertEquals(sphere_points(1), array([[ 1., 0., 0.]]))