def _get_datapoints_helper(self, id, aggregates=None, granularity=None, start=None, end=None, **kwargs): """Returns a list of datapoints for the given query. This method will automate paging for the given time period. Args: id (int): The unique id of the timeseries to retrieve data for. aggregates (list): The list of aggregate functions you wish to apply to the data. Valid aggregate functions are: 'average/avg, max, min, count, sum, interpolation/int, stepinterpolation/step'. granularity (str): The granularity of the aggregate values. Valid entries are : 'day/d, hour/h, minute/m, second/s', or a multiple of these indicated by a number as a prefix e.g. '12hour'. start (Union[str, int, datetime]): Get datapoints after this time. Format is N[timeunit]-ago where timeunit is w,d,h,m,s. E.g. '2d-ago' will get everything that is up to 2 days old. Can also send time in ms since epoch or a datetime object which will be converted to ms since epoch UTC. end (Union[str, int, datetime]): Get datapoints up to this time. Same format as for start. Keyword Arguments: include_outside_points (bool): No description. Returns: list of datapoints: A list containing datapoint dicts. """ url = "/timeseries/{}/data".format(id) limit = self._LIMIT if aggregates is None else self._LIMIT_AGG params = { "aggregates": aggregates, "granularity": granularity, "limit": limit, "start": start, "end": end, "includeOutsidePoints": kwargs.get("include_outside_points", False), } datapoints = [] while (not datapoints or len(datapoints[-1]) == limit) and params["end"] > params["start"]: res = self._get(url, params=params) res = res.json()["data"]["items"][0]["datapoints"] if not res: break datapoints.append(res) latest_timestamp = int(datapoints[-1][-1]["timestamp"]) params["start"] = latest_timestamp + (_utils.granularity_to_ms(granularity) if granularity else 1) dps = [] [dps.extend(el) for el in datapoints] return dps
def test_granularity_to_ms(self): assert utils.granularity_to_ms("10s") == 10000 assert utils.granularity_to_ms("10m") == 600000
def _get_datapoints_frame_helper(self, time_series, aggregates, granularity, start=None, end=None): """Returns a pandas dataframe of datapoints for the given timeseries all on the same timestamps. This method will automate paging for the user and return all data for the given time period. Args: time_series (list): The list of timeseries names to retrieve data for. Each timeseries can be either a string containing the ts name or a dictionary containing the ts name and a list of specific aggregate functions. aggregates (list): The list of aggregate functions you wish to apply to the data for which you have not specified an aggregate function. Valid aggregate functions are: 'average/avg, max, min, count, sum, interpolation/int, stepinterpolation/step'. granularity (str): The granularity of the aggregate values. Valid entries are : 'day/d, hour/h, minute/m, second/s', or a multiple of these indicated by a number as a prefix e.g. '12hour'. start (Union[str, int, datetime]): Get datapoints after this time. Format is N[timeunit]-ago where timeunit is w,d,h,m,s. E.g. '2d-ago' will get everything that is up to 2 days old. Can also send time in ms since epoch or a datetime object which will be converted to ms since epoch UTC. end (Union[str, int, datetime]): Get datapoints up to this time. Same format as for start. Returns: pandas.DataFrame: A pandas dataframe containing the datapoints for the given timeseries. The datapoints for all the timeseries will all be on the same timestamps. Note: The ``timeseries`` parameter can take a list of strings and/or dicts on the following formats:: Using strings: ['<timeseries1>', '<timeseries2>'] Using dicts: [{'name': '<timeseries1>', 'aggregates': ['<aggfunc1>', '<aggfunc2>']}, {'name': '<timeseries2>', 'aggregates': []}] Using both: ['<timeseries1>', {'name': '<timeseries2>', 'aggregates': ['<aggfunc1>', '<aggfunc2>']}] """ url = "/timeseries/dataframe" num_aggregates = 0 for ts in time_series: if isinstance(ts, str) or ts.get("aggregates") is None: num_aggregates += len(aggregates) else: num_aggregates += len(ts["aggregates"]) per_tag_limit = int(self._LIMIT / num_aggregates) body = { "items": [ {"name": "{}".format(ts)} if isinstance(ts, str) else {"name": "{}".format(ts["name"]), "aggregates": ts.get("aggregates", [])} for ts in time_series ], "aggregates": aggregates, "granularity": granularity, "start": start, "end": end, "limit": per_tag_limit, } headers = {"accept": "text/csv"} dataframes = [] while (not dataframes or dataframes[-1].shape[0] == per_tag_limit) and body["end"] > body["start"]: res = self._post(url=url, body=body, headers=headers) dataframes.append( pd.read_csv(io.StringIO(res.content.decode(res.encoding if res.encoding else res.apparent_encoding))) ) if dataframes[-1].empty: break latest_timestamp = int(dataframes[-1].iloc[-1, 0]) body["start"] = latest_timestamp + _utils.granularity_to_ms(granularity) return pd.concat(dataframes).reset_index(drop=True)
def get_multi_time_series_datapoints( self, datapoints_queries: List[DatapointsQuery], start, end=None, aggregates=None, granularity=None, **kwargs ) -> DatapointsResponseIterator: """Returns a list of DatapointsObjects each of which contains a list of datapoints for the given timeseries. This method will automate paging for the user and return all data for the given time period(s). Args: datapoints_queries (list[stable.datapoints.DatapointsQuery]): The list of DatapointsQuery objects specifying which timeseries to retrieve data for. start (Union[str, int, datetime]): Get datapoints after this time. Format is N[timeunit]-ago where timeunit is w,d,h,m,s. E.g. '2d-ago' will get everything that is up to 2 days old. Can also send time in ms since epoch or a datetime object which will be converted to ms since epoch UTC. end (Union[str, int, datetime]): Get datapoints up to this time. Same format as for start. aggregates (list, optional): The list of aggregate functions you wish to apply to the data. Valid aggregate functions are: 'average/avg, max, min, count, sum, interpolation/int, stepinterpolation/step'. granularity (str): The granularity of the aggregate values. Valid entries are : 'day/d, hour/h, minute/m, second/s', or a multiple of these indicated by a number as a prefix e.g. '12hour'. Keyword Arguments: include_outside_points (bool): No description. Returns: stable.datapoints.DatapointsResponseIterator: An iterator which iterates over stable.datapoints.DatapointsResponse objects. """ url = "/timeseries/dataquery" start, end = _utils.interval_to_ms(start, end) datapoints_queries = [copy(dpq) for dpq in datapoints_queries] num_of_dpqs_with_agg = 0 num_of_dpqs_raw = 0 for dpq in datapoints_queries: if (dpq.aggregates is None and aggregates is None) or dpq.aggregates == "": num_of_dpqs_raw += 1 else: num_of_dpqs_with_agg += 1 items = [] for dpq in datapoints_queries: if dpq.aggregates is None and aggregates is None: dpq.limit = int(self._LIMIT / num_of_dpqs_raw) else: dpq.limit = int(self._LIMIT_AGG / num_of_dpqs_with_agg) items.append(dpq.__dict__) body = { "items": items, "aggregates": ",".join(aggregates) if aggregates is not None else None, "granularity": granularity, "start": start, "includeOutsidePoints": kwargs.get("include_outside_points", False), "end": end, } datapoints_responses = [] has_incomplete_requests = True while has_incomplete_requests: res = self._post(url=url, body=body).json()["data"]["items"] datapoints_responses.append(res) has_incomplete_requests = False for i, dpr in enumerate(res): dpq = datapoints_queries[i] if len(dpr["datapoints"]) == dpq.limit: has_incomplete_requests = True latest_timestamp = dpr["datapoints"][-1]["timestamp"] ts_granularity = granularity if dpq.granularity is None else dpq.granularity next_start = latest_timestamp + (_utils.granularity_to_ms(ts_granularity) if ts_granularity else 1) else: next_start = end - 1 if datapoints_queries[i].end: next_start = datapoints_queries[i].end - 1 datapoints_queries[i].start = next_start results = [{"data": {"items": [{"name": dpq.name, "datapoints": []}]}} for dpq in datapoints_queries] for res in datapoints_responses: for i, ts in enumerate(res): results[i]["data"]["items"][0]["datapoints"].extend(ts["datapoints"]) return DatapointsResponseIterator([DatapointsResponse(result) for result in results])
def _get_datapoints_helper(self, name, aggregates=None, granularity=None, start=None, end=None, **kwargs): """Returns a list of datapoints for the given query. This method will automate paging for the given time period. Args: name (str): The name of the timeseries to retrieve data for. aggregates (list): The list of aggregate functions you wish to apply to the data. Valid aggregate functions are: 'average/avg, max, min, count, sum, interpolation/int, stepinterpolation/step'. granularity (str): The granularity of the aggregate values. Valid entries are : 'day/d, hour/h, minute/m, second/s', or a multiple of these indicated by a number as a prefix e.g. '12hour'. start (Union[str, int, datetime]): Get datapoints after this time. Format is N[timeunit]-ago where timeunit is w,d,h,m,s. E.g. '2d-ago' will get everything that is up to 2 days old. Can also send time in ms since epoch or a datetime object which will be converted to ms since epoch UTC. end (Union[str, int, datetime]): Get datapoints up to this time. Same format as for start. Keyword Arguments: include_outside_points (bool): No description. protobuf (bool): Download the data using the binary protobuf format. Only applicable when getting raw data. Defaults to True. Returns: list of datapoints: A list containing datapoint dicts. """ url = "/timeseries/data/{}".format(quote(name, safe="")) use_protobuf = kwargs.get("protobuf", True) and aggregates is None limit = self._LIMIT if aggregates is None else self._LIMIT_AGG params = { "aggregates": aggregates, "granularity": granularity, "limit": limit, "start": start, "end": end, "includeOutsidePoints": kwargs.get("include_outside_points", False), } headers = {"accept": "application/protobuf"} if use_protobuf else {} datapoints = [] while (not datapoints or len(datapoints[-1]) == limit) and params["end"] > params["start"]: res = self._get(url, params=params, headers=headers) if use_protobuf: ts_data = _api_timeseries_data_v2_pb2.TimeseriesData() ts_data.ParseFromString(res.content) res = [{"timestamp": p.timestamp, "value": p.value} for p in ts_data.numericData.points] else: res = res.json()["data"]["items"][0]["datapoints"] if not res: break datapoints.append(res) latest_timestamp = int(datapoints[-1][-1]["timestamp"]) params["start"] = latest_timestamp + (_utils.granularity_to_ms(granularity) if granularity else 1) dps = [] [dps.extend(el) for el in datapoints] return dps
def get_datapoints(self, id, start, end=None, aggregates=None, granularity=None, **kwargs) -> DatapointsResponse: """Returns a DatapointsObject containing a list of datapoints for the given query. This method will automate paging for the user and return all data for the given time period. Args: id (int): The unique id of the timeseries to retrieve data for. start (Union[str, int, datetime]): Get datapoints after this time. Format is N[timeunit]-ago where timeunit is w,d,h,m,s. E.g. '2d-ago' will get everything that is up to 2 days old. Can also send time in ms since epoch or a datetime object which will be converted to ms since epoch UTC. end (Union[str, int, datetime]): Get datapoints up to this time. Same format as for start. aggregates (list): The list of aggregate functions you wish to apply to the data. Valid aggregate functions are: 'average/avg, max, min, count, sum, interpolation/int, stepinterpolation/step'. granularity (str): The granularity of the aggregate values. Valid entries are : 'day/d, hour/h, minute/m, second/s', or a multiple of these indicated by a number as a prefix e.g. '12hour'. Keyword Arguments: include_outside_points (bool): No description workers (int): Number of download processes to run in parallell. Defaults to number returned by cpu_count(). limit (str): Max number of datapoints to return. If limit is specified, this method will not automate paging and will return a maximum of 100,000 dps. Returns: client.test_experimental.datapoints.DatapointsResponse: A data object containing the requested data with several getter methods with different output formats. """ start, end = _utils.interval_to_ms(start, end) if kwargs.get("limit"): return self._get_datapoints_user_defined_limit( id, aggregates, granularity, start, end, limit=kwargs.get("limit"), include_outside_points=kwargs.get("include_outside_points", False), ) diff = end - start num_of_workers = kwargs.get("processes", self._num_of_workers) if kwargs.get("include_outside_points") is True: num_of_workers = 1 granularity_ms = 1 if granularity: granularity_ms = _utils.granularity_to_ms(granularity) # Ensure that number of steps is not greater than the number data points that will be returned steps = min(num_of_workers, max(1, int(diff / granularity_ms))) # Make step size a multiple of the granularity requested in order to ensure evenly spaced results step_size = _utils.round_to_nearest(int(diff / steps), base=granularity_ms) # Create list of where each of the parallelized intervals will begin step_starts = [start + (i * step_size) for i in range(steps)] args = [{ "start": start, "end": start + step_size } for start in step_starts] partial_get_dps = partial( self._get_datapoints_helper_wrapper, id=id, aggregates=aggregates, granularity=granularity, include_outside_points=kwargs.get("include_outside_points", False), ) with Pool(steps) as p: datapoints = p.map(partial_get_dps, args) concat_dps = [] [concat_dps.extend(el) for el in datapoints] return DatapointsResponse( {"data": { "items": [{ "id": id, "datapoints": concat_dps }] }})
def get_datapoints_frame(self, time_series, aggregates, granularity, start, end=None, **kwargs) -> pd.DataFrame: """Returns a pandas dataframe of datapoints for the given timeseries all on the same timestamps. This method will automate paging for the user and return all data for the given time period. Args: time_series (list): The list of timeseries names to retrieve data for. Each timeseries can be either a string containing the timeseries or a dictionary containing the names of thetimeseries and a list of specific aggregate functions. aggregates (list): The list of aggregate functions you wish to apply to the data for which you have not specified an aggregate function. Valid aggregate functions are: 'average/avg, max, min, count, sum, interpolation/int, stepinterpolation/step'. granularity (str): The granularity of the aggregate values. Valid entries are : 'day/d, hour/h, minute/m, second/s', or a multiple of these indicated by a number as a prefix e.g. '12hour'. start (Union[str, int, datetime]): Get datapoints after this time. Format is N[timeunit]-ago where timeunit is w,d,h,m,s. E.g. '2d-ago' will get everything that is up to 2 days old. Can also send time in ms since epoch or a datetime object which will be converted to ms since epoch UTC. end (Union[str, int, datetime]): Get datapoints up to this time. Same format as for start. Keyword Arguments: limit (str): Max number of rows to return. If limit is specified, this method will not automate paging and will return a maximum of 100,000 rows. workers (int): Number of download workers to run in parallell. Defaults to 10. Returns: pandas.DataFrame: A pandas dataframe containing the datapoints for the given timeseries. The datapoints for all the timeseries will all be on the same timestamps. Examples: Get a dataframe of aggregated time series data:: client = CogniteClient() res = client.datapoints.get_datapoints_frame(time_series=["ts1", "ts2"], aggregates=["avg"], granularity="30s", start="1w-ago") print(res) The ``timeseries`` parameter can take a list of strings and/or dicts on the following formats. This is useful for specifying aggregate functions on a per time series level:: Using strings: ['<timeseries1>', '<timeseries2>'] Using dicts: [{'name': '<timeseries1>', 'aggregates': ['<aggfunc1>', '<aggfunc2>']}, {'name': '<timeseries2>', 'aggregates': []}] Using both: ['<timeseries1>', {'name': '<timeseries2>', 'aggregates': ['<aggfunc1>', '<aggfunc2>']}] """ if not isinstance(time_series, list): raise ValueError("time_series should be a list") start, end = _utils.interval_to_ms(start, end) if kwargs.get("limit"): return self._get_datapoints_frame_user_defined_limit( time_series, aggregates, granularity, start, end, limit=kwargs.get("limit")) diff = end - start num_of_workers = kwargs.get("workers") or self._num_of_workers granularity_ms = 1 if granularity: granularity_ms = _utils.granularity_to_ms(granularity) # Ensure that number of steps is not greater than the number data points that will be returned steps = min(num_of_workers, max(1, int(diff / granularity_ms))) # Make step size a multiple of the granularity requested in order to ensure evenly spaced results step_size = _utils.round_to_nearest(int(diff / steps), base=granularity_ms) # Create list of where each of the parallelized intervals will begin step_starts = [start + (i * step_size) for i in range(steps)] args = [{ "start": start, "end": start + step_size } for start in step_starts] partial_get_dpsf = partial( self._get_datapoints_frame_helper_wrapper, time_series=time_series, aggregates=aggregates, granularity=granularity, ) if steps == 1: return self._get_datapoints_frame_helper(time_series, aggregates, granularity, start, end) with Pool(steps) as p: dataframes = p.map(partial_get_dpsf, args) df = pd.concat(dataframes).drop_duplicates( subset="timestamp").reset_index(drop=True) return df