コード例 #1
0
def save(model, model_name):
    print("\nSaving model...")

    path = common.MODEL_DIR + model_name

    model.save(path)
    print("Model saved to " + cf.skyBlue(path))
コード例 #2
0
ファイル: make_dataset.py プロジェクト: zjh65204/rune-breaker
def show_summary():
    print("\n" + cf.skyBlue("Training set"))
    print(get_summary_matrix(common.TRAINING_DIR))

    print("\n" + cf.salmon("Validation set"))
    print(get_summary_matrix(common.VALIDATION_DIR))

    print("\n" + cf.lightGreen("Testing set"))
    print(get_summary_matrix(common.TESTING_DIR))
コード例 #3
0
def show_settings(batch_size):
    print("Classification model training application started.\n")

    settings = pd.DataFrame(index=('max_epochs', 'patience', 'batch_size'), 
                            columns=('value', ))

    settings['value']['max_epochs'] = MAX_EPOCHS
    settings['value']['patience'] = PATIENCE
    settings['value']['batch_size'] = batch_size

    print(cf.skyBlue("Settings"))
    print(settings)
コード例 #4
0
ファイル: cli_logger.py プロジェクト: wangziyuruc/ray
    def labeled_value(self, key: str, msg: str, *args: Any, **kwargs: Any):
        """Displays a key-value pair with special formatting.

        Args:
            key (str): Label that is prepended to the message.

        For other arguments, see `_format_msg`.
        """
        if self.old_style:
            return

        self._print(
            cf.skyBlue(key) + ": " +
            _format_msg(cf.bold(msg), *args, **kwargs))
コード例 #5
0
def main(batch_size, model_name):
    show_settings(batch_size)

    model = make_model()

    training, validation = make_generators(batch_size)

    fit(model, training, validation, batch_size)

    save(model, model_name)

    print("\nFinished!")
    print("Run " + cf.skyBlue("classify.py") + 
          " to test the model and get information about its performance.")
    print("More information available with " + cf.orange("Tensorboard") + ".")
コード例 #6
0
ファイル: classify.py プロジェクト: zjh65204/rune-breaker
def main(src_subdir, verbose, model_name):
    common.create_directories()

    src_dir = common.DATA_DIR + src_subdir + "/"

    model = tensorflow.keras.models.load_model(common.MODEL_DIR + model_name)

    # real (index) x predicted (column)
    confusion_matrix = pd.DataFrame(np.zeros((4, 4), dtype=np.int32),
                                    index=('down', 'left', 'right', 'up'),
                                    columns=('down', 'left', 'right', 'up'))

    classification_matrix = pd.DataFrame(np.zeros((4, 3)),
                                         index=('down', 'left', 'right', 'up'),
                                         columns=('precision', 'recall', 'f1'))

    type_matrix = pd.DataFrame(np.zeros((4, 2), dtype=np.int32),
                               index=('round', 'wide', 'narrow', 'total'),
                               columns=('correct', 'incorrect'))

    images = common.get_files(src_dir)

    print("Processing {} file(s) in {}/...\n".format(len(images), src_subdir))

    for path, filename in images:
        img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)

        data = np.reshape(img, (1, ) + common.INPUT_SHAPE)
        prediction = model.predict(data)

        class_index = np.argmax(prediction)
        predicted_class = common.CLASSES[class_index]

        real_class, arrow_type = common.arrow_labels(filename)

        if verbose and real_class != predicted_class:
            print(path)
            print("Expected {} but got {}: {}\n".format(
                cf.lightGreen(real_class), cf.lightCoral(predicted_class),
                str(prediction[0])))

        confusion_matrix[predicted_class][real_class] += 1

        if real_class == predicted_class:
            type_matrix['correct'][arrow_type] += 1
            type_matrix['correct']['total'] += 1
        else:
            type_matrix['incorrect'][arrow_type] += 1
            type_matrix['incorrect']['total'] += 1

    print("\n" + cf.sandyBrown("Confusion matrix"))
    print(confusion_matrix)

    classification_matrix['precision'] = confusion_matrix.apply(precision)
    classification_matrix['recall'] = confusion_matrix.apply(recall, axis=1)

    classification_matrix['f1'] = classification_matrix.apply(f1, axis=1)

    print("\n" + cf.skyBlue("Classification summary"))
    print(classification_matrix)

    type_matrix['accuracy'] = type_matrix.apply(type_accuracy, axis=1)

    print("\n" + cf.plum("Accuracy by type"))
    print(type_matrix)

    print("\nFinished!")
コード例 #7
0
def main(inspection, mode, automatic):
    print("     SPACE = approve")
    print("OTHER KEYS = skip")
    print("         Q = quit\n")

    labeled_imgs = common.get_files(common.LABELED_DIR)

    approved = 0
    for path, filename in labeled_imgs:
        arrows = []

        display = cv2.imread(path)
        height, width, _ = display.shape

        # Manually tuned values
        search_x, search_y = width // 5 + 35, height // 4
        search_width, search_height = SEARCH_REGION_WIDTH, height // 2 - search_y

        for _ in range(4):
            x0 = search_x
            x1 = x0 + search_width

            y0 = search_y
            y1 = y0 + search_height

            img = display[y0:y1, x0:x1]
            (cx, cy), arrow_box = process_arrow(img, mode)

            search_x += int(cx + ARROW_BOX_DIST - SEARCH_REGION_WIDTH / 2)
            search_y += int(cy - SEARCH_REGION_HEIGHT / 2)

            search_width = SEARCH_REGION_WIDTH
            search_height = SEARCH_REGION_HEIGHT

            arrows.append(arrow_box)

        if not automatic:
            arrow_type, directions, _ = re.split('_', filename)
            reference = get_reference_arrows(directions, arrows[0].shape)

            cv2.imshow(arrow_type, np.vstack([np.hstack(arrows), reference]))

            key = cv2.waitKey()
            cv2.destroyAllWindows()
        else:
            key = APPROVE_KEY

        if key == APPROVE_KEY:
            if not inspection:
                save_arrow_imgs(arrows, filename)
            approved += 1
        elif key == EXIT_KEY:
            break
        else:
            print("Skipped " + cf.skyBlue(path))

    if len(labeled_imgs) > 0:
        print("\nApproved {} out of {} images ({}%).\n".format(
            approved, len(labeled_imgs), 100 * approved // len(labeled_imgs)))
    else:
        print("There are no images to preprocess.\n")

    show_summary()

    print("Finished!")