コード例 #1
0
        erase_wrong_plotting_summaries(args.folder,
                                       list(args.validation_datasets))
    if args.restart_validations:
        erase_validations(args.folder, list(args.validation_datasets))

    if args.single_process is not None:

        if args.exp is None:
            raise ValueError(
                " You should set the exp alias when using single process")

        create_exp_path(args.folder, args.exp)

        if args.single_process == 'train':
            # TODO make without position, increases the legibility.
            execute_train("0", args.folder, args.exp, False)

        elif args.single_process == 'validation':
            if len(args.validation_datasets) == 1:
                execute_validation("0", args.folder, args.exp,
                                   args.validation_datasets[0], args.model,
                                   False)
            else:
                execute_validation("0", args.folder, args.exp,
                                   args.validation_datasets, args.model, False)

        elif args.single_process == 'drive':

            driving_environments = fix_driving_environments(
                list(args.driving_environments))
            execute_drive("0",
コード例 #2
0
    # There are two modes of execution
    if args.single_process is not None:
        ####
        # MODE 1: Single Process. Just execute a single experiment alias.
        ####

        if args.exp is None:
            raise ValueError(
                " You should set the exp alias when using single process")

        create_exp_path(args.folder, args.exp)

        if args.single_process == 'train':
            execute_train(gpu="0",
                          exp_batch=args.folder,
                          exp_alias=args.exp,
                          suppress_output=False,
                          number_of_workers=args.number_of_workers)

        elif args.single_process == 'validation':
            execute_validation(gpu="0",
                               exp_batch=args.folder,
                               exp_alias=args.exp,
                               dataset=args.validation_datasets[0],
                               suppress_output=False)

        elif args.single_process == 'drive':
            drive_params['suppress_output'] = False
            execute_drive("0", args.folder, args.exp,
                          list(args.driving_environments)[0], drive_params)
コード例 #3
0
        try:
            int(gpu)
        except:
            raise ValueError(" Gpu is not a valid int number")

    # Obs this is like a fixed parameter, how much a validation and a train and drives ocupies

    # TODO: MAKE SURE ALL DATASETS ARE " WAYPOINTED "

    # execute_train("0", "eccv", "experiment_1")
    # execute_validation("0", "eccv", "experiment_1", "SeqVal")

    if args.single_process is not None:
        if args.single_process == 'train':
            # TODO make without position, increases the legibility.
            execute_train("1", "eccv", "experiment_unit_task")
            # execute_train("2", "eccv", "experiment_HighWeather12_nolane")

        if args.single_process == 'validation':
            execute_validation("0", "eccv", "experiment_1", "SeqVal")

        # if args.single_process == 'drive':
        #     execute_drive("0", "eccv", "experiment_1", 'Town02')

    # else:

    #     # TODO: of course this change from gpu to gpu , but for now we just assume at least a K40

    #     # Maybe the latest voltas will be underused
    #     # OBS: This usage is also based on my tensorflow experiences, maybe pytorch allows more.
    #     allocation_parameters = {'gpu_value': 3.5,
コード例 #4
0
            elif all(v is None for v in [
                    args.encoder_checkpoint, args.encoder_folder,
                    args.encoder_exp
            ]):
                encoder_params = None
            else:
                print(args.encoder_folder, args.encoder_exp,
                      args.encoder_checkpoint)
                raise ValueError(
                    "You should set all three arugments for using encoder: --encoder-folder, --encoder-exp and --encoder-checkpoint"
                )

            if args.single_process == 'train':
                execute_train(gpu=args.gpus[0],
                              exp_batch=args.folder,
                              exp_alias=args.exp,
                              suppress_output=False,
                              encoder_params=encoder_params)
            elif args.single_process == 'validation':
                execute_validation(gpu=args.gpus[0],
                                   exp_batch=args.folder,
                                   exp_alias=args.exp,
                                   json_file_path=args.val_json,
                                   suppress_output=False,
                                   encoder_params=encoder_params)

        # train_encoder and validation_encoder are for training the encoder model only.
        elif args.single_process == 'train_encoder':
            # Check if the mandatory folder argument is passed
            if args.encoder_folder is None:
                raise ValueError(
コード例 #5
0
ファイル: train_simple.py プロジェクト: kashyap7x/coiltraine
from coil_core import execute_train
from coilutils.general import create_log_folder, create_exp_path, erase_logs


if __name__ == '__main__':
    folder = 'cvpr'
    exp = 'img_gtseg_camv_control'

    create_log_folder(folder)
    erase_logs(folder)
    create_exp_path(folder, exp)

    execute_train('0', folder, exp)
    print("SUCCESSFULLY RAN TRAINING")