コード例 #1
0
ファイル: bibfs.py プロジェクト: ConorT0/AIProjectOne
	def __init__(self, m: maze.Maze, start: tuple = None, goal: tuple = None, single_mode: bool = False):

		self.maze = m
		# back is the goal

		self.single_mode = single_mode

		if goal is None:
			self.back = (self.maze.getDim() - 1, self.maze.getDim() - 1)
		else:
			self.back = goal

		if start is None:
			self.front = (0, 0)
		else:
			self.front = start

		# define all of the front
		self.front_visited = set()
		self.front_previous = dict()
		self.front_fringe = queue()
		self.front_fringe.append(self.front)

		# define all of the back
		self.back_visited = set()
		self.back_previous = dict()
		self.back_fringe = queue()
		self.back_fringe.append(self.back)
コード例 #2
0
def solve_bfs(start_id: str, end_id: str, nodes, edges):
    solution_t_start = perf_counter()

    solution = []

    # Initialize data structures
    fringe = queue()  # Queue to hold nodes to check since it's FIFO
    visited = {
    }  # Dict/hash-map for nodes already checked: key = node, value = parent

    # Add initial node to collections
    fringe.append((0, start_id))
    visited[start_id] = None  # Start node has no parents

    while len(fringe) > 0:
        current_distance, current_id = fringe.popleft()
        current_y, current_x = nodes[current_id]
        if current_id == end_id:
            this_id = current_id
            path = queue()
            while not this_id == start_id:
                path.appendleft(this_id)
                this_id = visited[this_id]
            return current_distance, solution, perf_counter(
            ) - solution_t_start, associations_to_path(visited, end_id, nodes)
        for child_id, c_to_child_distance in edges[current_id]:
            if child_id not in visited:
                fringe.append(
                    (current_distance + c_to_child_distance, child_id))
                visited[child_id] = current_id

                child_y, child_x = nodes[child_id]
                solution.append(((current_y, current_x), (child_y, child_x)))

    return None
コード例 #3
0
    def __init__(self, debug=False, step=False):
        """Initialize a machine control.

        It setups up a machine list, which in this implementation is a queue.
        Reaction maps are created as dictionaries, and the event buss is
        another queue.

        The `ctx` variable is not yet set. This happens when the simulator is
        started.

        Keyword Args:
            debug: opens a window for each state machine showing state \
            and event information if True (default True)
            step: allows one to cycle stepwise (default False)
        """
        self.machines = queue()

        self.event_reactions = {}
        self.machine_reactions = {}

        self.event_buss = queue()

        self.ctx = None

        self.debug = debug
        self.react_event = None
        self.step = step
        self.event_n = 0

        if debug:
            self.debug_windows = {}
コード例 #4
0
ファイル: game.py プロジェクト: NathanDai5287/TradeX
 def __init__(self,
              players=[],
              price=100,
              pendingbuys=queue(),
              pendingsells=queue()):
     self.price = price
     self.players = players
     self.pendingbuys = pendingbuys
     self.pendingsells = pendingsells
コード例 #5
0
def associations_to_path(associations: dict, goal_id: str, nodes) -> list:
    this_id = goal_id
    path = queue()
    while not this_id is None:
        path.appendleft(nodes[this_id])
        this_id = associations[this_id]
    return list(path)
コード例 #6
0
def solution(begin, target, words):
    if target not in words:
        return 0

    q, d = queue(), dict()
    q.append((begin, 0))

    # 단어 비교
    d[begin] = set(filter(lambda x: transistable(x, begin), words))

    # 하나씩 차이나는 단어 체크
    for w in words:
        d[w] = set(filter(lambda x: transistable(x, w), words))

    while q:
        cur, level = q.popleft()  #단어 cur, 변환 과정의 횟수 level

        # 전부 탐색해도 목표 단어를 만들지 못함 or 단어의 소비가 끝남에도 목표 단어 못 만듦
        if level > len(words):
            return 0

        # 단어를 채운 큐를 목표 단어를 만들 때까지 탐색
        for w in d[cur]:
            if w == target:
                return level + 1
            else:
                q.append((w, level + 1))
コード例 #7
0
def findDistance(matrix):
    output = [[-1 for i in range(N)] for i in range(M)]
    q = queue()
    for i in range(M):
        for j in range(N):
            output[i][j] = -1
            if matrix[i][j] == 'G':
                pos = [i, j, 0]
                q.appendleft(pos)
                output[i][j] = 0
            #elif matrix[i][j] == 'W':
            #    output[i][j] = -1
    while (len(q) > 0):
        curr = q.pop()
        x, y, dist = curr[0], curr[1], curr[2]
        for i in range(4):
            if isValid(x + row[i], y + col[i]) and isSafe(
                    x + row[i], y + col[i], matrix, output):
                output[x + row[i]][y + col[i]] = dist + 1
                pos = [x + row[i], y + col[i], dist + 1]
                q.appendleft(pos)

    for i in range(M):
        for j in range(N):
            if output[i][j] > 0:
                print(output[i][j], end=" ")
            else:
                print(output[i][j], end=" ")
        print()
コード例 #8
0
def levelOrder(root): 
      
    if (root == None): 
        return
  
    # Create an empty queue for 
    # level order tarversal 
    q = queue() 
  
    # To store front element of 
    # queue. 
    #node *curr 
  
    # Enqueue Root and None node. 
    q.append(root) 
    q.append(None) 
  
    while (len(q) > 1): 
        curr = q.popleft() 
        #q.pop() 
        # Condition to check occurrence of next level. 
        if (curr == None): 
           q.append(None) 
           print() 
  
        else: 
            # Pushing left child of current node. 
            if (curr.left): 
                q.append(curr.left) 
            # pushing right child of current node. 
            if (curr.right): 
                q.append(curr.right) 
  
            print(len(curr.data), end = " ") 
コード例 #9
0
def levelOrderTraversal(rootNode):  #Time - O(N) Space-O(N)
    if not rootNode:
        return
    # Create an empty queue for
    # level order traversal
    q = queue()
    # To store front element of
    # queue.
    #node *curr

    # Enqueue Root and None node.
    q.append(rootNode)
    q.append(None)
    while (len(q) > 1):
        curr = q.popleft()
        # Condition to check
        # occurrence of next
        # level.
        if (curr == None):
            q.append(None)
            print()
        else:
            # Pushing left child of
            # current node.
            if (curr.leftChild):
                q.append(curr.leftChild)
            # Pushing right child of
            # current node.
            if (curr.rightChild):
                q.append(curr.rightChild)
            print(curr.data, end=" ")
コード例 #10
0
ファイル: bibfs.py プロジェクト: ConorT0/AIProjectOne
	def find_valid_adjacent_nodes(self, matrix_node: tuple, visited: set, prev: dict, fringe: queue):

		valid_nodes = queue()

		r = matrix_node[0]
		c = matrix_node[1]

		grid = self.maze.getGrid()

		# check if the adjacent nodes are within the bounds of the grid
		# also check if the adjacent nodes aren't blocked off
		if r > 0:
			n = (r - 1, c)
			if grid[r - 1][c] != 1:
				n not in visited and n not in prev and n not in fringe and valid_nodes.append(n)
		if r < self.maze.getDim() - 1:
			n = (r + 1, c)
			if grid[r + 1][c] != 1:
				n not in visited and n not in prev and n not in fringe and valid_nodes.append(n)
		if c > 0:
			n = (r, c - 1)
			if grid[r][c - 1] != 1:
				n not in visited and n not in prev and n not in fringe and valid_nodes.append(n)
		if c < self.maze.getDim() - 1:
			n = (r, c + 1)
			if grid[r][c + 1] != 1:
				n not in visited and n not in prev and n not in fringe and valid_nodes.append(n)

		return valid_nodes
コード例 #11
0
    def to_swc(self, fname=None):
        from collections import deque as queue

        self.fix_parents()

        i = 1  # counter of swc line
        todo = queue([self])
        memory = {None: -1}  # track line numbers of each element
        out = []

        while todo:
            a = todo.pop()
            if a in memory:  # duplicate
                continue
            todo.extend(a.children)

            parent = memory[a.parent]
            memory[a] = i

            # Columns:  id  t  x  y  z  r  pid
            out.append("%d %d %g %g %g %g %d" %
                       (i, a.t, a.x, a.y, a.z, a.r, parent))
            i += 1

        out = "\n".join(out)
        if fname is None:
            return out
        f = open(fname, "w")
        f.write(out)
        f.close()
コード例 #12
0
def main():

  root = Node(0)
  n1 = Node(1)
  n2 = Node(2)
  n3 = Node(3)
  n4 = Node(4)
  n5 = Node(5)
  n6 = Node(6)
  n7 = Node(7)
  n8 = Node(8)
  
  root.left = n1
  root.right = n5
  
  n1.left = n2
  n1.right = n3
  n3.left = n4
  
  n5.left = n6
  n5.right = n7
  n7.left = n8


  q = queue()
  q.append(root)
  bfs(q)
コード例 #13
0
def solution(begin, target, words):
    if target not in words:
        return 0

    q, dic = queue(), dict()
    q.append((begin, 0))

    # 단어 하나차이걸 set에 저장
    set_1 = set()
    for i in words:
        if (comparison(i, begin)):
            set_1.add(i)
    dic[begin] = set_1

    # words 끼리 단어하나 차아나는걸 구해둠
    for w in words:
        set_2 = set()
        for i in words:
            if (comparison(i, w)):
                set_2.add(i)
        dic[w] = set_2

    # 탐색
    while q:
        word, level = q.popleft()
        for dc in dic[word]:
            if dc == target:
                return level + 1
            else:
                q.append((dc, level + 1))

    return 0
コード例 #14
0
ファイル: parser.py プロジェクト: weiqiyiji/lattr
 def _walk_nodes(self, root):
     pending = queue()
     pending.append(root)
     while len(pending):
         node = pending.popleft()
         if isinstance(node, Tag):
             for child in node.children:
                 pending.append(child)
             yield node
コード例 #15
0
ファイル: morpho.py プロジェクト: paragt/PixelPred2Seg
def watershed(a,
              seeds=None,
              connectivity=1,
              mask=None,
              smooth_thresh=0.0,
              smooth_seeds=False,
              minimum_seed_size=0,
              dams=False,
              override_skimage=False,
              show_progress=False):
    """Perform the watershed algorithm of Vincent & Soille (1991)."""
    seeded = seeds is not None
    sel = generate_binary_structure(a.ndim, connectivity)
    b = a
    if not seeded:
        seeds = regional_minima(a, connectivity)
    if seeds.dtype == bool:
        seeds = label(seeds, sel)[0]
    if smooth_seeds:
        seeds = binary_opening(seeds, sel)
    if smooth_thresh > 0.0:
        b = hminima(a, smooth_thresh)
    if skimage_available and not override_skimage and not dams:
        return skimage.morphology.watershed(b, seeds, sel, None, mask)
    elif seeded:
        b = impose_minima(a, seeds.astype(bool), connectivity)
    levels = unique(b)
    a = pad(a, a.max() + 1)
    b = pad(b, b.max() + 1)
    ar = a.ravel()
    br = b.ravel()
    ws = pad(seeds, 0)
    wsr = ws.ravel()
    current_label = 0
    neighbors = build_neighbors_array(a, connectivity)
    level_pixels = build_levels_dict(b)
    #if show_progress: wspbar = ip.StandardProgressBar('Watershed...')
    #else: wspbar = ip.NoProgressBar()
    #for i, level in ip.with_progress(enumerate(levels),
    #pbar=wspbar, length=len(levels)):
    for i, level in enumerate(levels):
        idxs_adjacent_to_labels = queue(
            [idx for idx in level_pixels[level] if any(wsr[neighbors[idx]])])
        while len(idxs_adjacent_to_labels) > 0:
            idx = idxs_adjacent_to_labels.popleft()
            if wsr[idx] > 0: continue  # in case we already processed it
            nidxs = neighbors[idx]  # neighbors
            lnidxs = nidxs[(wsr[nidxs] != 0).astype(bool)]  # labeled neighbors
            adj_labels = unique(wsr[lnidxs])
            if len(adj_labels) == 1 or len(adj_labels) > 1 and not dams:
                # assign a label
                wsr[idx] = wsr[lnidxs][ar[lnidxs].argmin()]
                idxs_adjacent_to_labels.extend(
                    nidxs[((wsr[nidxs] == 0) *
                           (br[nidxs] == level)).astype(bool)])
    return juicy_center(ws)
コード例 #16
0
def bfs(graph, start, goal):
    que = queue([start])
    visited = []
    sommet = None
    while len(que) != 0:
        sommet = que.popleft()
        if sommet == goal:
            visited.append(sommet)
            break
        visited.append(sommet)
        [que.append(i) for i in graph[sommet]]
    return visited
コード例 #17
0
def canBeSorted(N, a, P, vp):

    # To create the adjacency list of the graph
    v = [[] for i in range(N)]

    # Boolean array to mark the visited nodes
    vis = [False] * N

    # Creating adjacency list for undirected graph
    for i in range(P):
        v[vp[i][0]].append(vp[i][1])
        v[vp[i][1]].append(vp[i][0])

    for i in range(N):

        # If not already visited
        # then apply BFS
        if (not vis[i]):
            q = queue()
            v1 = []
            v2 = []

            # Set visited to true
            vis[i] = True

            # Push the node to the queue
            q.append(i)

            # While queue is not empty
            while (len(q) > 0):
                u = q.popleft()
                v1.append(u)
                v2.append(a[u])

                # Check all the adjacent nodes
                for s in v[u]:

                    # If not visited
                    if (not vis[s]):

                        # Set visited to true
                        vis[s] = True
                        q.append(s)

            v1 = sorted(v1)
            v2 = sorted(v2)

            # If the connected component does not
            # contain same elements then return false
            if (v1 != v2):
                return False
    return True
コード例 #18
0
ファイル: bfs_no_recursion.py プロジェクト: avimeir/py-stuff
def find_path_bfs(adj_list, from_v, to_v):
    path = []
    vertices_queue = queue([(None, from_v)])
    visited = set()
    while vertices_queue:
        parrent, vertex = vertices_queue.pop()
        if vertex not in visited:
            visited.add(vertex)
            path += [(parrent, vertex)]
            if vertex == to_v:
                return fix_path(path)
            parrent_child_pairs = [(vertex, v) for v in adj_list[vertex]]
            vertices_queue.extendleft(parrent_child_pairs)
コード例 #19
0
 def resynth(self,sequence):
     running_list = queue([])
     for i, element in enumerate(sequence):
         wrappedelem = AbstractElement(element,i == len(sequence)-1)
         if (len(running_list) < self.depth):
             running_list.append(wrappedelem)
             if (i == self.depth-1):
                 self.initlists[None] = tuple(running_list)
         else:
             self.mappings[tuple(running_list)] = wrappedelem
             running_list.popleft()
             running_list.append(wrappedelem)
     return
コード例 #20
0
def watershed(a, seeds=None, smooth_thresh=0.0, smooth_seeds=False, 
        minimum_seed_size=0, dams=True, show_progress=False, connectivity=1):
    seeded = seeds is not None
    sel = generate_binary_structure(a.ndim, connectivity)
    if smooth_thresh > 0.0:
        b = hminima(a, smooth_thresh)
    if seeded:
        if smooth_seeds:
            seeds = binary_opening(seeds, sel)
        b = impose_minima(a, seeds.astype(bool), connectivity)
    else:
        seeds = regional_minima(a, connectivity)
        b = a
    if seeds.dtype == bool:
        ws = label(seeds, sel)[0]
    else:
        ws = seeds
    levels = unique(a)
    a = pad(a, a.max()+1)
    b = pad(b, b.max()+1)
    ar = a.ravel()
    br = b.ravel()
    ws = pad(ws, 0)
    wsr = ws.ravel()
    maxlabel = iinfo(ws.dtype).max
    current_label = 0
    neighbors = build_neighbors_array(a, connectivity)
    level_pixels = build_levels_dict(a)
    if show_progress: wspbar = ip.StandardProgressBar('Watershed...')
    else: wspbar = ip.NoProgressBar()
    for i, level in ip.with_progress(enumerate(levels), 
                                            pbar=wspbar, length=len(levels)):
        idxs_adjacent_to_labels = queue([idx for idx in level_pixels[level] if
                                            any(wsr[neighbors[idx]])])
        while len(idxs_adjacent_to_labels) > 0:
            idx = idxs_adjacent_to_labels.popleft()
            if wsr[idx]> 0: continue # in case we already processed it
            nidxs = neighbors[idx] # neighbors
            lnidxs = nidxs[
                ((wsr[nidxs] != 0) * (wsr[nidxs] != maxlabel)).astype(bool)
            ] # labeled neighbors
            adj_labels = unique(wsr[lnidxs])
            if len(adj_labels) > 1 and dams: # build a dam
                wsr[idx] = maxlabel 
            elif len(adj_labels) >= 1: # assign a label
                wsr[idx] = wsr[lnidxs][ar[lnidxs].argmin()]
                idxs_adjacent_to_labels.extend(nidxs[((wsr[nidxs] == 0) * 
                                    (br[nidxs] == level)).astype(bool) ])
    if dams:
        ws[ws==maxlabel] = 0
    return juicy_center(ws)
コード例 #21
0
def greedy_assemble(reads):
    """Returns a string that is a superstring of the input reads, which are given as a list of strings.
    The superstring computed is determined by the greedy algorithm as described in HW1, with specific tie-breaking
    criteria.
    """
    g = AssemblyGraph(reads)
    q = queue(g.generate_possible_edges())
    while g.is_disconnected():
        src, dest = edge = q.pop()[
            0:2]  # pull out the two vertices, ignore weight
        if g.outdegree(src) == g.indegree(
                dest) == 0 and g.does_not_cause_cycle(edge):
            g.add_edge(*edge)
    return g.superstring_from_edges()
コード例 #22
0
def caminos_minimos(grafo, origen):
    q = queue()
    visitados = set()
    distancias = {}
    distancias[origen] = 0
    visitados.add(origen)
    q.appendleft(origen)
    while bool(q):
        v = q.pop()
        for w in grafo.adyacentes(v):
            if w not in visitados:
                distancias[w] = distancias[v] + 1
                q.appendleft(w)
                visitados.add(w)
    return distancias
コード例 #23
0
    def __init__(self, config):
        """
        Instantiates a new CommandIngest instance
        :param config: dictionary of configuration data
        """
        Submodule.__init__(self, "command_ingest", config)
        self.general_queue = queue()

        self.processes = {
            "dispatch":
            ThreadHandler(
                target=partial(self.dispatch),
                name="command_ingest_dispatch",
                parent_logger=self.logger,
            )
        }
コード例 #24
0
def solution(begin, target, words):
    q, d = queue(), dict()
    q.append((begin, 0))
    d[begin] = set(filter(lambda x: transistable(x, begin), words))
    for w in words:
        d[w] = set(filter(lambda x: transistable(x, w), words))
    while q:
        cur, level = q.popleft()
        if level > len(words):
            return 0
        for w in d[cur]:
            if w == target:
                return level + 1
            else:
                q.append((w, level + 1))

    return 0
コード例 #25
0
def solution(maps):
    answer = []
    couple = []
    dx = [1, -1, 0, 0]
    dy = [0, 0, 1, -1]
    n = len(maps)
    m = len(maps[0])
    for i, v in enumerate(maps):  # 2차원 필드로 만들고
        maps[i] = list(v)
    for i in range(n):  # 필드를 돌면서
        for j in range(m):
            if (maps[i][j] != '.'):  # 현재 위치가 나라일 경우
                name = maps[i][j]  # 나라 이름을 기억해 둠
                maps[i][j] = '.'  # 지난 곳은 방문 처리를 함
                q = queue()
                q.append((i, j))
                while len(q) != 0:  # 현재 위치로 부터 동서남북으로 BFS 탐색을 시작함
                    cur = q.popleft()
                    for dir in range(4):
                        ny = cur[0] + dy[dir]
                        nx = cur[1] + dx[dir]
                        if ny < 0 or ny >= n or nx < 0 or nx >= m or maps[ny][
                                nx] == '.':  # 필드 밖에 나가거나 나라가 아닌 경우 예외 처리
                            continue
                        if maps[ny][nx] == name:  # 다음 위치가 현재 나라와 같은 경우 큐에 추가
                            q.append((ny, nx))
                            maps[ny][nx] = '.'
                        else:  # 다음 위차가 다른 나라일 경우(국경을 공유)
                            c = sorted((name, maps[ny][nx]))
                            if c not in couple:  # 중복되지 않게 그 쌍을 저장해놓음
                                couple.append(c)
    d = defaultdict(list)  # 각 나라에서 국경을 공유하는 나라가 얼마나 있는지 알기 위해 dict 생성
    for c in couple:
        d[c[0]].append(c[1])
    max_couple_num = 0
    for c in d:  # dict 를 돌면서 국경을 공유하는 나라 개수가 가장 많은 경우를 고름
        l = len(d[c])
        if max_couple_num < l:
            max_couple_num = l
    answer.append(len(couple))
    answer.append(max_couple_num)

    return answer
コード例 #26
0
    def generate(self):
        running_list = queue(self.initlists[None])
        generated_sequence = []
        for elem in running_list:
            generated_sequence.append(elem.element)
            if elem.isTerminal:
                return generated_sequence
        next_elem = self.mappings[tuple(running_list)]
        running_list.popleft()
        running_list.append(next_elem)
        generated_sequence.append(next_elem.element)

        while not next_elem.isTerminal:
            next_elem = self.mappings[tuple(running_list)]
            running_list.popleft()
            running_list.append(next_elem)
            generated_sequence.append(next_elem.element)

        return generated_sequence
コード例 #27
0
def bfs(graph, v):
    visited[v] = True
    arr = queue()
    arr.append(v)
    print(v)
    s, k = 1, 1
    while (s):
        u = arr.popleft()
        s -= 1
        k -= 1
        for i in graph[u]:
            if (not visited[i]):
                visited[i] = True
                arr.append(i)
                s += 1
                print(i, end=" ")
        if (k == 0):
            k = s
            print("")
コード例 #28
0
def bfs(node):

    qu = queue()

    qu.append([node, -1])
    vis[node] = True

    while (len(qu) > 0):
        p = qu.popleft()

        vis[p[0]] = True

        for child in tree[p[0]]:
            if (vis[child] == False):
                qu.append([child, p[0]])

                for u in path[p[0]]:
                    path[child].append(u)

                path[child].append(p[0])
コード例 #29
0
ファイル: diff_checker.py プロジェクト: levanin/CV-code
def bracketing_helper(s1, s2):
    """Adds double square brackets to s1 and s2 for any characters not
     in the largest common sub-sequence of the two strings"""
    lcs = queue(longest_common_substring(s1, s2))
    lcs2 = copy.deepcopy(lcs)
    s1_diff = ""
    s2_diff = ""
    for c in s1:
        if len(lcs) > 0 and lcs[0] == c:
            lcs.popleft()
            s1_diff += c
        else:
            s1_diff += "[[" + c + "]]"
    for c in s2:
        if len(lcs2) > 0 and lcs2[0] == c:
            lcs2.popleft()
            s2_diff += c
        else:
            s2_diff += "[[" + c + "]]"

    return s1_diff, s2_diff
コード例 #30
0
    def __init__(self, ctl, ctx):
        """Initialize the state machine.

        Prepares the machine for execution and prepares event processing
        necessities.

        Arguments:
            ctl: a MachineControl instance
            ctx: the machine's context, a StateMachine
        """
        self.ctl = ctl
        self.ctx = ctx

        self.inbox = queue()
        self.event = None

        self.is_suspended = False

        self.init_state = self.halt

        self.info = []
コード例 #31
0
def bfs(graph, u):
    n = len(graph)
    vis = [False] * n
    vis[u] = True
    levels = []
    q = queue()
    q.append(u)
    k = 1
    q_size = 1
    while (not q_size == 0):
        k -= 1
        if (k == 0):
            k = q_size
            levels.append(list(q))
        v = q.popleft()
        q_size -= 1
        for i in graph[v]:
            if not vis[i]:
                vis[i] = True
                q.append(i)
                q_size += 1
    return levels
コード例 #32
0
    def __init__(self, *args, **kwargs):
        """Create a base throttler with the given delay time and pool size

        When both ``delay`` and ``reqs_over_time`` are :const:`None`, :attr:`delay` is set to
        :const:`0`.

        :param name: the name of the throttler (default: :const:`None`)
        :type name: string
        :param session: the sessions to use for each request
        :type session: requests.Session
        :param delay: the fixed positive amount of time that must elapsed bewteen each request
                      in seconds (default: :const:`None`)
        :type delay: float
        :param reqs_over_time: a tuple of the form (`number of requests`, `time`) used to
                               calculate the delay to use when it is :const:`None`. The delay
                               will be equal to ``time / number of requests`` (default:
                               :const:`None`)
        :type reqs_over_time: (float, float)
        :param max_pool_size: the maximum number of enqueueable requests (default: *unlimited*)
        :type max_pool_size: int
        :raise:
            :ValueError: if ``delay`` or the value calculated from ``reqs_over_time`` is a
                         negative number

        """
        self._name = kwargs.get('name')
        self._requests_pool = queue(maxlen=kwargs.get('max_pool_size'))
        self._delay = self._get_delay(kwargs.get('delay'), kwargs.get('reqs_over_time'))
        self._status = 'initialized'
        self._session = kwargs.get('session', requests.Session())
        self._executor = ThreadPoolExecutor(max_workers=1)
        self._timer = Timer(checkpoint=0)
        self._successes = 0
        self._failures = 0
        self._wait_enqueued = None
        self.status_lock = threading.Condition(threading.Lock())
        self.not_empty = threading.Condition(threading.Lock())
コード例 #33
0
ファイル: morpho.py プロジェクト: ricounet67/gala
def watershed(a, seeds=None, connectivity=1, mask=None, smooth_thresh=0.0, 
        smooth_seeds=False, minimum_seed_size=0, dams=False,
        override_skimage=False, show_progress=False):
    """Perform the watershed algorithm of Vincent & Soille (1991).
    
    Parameters
    ----------
    a : np.ndarray, arbitrary shape and type
        The input image on which to perform the watershed transform.
    seeds : np.ndarray, int or bool type, same shape as `a` (optional)
        The seeds for the watershed. If provided, these are the only basins
        allowed, and the algorithm proceeds by flooding from the seeds.
        Otherwise, every local minimum is used as a seed.
    connectivity : int, {1, ..., a.ndim} (optional, default 1)
        The neighborhood of each pixel, defined as in `scipy.ndimage`.
    mask : np.ndarray, type bool, same shape as `a`. (optional)
        If provided, perform watershed only in the parts of `a` that are set
        to `True` in `mask`.
    smooth_thresh : float (optional, default 0.0)
        Local minima that are less deep than this threshold are suppressed,
        using `hminima`.
    smooth_seeds : bool (optional, default False)
        Perform binary opening on the seeds, using the same connectivity as
        the watershed.
    minimum_seed_size : int (optional, default 0)
        Remove seed regions smaller than this size.
    dams : bool (optional, default False)
        Place a dam where two basins meet. Set this to True if you require
        0-labeled boundaries between different regions.
    override_skimage : bool (optional, default False)
        skimage.morphology.watershed is used to implement the main part of the
        algorithm when `dams=False`. Use this flag to use the separate pure
        Python implementation instead.
    show_progress : bool (optional, default False)
        Show a cute little ASCII progress bar (using the progressbar package)

    Returns
    -------
    ws : np.ndarray, same shape as `a`, int type.
        The watershed transform of the input image.
    """
    seeded = seeds is not None
    sel = generate_binary_structure(a.ndim, connectivity)
    # various keyword arguments operate by modifying the input image `a`.
    # However, we operate on a copy of it called `b`, so that `a` can be used
    # to break ties.
    b = a
    if not seeded:
        seeds = regional_minima(a, connectivity)
    if minimum_seed_size > 0:
        seeds = remove_small_connected_components(seeds, minimum_seed_size,
                                                  in_place=True)
        seeds = relabel_from_one(seeds)[0]
    if smooth_seeds:
        seeds = binary_opening(seeds, sel)
    if smooth_thresh > 0.0:
        b = hminima(a, smooth_thresh)
    if seeds.dtype == bool:
        seeds = label(seeds, sel)[0]
    if skimage_available and not override_skimage and not dams:
        return skimage.morphology.watershed(b, seeds, sel, None, mask)
    elif seeded:
        b = impose_minima(a, seeds.astype(bool), connectivity)
    levels = unique(b)
    a = pad(a, a.max()+1)
    b = pad(b, b.max()+1)
    ar = a.ravel()
    br = b.ravel()
    ws = pad(seeds, 0)
    wsr = ws.ravel()
    neighbors = build_neighbors_array(a, connectivity)
    level_pixels = build_levels_dict(b)
    if show_progress: wspbar = ip.StandardProgressBar('Watershed...')
    else: wspbar = ip.NoProgressBar()
    for i, level in ip.with_progress(enumerate(levels), 
                                            pbar=wspbar, length=len(levels)):
        idxs_adjacent_to_labels = queue([idx for idx in level_pixels[level] if
                                            any(wsr[neighbors[idx]])])
        while len(idxs_adjacent_to_labels) > 0:
            idx = idxs_adjacent_to_labels.popleft()
            if wsr[idx] > 0: continue # in case we already processed it
            nidxs = neighbors[idx] # neighbors
            lnidxs = nidxs[(wsr[nidxs] != 0).astype(bool)] # labeled neighbors
            adj_labels = unique(wsr[lnidxs])
            if len(adj_labels) == 1 or len(adj_labels) > 1 and not dams: 
                # assign a label
                wsr[idx] = wsr[lnidxs][ar[lnidxs].argmin()]
                idxs_adjacent_to_labels.extend(nidxs[((wsr[nidxs] == 0) * 
                                    (br[nidxs] == level)).astype(bool) ])
    return juicy_center(ws)