コード例 #1
0
ファイル: tests.py プロジェクト: garyfeng/colorlover
 def test_to_numeric(self):
     scales = cl.to_numeric(cl.scales['3']['div']['RdYlBu'])
     self.assertEqual(
         scales,
         [(252, 141, 89),
          (255, 255, 191), (145, 191, 219)]
     )
コード例 #2
0
def __plot_tsne_to_visdom(z_embed, classes):
    import colorlover as cl

    C = np.array([
        list(x) for x in cl.to_numeric(cl.scales['10']['qual']['Paired'])
    ]).astype(int)

    for ic in range(10):
        idx = classes[:, ic] == 1
        X = z_embed[idx, :]
        Y = np.ones_like(X[:, 0]).astype(int)  # treat as a single class
        Ci = np.expand_dims(C[ic], axis=0)  # pickup a corresponding color
        viz_plot(f"z_tsne_for_{ic}",
                 viz.scatter,
                 X,
                 Y,
                 opts=dict(markercolor=Ci, markersize=4, legend=[str(ic)]))

    X = z_embed
    Y = np.argmax(classes, axis=1) + 1
    viz_plot("z_tsne",
             viz.scatter,
             X,
             Y,
             opts=dict(width=800,
                       height=800,
                       markercolor=C,
                       markersize=4,
                       legend=[str(x) for x in range(10)]))
コード例 #3
0
    def reset_world(self, world):
        # random properties for agents
        world.goals = []
        n = 10
        colors = np.array(cl.to_numeric(
            cl.scales[str(10)]['div']['RdYlBu'])) / 255
        for threat in world.threats:
            self.generate_random_threat(threat, world)
        for i, agent in enumerate(world.agents):
            agent.size = np.random.uniform(0.2, 0.3)
            agent.pseudo_collision_range = agent.size + 0.1
            agent.color = colors[i % n]
            agent.target.color = colors[i % n]
            # agent.state.p_pos = np.random.uniform(-1, +1, world.dim_p)
            if i % 2 == 0:
                self.generate_random_pose(agent, world)
                self.generate_random_goal(agent, world)
            else:
                agent.state.p_pos = np.copy(world.agents[i -
                                                         1].target.state.p_pos)
                agent.target.state.p_pos = np.copy(world.agents[i -
                                                                1].state.p_pos)
            world.goals.append(np.copy(agent.target.state.p_pos))

            agent.state.p_vel = np.zeros(world.dim_p)
            agent.previous_state.p_pos = np.copy(agent.state.p_pos)
            agent.previous_state.p_vel = np.copy(agent.state.p_vel)
            agent.state.c = np.zeros(world.dim_c)
            agent.terminate = False
        for agent in world.agents:
            agent.agents_lidar = world.lidar.get_ray_lidar(agent)
            agent.lidar_memory = [agent.agents_lidar, agent.agents_lidar]
コード例 #4
0
def generate_cluster_colors(num):
    """Generate a list of colors given number needed.

    Arguments:
        num (int): Number of colors needed. n <= 35.

    Returns:
        list: strings containing RGB-style strings e.g. rgb(255,255,255).
    """

    # Selects a random colorscale (RGB) depending on number of colors needed
    if num < 12:
        c = cl.scales[str(num)]['qual']
        c = c[random.choice(list(c))]
    else:
        num_rounded = int(math.ceil(num / 10)) * 10
        c = cl.to_rgb(cl.interp(cl.scales['12']['qual']['Paired'],
                                num_rounded))
    c = cl.to_numeric(sample(c, int(num)))

    # Converts selected colorscale to HSL, darkens the color if it is too light,
    # convert it to rgb string and return
    c_rgb = []
    for color in c:
        hls = colorsys.rgb_to_hls(color[0] / 255, color[1] / 255,
                                  color[2] / 255)
        if hls[1] < 0.6:  # Darkens the color if it is too light (HLS = [0]Hue [1]Lightness [2]Saturation)
            rgb = colorsys.hls_to_rgb(hls[0], 0.6, hls[2])
        else:
            rgb = colorsys.hls_to_rgb(hls[0], hls[1], hls[2])
        rgb_str = "rgb(" + str(rgb[0] * 255) + "," + str(
            rgb[1] * 255) + "," + str(rgb[2] * 255) + ")"
        c_rgb.append(rgb_str)

    return c_rgb
コード例 #5
0
 def test_to_numeric(self):
     scales = cl.to_numeric(cl.scales['3']['div']['RdYlBu'])
     self.assertEqual(
         scales,
         [(252, 141, 89),
          (255, 255, 191), (145, 191, 219)]
     )
コード例 #6
0
def custom_color(sample_to_label, samples_dendro_leaves, color_scale='Spectral'):
    # Sample label fragmentation
    sample_to_label = sample_to_label.astype(str).fillna('unkown')
    label_leaves = [str(sample_to_label[x]) for x in samples_dendro_leaves]
    uni_labels = list(np.unique(sample_to_label))
    uni_len = len(uni_labels)
    uni_range = range(uni_len)
    uni_normal = [x/uni_range[-1] for x in uni_range]
    val_label = pd.Series(uni_range, index=uni_labels)
    val_set = [val_label[x] for x in label_leaves]

    
    colors = cl.scales[str(min(max(uni_len, 3), 11))]['div']['Spectral']
    if uni_len > len(colors):
        if uni_len > 20:
            colors = cl.to_rgb(cl.interp(colors, 20))
            for i in range(uni_len - 20):
                i = i % 20
                colors.append(colors[i])
        else:
            colors = cl.to_rgb(cl.interp(colors, uni_len))
    colors_legend = [tuple(map(lambda x:x/255, x)) for x in cl.to_numeric(colors)]
    c_map_legend = list(zip(uni_range, colors_legend))
    c_map = list(zip(uni_normal, colors))
    return c_map, c_map_legend, val_set, val_label
コード例 #7
0
def get_continuous_cmap(hex_list, float_list=None, n_bins=256, rgb=False):
    ''' creates and returns a color map that can be used in heat map figures.
        If float_list is not provided, colour map graduates linearly between each color in hex_list.
        If float_list is provided, each color in hex_list is mapped to the respective location in float_list.

        Parameters
        ----------
        hex_list: list of hex code strings
        float_list: list of floats between 0 and 1, same length as hex_list. Must start with 0 and end with 1.
        rgb_list: bool indiciating that input is already in rgb

        Returns
        ----------
        colour map'''
    if not rgb:
        rgb_list = [rgb_to_dec(hex_to_rgb(i)) for i in hex_list]
    else:
        hex_list = colorlover.to_numeric(hex_list)
        rgb_list = [rgb_to_dec(i) for i in hex_list]

    if float_list:
        pass
    else:
        float_list = list(np.linspace(0, 1, len(rgb_list)))

    cdict = dict()
    for num, col in enumerate(['red', 'green', 'blue']):
        col_list = [[float_list[i], rgb_list[i][num], rgb_list[i][num]] for i in range(len(float_list))]
        cdict[col] = col_list
    cmp = colors.LinearSegmentedColormap('my_cmp', segmentdata=cdict, N=n_bins)
    return cmp
コード例 #8
0
def get_plot_colors(max_colors, color_format="pyplot"):
    """Generate colors for plotting."""
    colors = cl.scales["11"]["qual"]["Paired"]
    if max_colors > len(colors):
        colors = cl.to_rgb(cl.interp(colors, max_colors))
    if color_format == "pyplot":
        return [[j / 255.0 for j in c] for c in cl.to_numeric(colors)]
    return colors
コード例 #9
0
ファイル: plotting.py プロジェクト: poodarchu/sscls
def get_plot_colors(max_colors, color_format='pyplot'):
    """Generate colors for plotting."""
    colors = cl.scales['11']['qual']['Paired']
    if max_colors > len(colors):
        colors = cl.to_rgb(cl.interp(colors, max_colors))
    if color_format == 'pyplot':
        return [[j / 255.0 for j in c] for c in cl.to_numeric(colors)]
    return colors
コード例 #10
0
    def to_color(self, value):
        if self._max == self._min:
            return "#fffffff"

        pct = (value - self._min) / (self._max - self._min)
        bin_no = max(min(int(pct * self._n), self._n - 1), 0)

        color = self._scheme[bin_no]
        r, g, b = colorlover.to_numeric(colorlover.to_rgb([color]))[0]
        hexval = "#{0:02x}{1:02x}{2:02x}".format(int(r), int(g), int(b))
        return hexval
コード例 #11
0
ファイル: matplotlib_utils.py プロジェクト: jren2019/koe
def to_hex(scale):
    """
    Convert an hsl, numeric or rgb color to string hex color. ie,
    [ "hsl(360,100,100)", "hsl(360,100,100)", "hsl(360,100,100)" ] -->
    [ "#FFFFFF", "#FFFFFF", "#FFFFFF" ]
    """
    s_t = cl.scale_type(scale)

    if s_t == 'hex':
        return scale
    elif s_t == 'numeric':
        return [
            '#%02x%02x%02x' % tuple(map(int, s)) for s in cl.to_numeric(scale)
        ]
    elif s_t == 'rgb':
        return [
            '#%02x%02x%02x' % tuple(map(int, s)) for s in cl.to_numeric(scale)
        ]
    elif s_t == 'hsl':
        return [
            '#%02x%02x%02x' % tuple(map(int, s)) for s in cl.to_numeric(scale)
        ]
コード例 #12
0
def get_hex_colors(colors="Greys"):
    """ Creates an array of hex coded colors.

    :param colors: string color group, Available colors can be found on # https://plot.ly/ipython-notebooks/color-scales/.
    :return: array
    """
    hex_colors = []
    num_colors = cl.to_numeric(cl.scales['9']['seq'][colors])
    for num_color in num_colors:
        num_color = [int(x) for x in num_color]
        num_color = '#%02x%02x%02x' % tuple(num_color)
        hex_colors.append(num_color)
    return hex_colors
コード例 #13
0
def color_scale_interp(
    input_num,
    max_num,
    min_num,
    color_mesh_size=80,
    hex_mode=True,
):
    """
    """
    # | - color_scale_interp
    #     cl.scales["8"]["seq"]["Purples"]

    black_white_cs = [
        'rgb(0,0,0)',
        'rgb(255,255,255)',
    ]

    black_red_cs = [
        'rgb(0,0,0)',
        'rgb(255,0,0)',
    ]

    color_scale_i = black_red_cs

    color_scale_i = cl.scales["8"]["seq"]["Greys"][::-1]
    #     color_scale_i = cl.scales["8"]["seq"]["Purples"]
    #     color_scale_i = cl.scales['3']['div']['RdYlBu']

    color_scale = cl.interp(
        color_scale_i,
        color_mesh_size,
    )

    color_scale = cl.to_rgb(color_scale)

    # Converting RGB string representatino to tuple
    color_scale = cl.to_numeric(color_scale)

    input_norm = ((input_num - min_num) / (max_num - min_num))

    cs_index = round(input_norm * len(color_scale)) - 1
    if cs_index == -1:
        cs_index = 0

    color_out = color_scale[cs_index]

    if hex_mode:
        color_out = rgb_to_hex(color_out)

    return (color_out)
コード例 #14
0
def getpaintedimage(image: np.ndarray, masks: np.ndarray) -> np.ndarray:
    '''Paints mask on image

    Masks are painted in different colours automaticly.

    Parameters
    ----------
    image: numpy.ndarray
        The image to be painted. Must be numpy.ndarray of shape (w,h,c) and
        type np.uint8.
    masks: numpy.ndarray
        The mask for painting. Must be numpy.ndarray of shape (w,h,c) and
        type np.uint8.

    Returns
    -------
    numpy.ndarray
        A array representing the painted image in format (w,h,c) of
        type np.uint8
    '''
    result = image.copy()
    masklist = tuple(masks[:, :, i] for i in range(masks.shape[2]))
    num_classes = masks.shape[2]
    colors = cl.scales[f"{num_classes}"]['qual']['Set3']
    labels = np.array(range(1, num_classes + 1))
    palette = dict(zip(labels, np.array(cl.to_numeric(colors))))
    for i in range(num_classes):
        mask_layer = masklist[i]
        color = palette[i + 1]
        contours, _ = cv2.findContours(mask_layer, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        if len(contours) > 0:
            result = cv2.drawContours(
                image=result,
                contours=contours,
                contourIdx=-1,
                color=color,
                thickness=2)
        if mask_layer.sum() > 0:
            width = image.shape[0]
            scale = 0.4
            cv2.putText(
                img=result,
                text=f"{i+1}",
                org=(int(20 * scale) + (i * 16), int(40 * scale)),
                fontFace=cv2.FONT_HERSHEY_SIMPLEX,
                fontScale=scale,
                color=color,
                thickness=1,
                lineType=cv2.LINE_AA)
    return result
コード例 #15
0
def text_contrast_color(bg_color):
    """ Decides if text should be black or white based on background luminance

    :param bg_color: RGB color
    :return:
    """
    bg_color_numeric = colorlover.to_numeric([bg_color])[0]

    # Computing luminance
    p_luminance = (0.299 * bg_color_numeric[0] + 0.587 * bg_color_numeric[1] + 0.114 * bg_color_numeric[2]) / 255;

    if (p_luminance > 0.6):
        text_color = 'black'
    else:
        text_color = 'white'

    return text_color
コード例 #16
0
 def reset_world(self, world):
     colors = np.array(cl.to_numeric(cl.scales['5']['div']['RdYlBu'])) / 255
     for i, agent in enumerate(world.agents):
         agent.size = np.random.uniform(0.2, 0.3)
         agent.pseudo_collision_range = agent.size + 0.1
         agent.color = colors[i % 5]
         agent.target.color = colors[i % 5]
         self.generate_random_pose(agent)
         self.generate_random_goal(agent)
         agent.state.p_vel = np.zeros(world.dim_p)
         agent.previous_state.p_pos = np.copy(agent.state.p_pos)
         agent.previous_state.p_vel = np.copy(agent.state.p_vel)
         agent.state.c = np.zeros(world.dim_c)
         agent.terminate = False
     for agent in world.agents:
         agent.agents_lidar = world.lidar.get_ray_lidar(agent)
         agent.lidar_memory = [agent.agents_lidar, agent.agents_lidar]
コード例 #17
0
    def _set_progress(self, progress):
        clear()

        colors = cl.to_numeric(cl.scales['8']['div']['RdYlGn'])

        ledNum = int(round((progress / 100) * 7))

        for i in range(0, ledNum):
            self._blinkt_r = int(colors[ledNum][0])
            self._blinkt_g = int(colors[ledNum][1])
            self._blinkt_b = int(colors[ledNum][2])

            self._logger.info("Setting " + str(i) + " to " +
                              str(self._blinkt_r) + "," + str(self._blinkt_g) +
                              "," + str(self._blinkt_b))
            set_pixel(i, self._blinkt_r, self._blinkt_g, self._blinkt_b, 0.5)

        show()
コード例 #18
0
ファイル: translate.py プロジェクト: choldgraf/colorbabel
 def __init__(self, colors):
     if isinstance(colors, (LinearSegmentedColormap, ListedColormap)):
         colors = colors
     else:
         if not isinstance(colors[0], str):
             # Consider it an array of rgb/rgba
             colors = np.atleast_2d(colors).astype(float)
             if colors.shape[-1] not in [3, 4]:
                 raise ValueError('if floats/ints, colors must have'
                                  ' a last dimension of shape 3 or 4')
             if not ((colors >= 0) * (colors <= 1)).all():
                 colors = colors / 255.
         else:
             if 'rgb' in colors[0]:
                 # Convert strings to numeric first
                 colors = np.array(cl.to_numeric(colors)) / 255.
             elif '#' in colors[0]:
                 # Assume it's hex and we can just pass
                 pass
             else:
                 # Try to convert with webcolors
                 colors = _names_to_rgb(colors)
         colors = pl.blend_palette(colors, as_cmap=True)
     self.cmap = colors
コード例 #19
0
ファイル: util.py プロジェクト: tttor/SLM-Lab
def interp(scl, r):
    '''
    Replacement for colorlover.interp
    Interpolate a color scale "scl" to a new one with length "r"
    Fun usage in IPython notebook:
    HTML( to_html( to_hsl( interp( cl.scales['11']['qual']['Paired'], 5000 ) ) ) )
    '''
    c = []
    SCL_FI = len(scl) - 1  # final index of color scale
    # garyfeng:
    # the following line is buggy.
    # r = [x * 0.1 for x in range(r)] if isinstance( r, int ) else r
    r = [x * 1.0 * SCL_FI / r for x in range(r)] if isinstance(r, int) else r
    # end garyfeng

    scl = cl.to_numeric(scl)

    def interp3(fraction, start, end):
        '''Interpolate between values of 2, 3-member tuples'''
        def intp(f, s, e):
            return s + (e - s) * f

        return tuple([intp(fraction, start[i], end[i]) for i in range(3)])

    def rgb_to_hsl(rgb):
        '''
        Adapted from M Bostock's RGB to HSL converter in d3.js
        https://github.com/mbostock/d3/blob/master/src/color/rgb.js
        '''
        r, g, b = float(rgb[0]) / 255.0,\
            float(rgb[1]) / 255.0,\
            float(rgb[2]) / 255.0
        mx = max(r, g, b)
        mn = min(r, g, b)
        h = s = l = (mx + mn) / 2
        if mx == mn:  # achromatic
            h = 0
            s = 0 if l > 0 and l < 1 else h
        else:
            d = mx - mn
            s = d / (mx + mn) if l < 0.5 else d / (2 - mx - mn)
            if mx == r:
                h = (g - b) / d + (6 if g < b else 0)
            elif mx == g:
                h = (b - r) / d + 2
            else:
                h = r - g / d + 4

        return (int(round(h * 60, 4)), int(round(s * 100,
                                                 4)), int(round(l * 100, 4)))

    for i in r:
        # garyfeng: c_i could be rounded up so scl[c_i+1] will go off range
        # c_i = int(i*math.floor(SCL_FI)/round(r[-1])) # start color index
        # c_i = int(math.floor(i*math.floor(SCL_FI)/round(r[-1]))) # start color index
        # c_i = if c_i < len(scl)-1 else hsl_o

        c_i = int(math.floor(i))
        section_min = math.floor(i)
        section_max = math.ceil(i)
        fraction = (i - section_min)  # /(section_max-section_min)

        hsl_o = rgb_to_hsl(scl[c_i])  # convert rgb to hls
        hsl_f = rgb_to_hsl(scl[c_i + 1])
        # section_min = c_i*r[-1]/SCL_FI
        # section_max = (c_i+1)*(r[-1]/SCL_FI)
        # fraction = (i-section_min)/(section_max-section_min)
        hsl = interp3(fraction, hsl_o, hsl_f)
        c.append('hsl' + str(hsl))

    return cl.to_hsl(c)
コード例 #20
0
def visualize_features(filename, user_features, df_train, features):
    features_map = dict()
    for ft, flist in features.items():
        for f in flist:
            features_map[f] = ft

    vals = list()
    names = list()
    mean_values = df_train.mean().to_dict()
    max_values = df_train.max().to_dict()
    min_values = df_train.min().to_dict()

    for f, v in user_features.items():
        if f in ['uid', 'crash']:
            continue
        if np.isnan(v) or np.isinf(
                v) or v == -1 or max_values[f] == min_values[f] or np.isinf(
                    min_values[f]) or np.isinf(max_values[f]):
            vals.append(0)
        else:
            v1 = (v - min_values[f]) / (max_values[f] - min_values[f])
            v2 = (mean_values[f] - min_values[f]) / (max_values[f] -
                                                     min_values[f])
            d = v1 - v2
            vals.append(d)
        names.append('%s-%s' % (features_map[f], f))

    gap = (max(vals) - min(vals)) / 6
    bins = np.arange(min(vals), max(vals), gap)
    color_scale = list(
        cl.to_numeric(cl.scales[str(len(bins) - 1)]['div']['RdYlGn']))
    color_scale = [cl2hex(c) for c in color_scale]
    colors = pd.cut(vals, bins=bins, labels=color_scale)
    colors = [
        c if not isinstance(c, float) else color_scale[3] for c in colors
    ]

    fetures_per_plot = 20
    fig = plt.figure(figsize=(50, 40))
    fontsize = 13

    pid = 0
    for cid in range(0, 3):
        for rid in range(0, 7):
            plt.subplot(3, 7, pid + 1)
            ifrom = pid * fetures_per_plot
            ito = pid * fetures_per_plot + fetures_per_plot
            svals = vals[ifrom:ito]
            snames = names[ifrom:ito]
            scolors = colors[ifrom:ito]

            x = np.arange(len(svals))
            plt.barh(x, svals, color=scolors)
            for i, v, n in zip(x, svals, snames):
                if v < 0:
                    plt.text(0.01, i, n, fontsize=fontsize)
                elif v > 0:
                    plt.text(-0.01,
                             i,
                             n,
                             horizontalalignment='right',
                             fontsize=fontsize)
                elif v == 0:
                    plt.text(0.01,
                             i,
                             n,
                             horizontalalignment='center',
                             fontsize=fontsize)
            plt.axvline(0, color='k')
            plt.axis('off')
            plt.xlim(min(vals), max(vals))
            pid += 1

    st = fig.suptitle('Final Features', fontsize=fontsize * 10)
    fig.tight_layout()
    st.set_y(0.95)
    fig.subplots_adjust(top=0.85)
    plt.savefig(filename, format='png', bbox_inches='tight')
    plt.close()
    browser = webbrowser.get('chrome')
    browser.open('file://%s' % filename)
コード例 #21
0
    def plotk_static(self, kval, output_dir):
        """

        """

        qvalues = self.kvals[kval].qvals

        plt.style.use("ggplot")

        numinds = self.number_indv

        clist = [[i / 255. for i in x] for x in cl.to_numeric(c)]

        # Update plot width according to the number of samples
        plt.rcParams["figure.figsize"] = (8 * numinds * .03, 2.64)

        fig = plt.figure()
        axe = fig.add_subplot(111, xlim=(-.5, numinds - .5), ylim=(0, 1))

        for i in range(qvalues.shape[1]):
            # Get bar color. If K exceeds the 12 colors, generate random color
            try:
                clr = clist[i]
            except IndexError:
                clr = np.random.rand(3, 1)

            if i == 0:
                axe.bar(range(numinds),
                        qvalues[:, i],
                        facecolor=clr,
                        edgecolor="grey",
                        width=1)
                former_q = qvalues[:, i]
            else:
                axe.bar(range(numinds),
                        qvalues[:, i],
                        bottom=former_q,
                        facecolor=clr,
                        edgecolor="grey",
                        width=1)
                former_q = former_q + qvalues[:, i]

        # Annotate population info
        if self.pops:

            pop_lines = list(
                OrderedDict.fromkeys([x for y in self.pops_xrange
                                      for x in y]))[1:-1]

            for pl in pop_lines:

                # Add population delimiting lines
                plt.axvline(x=pl - 0.5, linewidth=1.5, color="black")

            for p, pos in enumerate(self.pops_xpos):
                axe.text(pos,
                         -0.05,
                         self.pops[p],
                         rotation=45,
                         va="top",
                         ha="right",
                         fontsize=16,
                         weight="bold")
        else:

            for pos in range(self.number_indv):
                axe.text(pos,
                         -0.05,
                         self.indv[pos],
                         rotation=45,
                         va="top",
                         ha="right",
                         fontsize=10)

        for axis in ["top", "bottom", "left", "right"]:
            axe.spines[axis].set_linewidth(2)
            axe.spines[axis].set_color("black")

        plt.yticks([])
        plt.xticks([])

        kfile = self.kvals[kval].file_path
        filename = splitext(basename(kfile))[0]
        filepath = join(output_dir, filename)

        plt.savefig("{}.svg".format(filepath), bbox_inches="tight")
コード例 #22
0
ファイル: matplotlib_utils.py プロジェクト: jren2019/koe
def scatter_plot_with_highlighted_clusters(highlighted_cls_names,
                                           syl_cls_names,
                                           syl_ids,
                                           ordination_data,
                                           pdf=None,
                                           fig=None):
    """
    Plot a scatter plot with all datapoints, those which are highlighted are displayed in colour and bigger size
    The positions of the datapoints are exactly the same as displayed in Koe's ordination view
    :param highlighted_cls_names: list of classes to highlight
    :param syl_cls_names: array of class names corresponding to each datapoint
    :param syl_ids: array of syllable IDs corresponding to each datapoint
    :param ordination_data:
    :param pdf: None to display inline, or instance pf PdfPages to write to a pdf file
    :return:
    """
    import matplotlib.pyplot as plt
    nCategoricalColours = 11
    nClasses = len(highlighted_cls_names) + 1
    if nClasses <= nCategoricalColours:
        #     colours = cl.to_numeric(cl.scales[str(nClasses)]['div']['Spectral'])
        colours = cl.to_numeric(cl.scales[str(nClasses)]['div']['Spectral'])
    else:
        colours = cl.to_numeric(
            cl.interp(cl.scales[str(nCategoricalColours)]['div']['Spectral'],
                      nClasses))
    colours = (np.array(colours) / 255.).tolist()

    # Display clustering:
    if fig is None:
        fig = plt.figure(figsize=(18, 18))
    ax = fig.gca()

    syl_inds_unused = np.ones((len(syl_ids), ))
    for cls, colour in zip(highlighted_cls_names, colours[1:]):
        syl_inds = np.where(syl_cls_names == cls)
        syl_inds_unused[syl_inds] = 0
        x = ordination_data[syl_inds, 0]
        y = ordination_data[syl_inds, 1]
        c = colour

        ax.scatter(x=x,
                   y=y,
                   s=100,
                   c=[c],
                   edgecolors=(0, 0, 0),
                   linewidths=1,
                   label=cls,
                   alpha=0.5)

    syl_inds_unused = np.where(syl_inds_unused == 1)
    x = ordination_data[syl_inds_unused, 0]
    y = ordination_data[syl_inds_unused, 1]
    c = colours[0]

    ax.scatter(x=x, y=y, s=10, c=[c], linewidths=0, label='other', alpha=0.2)
    plt.legend(loc=2)

    if pdf:
        pdf.savefig(fig)
        plt.close()
    else:
        plt.show()
コード例 #23
0
ファイル: tests.py プロジェクト: chriddyp/colorlover
 def test_to_numeric(self):
     scales = cl.to_numeric(cl.scales['3']['div']['RdYlBu'])
     self.assertEqual(
         scales,
         [(252.0, 141.0, 89.0), (255.0, 255.0, 191.0), (145.0, 191.0, 219.0)]
     )
コード例 #24
0
from fivepseq.viz.bokeh_plots import bokeh_transcript_scatter_plot

from fivepseq.logic.structures.fivepseq_counts import CountManager, FivePSeqCounts

dir_5pseq_human = "/proj/sllstore2017018/lilit/5pseq_human"

transcript_assembly = pd.read_csv(os.path.join(dir_5pseq_human,
                                               "fivepseq_Hela-rep1",
                                               "transcript_assembly.txt"),
                                  sep="\t")

hela_chx_counts = CountManager.read_counts_as_list(
    os.path.join(dir_5pseq_human, "fivepseq_HelaCHX-rep1",
                 "counts_FULL_LENGTH.txt"))

high_transcripts = pd.read_csv(
    "/proj/sllstore2017018/lilit/5pseq_human/resources/top1000.transcripts.txt"
)
t_ids = transcript_assembly.iloc[:, 0]
t_ids = [w.replace("transcript:", "") for w in t_ids]
chx_high_ind = [i for i, item in enumerate(t_ids) if item in high_transcripts]

bokeh_transcript_scatter_plot(
    "HelaCHX-rep1", {"HelaCHX-rep1": hela_chx_counts},
    transcript_assembly,
    {"HelaCHX-rep1": cl.to_numeric(cl.scales['9']['qual']['Set3'])[2]},
    FivePSeqCounts.TERM,
    500,
    index_filter=chx_high_ind,
    min_count=0)
コード例 #25
0
return
graph minus alone or non-conform nodes

'''
import sys
sys.path.insert(0, '/Users/fabien/Documents/workspace/github/policosm')

import matplotlib.pyplot as plt
import colorlover as cl

from policosm.extractors.roadsGraph import *
import policosm.geoNetworks as pocogeo
from policosm.functions import *

colors = [ (r/255,v/255,b/255) for r,v,b in cl.to_numeric(cl.scales['9']['seq']['Purples'])]
edgeWidth=[1,1,1,1,1,2,2,3,3]

def drawRoads(G, edgeColorAttribute='level', edgeColorScale=9, nodeColorAttribute=None, nodeColorScale=None):
		
	pos={}
	for n in G.nodes():
		pos[n] = (G.node[n]['longitude'],G.node[n]['latitude'])

	# nodes
	nx.draw_networkx_nodes(G,pos,node_size=0,alpha=0.8,color=colors[-1])

	# edges
	for i in range(0,9):
		selectedEdges = [(u,v) for (u,v,d) in G.edges(data=True) if d['level'] == i]
		selectedColors = [colors[i] for e in selectedEdges]
コード例 #26
0
def create_raster_plot_combined(trials, align_event,
                                sorting_var='trial_id',
                                x_lim=[-1, 1],
                                show_plot=False,
                                fig_dir=None,
                                store_type=None):

    sorting_query, mark, label = get_sort_and_marker(
        align_event, sorting_var)

    fig = plt.figure(dpi=150, frameon=False, figsize=[10, 5])
    ax = plt.Axes(fig, [0., 0., 1., 1.])

    if len(trials):
        if sorting_var == 'trial_id':
            spk_times, trial_ids = (trials & 'event="{}"'.format(align_event)).fetch(
                'trial_spike_times', 'trial_id', order_by='trial_id')
            spk_trial_ids = np.hstack(
                [[trial_id] * len(spk_time)
                    for trial_id, spk_time in enumerate(spk_times)])
            ax.plot(np.hstack(spk_times), spk_trial_ids, 'k.', alpha=0.5,
                    markeredgewidth=0)
        elif sorting_var == 'contrast':
            spk_times, trial_contrasts = (trials & 'event="{}"'.format(align_event)).fetch(
                'trial_spike_times', 'trial_signed_contrast',
                order_by='trial_signed_contrast, trial_id')
            spk_trial_ids = np.hstack(
                [[trial_id] * len(spk_time)
                    for trial_id, spk_time in enumerate(spk_times)])
            ax.plot(np.hstack(spk_times), spk_trial_ids, 'k.', alpha=0.5,
                    markeredgewidth=0)

            # plot different contrasts as background
            contrasts, u_inds = np.unique(trial_contrasts, return_index=True)
            u_inds = list(u_inds) + [len(trial_contrasts)]

            tick_positions = np.add(u_inds[1:], u_inds[:-1])/2

            puor = cl.scales[str(len(contrasts))]['div']['PuOr']
            puor = np.divide(cl.to_numeric(puor), 255)

            for i, ind in enumerate(u_inds[:-1]):
                ax.fill_between([-1, 1], u_inds[i], u_inds[i+1]-1, color=puor[i], alpha=0.8)
            fig.add_axes(ax)
        elif sorting_var == 'feedback type':
            spk_times, trial_fb_types = (trials & 'event="{}"'.format(align_event)).fetch(
                'trial_spike_times', 'trial_feedback_type',
                order_by='trial_feedback_type, trial_id')
            spk_trial_ids = np.hstack(
                [[trial_id] * len(spk_time)
                    for trial_id, spk_time in enumerate(spk_times)])
            ax.plot(np.hstack(spk_times), spk_trial_ids, 'k.', alpha=0.5,
                    markeredgewidth=0)

            # plot different feedback types as background
            fb_types, u_inds = np.unique(trial_fb_types, return_index=True)
            u_inds = list(u_inds) + [len(trial_fb_types)]

            colors = sns.diverging_palette(10, 240, n=len(fb_types))

            for i, ind in enumerate(u_inds[:-1]):
                ax.fill_between([-1, 1], u_inds[i], u_inds[i+1]-1, color=colors[i], alpha=0.5)
            fig.add_axes(ax)
        else:
            spk_times_left, marking_points_left, \
                spk_times_right, marking_points_right, \
                spk_times_incorrect, marking_points_incorrect = \
                get_spike_times_trials(
                    trials, sorting_var, align_event, sorting_query, mark)

            id_gap = len(trials) * 0

            if len(spk_times_incorrect):
                spk_times_all_incorrect = np.hstack(spk_times_incorrect)
                id_incorrect = [[i] * len(spike_time)
                                for i, spike_time in
                                enumerate(spk_times_incorrect)]
                id_incorrect = np.hstack(id_incorrect)
                ax.plot(spk_times_all_incorrect, id_incorrect, 'r.',
                        alpha=0.5, markeredgewidth=0, label='incorrect trials')
                ax.plot(marking_points_incorrect,
                        range(len(spk_times_incorrect)), 'r', label=label)
            else:
                id_incorrect = [0]

            if not len(id_incorrect):
                id_incorrect = [0]

            if len(spk_times_left):
                spk_times_all_left = np.hstack(spk_times_left)
                id_left = [[i + max(id_incorrect) + id_gap] * len(spike_time)
                           for i, spike_time in
                           enumerate(spk_times_left)]
                id_left = np.hstack(id_left)
                ax.plot(spk_times_all_left, id_left, 'g.',
                        alpha=0.5, markeredgewidth=0, label='left trials')
                ax.plot(marking_points_left,
                        np.add(range(len(spk_times_left)), max(id_incorrect) + id_gap), 'g')
            else:
                id_left = [max(id_incorrect)]

            if not len(id_left):
                id_left = [max(id_incorrect)]

            if len(spk_times_right):
                spk_times_all_right = np.hstack(spk_times_right)
                id_right = [[i + max(id_left) + id_gap] * len(spike_time)
                            for i, spike_time in enumerate(spk_times_right)]
                id_right = np.hstack(id_right)

                ax.plot(spk_times_all_right, id_right, 'b.',
                        alpha=0.5, markeredgewidth=0, label='right trials')
                ax.plot(marking_points_right,
                        np.add(range(len(spk_times_right)), max(id_left) + id_gap), 'b')
            else:
                id_right = [max(id_left)]

            if not len(id_right):
                id_right = [max(id_left)]

    ax.set_axis_off()
    fig.add_axes(ax)

    # hide the axis
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)

    # set the limits
    ax.set_xlim(x_lim[0], x_lim[1])
    if sorting_var in ('trial_id', 'contrast', 'feedback type'):
        if len(spk_trial_ids):
            y_lim = max(spk_trial_ids) * 1.02
        else:
            y_lim = 2
    else:
        y_lim = max(id_right) * 1.02
    ax.set_ylim(-2, y_lim)

    if not show_plot:
        plt.close(fig)

    # save the figure with `pad_inches=0` to remove
    # any padding in the image

    if fig_dir:
        store_fig_external(fig, store_type, fig_dir)
        fig.clear()
        gc.collect()
        if sorting_var == 'contrast':
            return [0, y_lim], label, contrasts, tick_positions
        else:
            return [0, y_lim], label
    else:
        encoded_string = convert_fig_to_encoded_string(fig)
        if sorting_var == 'contrast':
            return encoded_string, [0, y_lim], label, contrasts, tick_positions
        else:
            return encoded_string, [0, y_lim], label
コード例 #27
0
class VizPipeline:
    FILTER_TOP_POPULATED = "populated"
    FILTER_CANONICAL_TRANSCRIPTS = "canonical"

    METACOUNTS_TERM = "_metacounts_term"
    METACOUNTS_START = "_metacounts_start"
    METACOUNTS_TERM_SCALED = "_metacounts_term_scaled"
    METACOUNTS_START_SCALED = "_metacounts_start_scaled"
    TRIANGLE_TERM = "_triangle_term"
    TRIANGLE_START = "_triangle_start"
    FRAME_TERM = "_frames_term"
    FRAME_START = "_frames_start"
    AMINO_ACID_PAUSES = "_amino_acid_pauses"
    AMINO_ACID_PAUSES_SCALED = "_amino_acid_pauses_scaled"
    FFT_TERM = "_fft_term"
    FFT_START = "_fft_start"

    count_folders = None
    title = "fivepseq_plot_canvas"
    png_dir = None
    svg_dir = None
    supplement_dir = "supplement"
    supplement_png_dir = None
    supplement_svg_dir = None

    logger = logging.getLogger(config.FIVEPSEQ_PLOT_LOGGER)

    fivepseq_counts = None
    args = None

    samples = []

    meta_count_term_dict = {}
    meta_count_start_dict = {}
    count_vector_list_start_dict = {}
    count_vector_list_term_dict = {}
    amino_acid_df_dict = {}
    amino_acid_df_full_dict = {}
    codon_df_dict = {}
    codon_basesorted_df_dict = {}
    frame_count_term_dict = {}
    frame_count_start_dict = {}
    frame_stats_df_dict = {}
    fft_signal_start_dict = {}
    fft_signal_term_dict = {}
    loci_meta_counts_dict = {}
    data_summary_dict = {}
    transcript_index = None

    combine = False  # do not combine plots until data counts are successfully combined

    COMBINED = "combined"
    meta_count_start_combined = pd.DataFrame()
    meta_count_term_combined = pd.DataFrame()
    frame_count_START_combined = pd.DataFrame()
    frame_count_TERM_combined = pd.DataFrame()
    amino_acid_df_combined = pd.DataFrame()
    amino_acid_df_full_combined = pd.DataFrame()
    codon_df_combined = pd.DataFrame()
    codon_basesorted_df_combined = pd.DataFrame()

    large_colors_list = (cl.to_numeric(cl.scales['8']['qual']['Paired'][0:6]) +
                         cl.to_numeric(cl.scales['8']['qual']['Set1'][3:5]))
    #                     cl.to_numeric(cl.scales['5']['qual']['Set3']))
    # large_colors_list = ("#771155", "#AA4488", "#114477", "#4477AA", "#117777", "#44AAAA",
    #                     "#777711", "#AAAA44", "#774411", "#AA7744", "#771122", "#AA4455")
    colors_dict = None
    combined_color_dict = {
        COMBINED: cl.to_numeric(cl.scales['9']['qual']['Set3'])[3]
    }

    phantomjs_installed = None

    p_scatter_start = None
    p_triangle_term = None
    p_scatter_start_scaled = None
    p_triangle_term_scaled = None
    p_triangle_start = None
    p_aa_heatmap = None
    p_aa_heatmap_scaled = None
    p_frame_barplots_term = None
    p_frame_barplots_start = None
    p_loci_meta_counts = None
    p_fft_plot_start = None
    p_fft_plot_term = None

    p_scatter_term_combined = None
    p_scatter_start_combined = None
    p_scatter_term_scaled_combined = None
    p_scatter_start_scaled_combined = None
    p_triangle_term_combined = None
    p_triangle_start_combined = None
    p_aa_heatmaps_combined = None

    # the distance to be used for plotting amino-acid heatmaps
    dist_for_amino_acid_heatmaps = 20

    def __init__(self, args, count_folders=None):
        """
        Initialize vizualization pipeline with arguments contained in args.
        If count_folders are provided explicitely, those will be used instead of sd and md arguments.

        :param args:
        :param count_folders:
        """
        self.args = args
        self.count_folders = count_folders

    def run(self):
        try:
            self.prepare_output_folders()
        except Exception as e:
            err_msg = "Problem with plotting: could not create folders for exporting images: %s" % str(
                e)
            self.logger.error(err_msg)
            raise e

        try:
            self.process_count_folders()
        except Exception as e:
            err_msg = "Exception while processing input count folders: %s" % str(
                e)
            self.logger.error(err_msg)
            raise e

        try:
            self.setup_title()
        except Exception as e:
            err_msg = "Exception while setting up title for plot canvas: %s" % str(
                e)
            self.logger.error(err_msg)
            raise e

        try:
            self.initialize_data()
        except Exception as e:
            err_msg = "Exception while reading data: %s" % str(e)
            self.logger.error(err_msg)
            raise e

        try:
            self.plot_multiple_samples()
        except Exception as e:
            err_msg = "Exception while plotting data: %s" % str(e)
            self.logger.error(err_msg)
            raise e

        try:
            self.write_supplement()
        except Exception as e:
            err_msg = "Exception while writing supplements: %s" % str(e)
            self.logger.error(err_msg)
            raise e

    def process_count_folders(self):
        """
        Read input as sd or md (if count_folders is not provided from within fivepseq)
        and append the count_folders list in self.

        Set up output file title.

        :return:
        """
        if self.count_folders is None:
            if hasattr(self.args, 'sd') and self.args.sd is not None:
                if not os.path.isdir(self.args.sd):
                    err_msg = "Provided sd %s is not a directory" % self.args.sd
                    self.logger.error(err_msg)
                    raise Exception(err_msg)
                self.count_folders.append(self.args.sd)

            elif hasattr(self.args, 'md') and self.args.md is not None:
                for d in glob.glob(self.args.md):
                    if os.path.isdir(d):
                        if d[-1] == "/":
                            d = d[0:len(d) - 1]
                        self.count_folders.append(d)

        if len(self.count_folders) == 0:
            err_msg = "No count folders provided as input"
            self.logger.error(err_msg)
            raise Exception(err_msg)

        if len(self.count_folders) > 8:
            self.logger.info(
                "The number of samples exceeds 8 (found %d). Only the first 8 will be plotted"
                % len(self.count_folders))
            self.count_folders = self.count_folders[0:8]

        self.logger.info("The following folders will be used for plotting")
        for d in self.count_folders:
            if os.path.isdir(d):
                self.logger.info("\t%s" % d)

    def setup_title(self):
        if not hasattr(config.args, 't') or config.args.t is None:
            config.args.t = os.path.basename(os.path.dirname(
                config.args.b)) + "_" + os.path.basename(config.args.b)
            config.args.t.replace("_*", "")
            config.args.t.replace("*", "")

        self.title = config.args.t

    def prepare_output_folders(self):
        if not os.path.exists(self.args.o):
            try:
                os.mkdir(self.args.o)
            except Exception as e:
                raise Exception(
                    "Output directory %s could not be created: %s" %
                    (self.args.o, str(e)))

        if self.is_phantomjs_installed():
            self.png_dir = os.path.join(self.args.o, "png")
            if not os.path.exists(self.png_dir):
                try:
                    os.mkdir(self.png_dir)
                except Exception as e:
                    raise Exception(
                        "Output directory %s could not be created: %s" %
                        (self.png_dir, str(e)))

            self.svg_dir = os.path.join(self.args.o, "svg")
            if not os.path.exists(self.svg_dir):
                try:
                    os.mkdir(self.svg_dir)
                except Exception as e:
                    raise Exception(
                        "Output directory %s could not be created: %s" %
                        (self.svg_dir, str(e)))

        self.supplement_dir = os.path.join(self.args.o, "supplement")
        if not os.path.exists(self.supplement_dir):
            try:
                os.mkdir(self.supplement_dir)
            except Exception as e:
                raise Exception(
                    "Output directory %s could not be created: %s" %
                    (self.supplement_dir, str(e)))

        if self.is_phantomjs_installed():
            self.supplement_png_dir = os.path.join(self.supplement_dir, "png")
            if not os.path.exists(self.supplement_png_dir):
                try:
                    os.mkdir(os.path.join(self.supplement_dir, "png"))
                except Exception as e:
                    raise Exception(
                        "Output directory %s could not be created: %s" %
                        (self.supplement_png_dir, str(e)))

            self.supplement_svg_dir = os.path.join(self.supplement_dir, "svg")
            if not os.path.exists(os.path.join(self.supplement_dir, "svg")):
                try:
                    os.mkdir(os.path.join(self.supplement_dir, "svg"))
                except Exception as e:
                    raise Exception(
                        "Output directory %s could not be created: %s" %
                        (self.supplement_svg_dir, str(e)))

    def initialize_data(self):
        self.logger.info("Reading data counts.")
        for d in self.count_folders:
            sample = os.path.basename(d)
            self.samples.append(sample)
            self.update_dicts(sample, d)

        self.colors_dict = dict(
            zip(self.samples, self.large_colors_list[0:len(self.samples)]))

        self.logger.info("Finished reading data counts.")

        if len(self.count_folders) > 1:
            try:
                self.combine_counts()
                self.combine = True
            except Exception as e:
                err_msg = "Could not combine data counts: %s. Combined plots will not be generated" % str(
                    e)
                self.logger.warn(err_msg)

    def update_dicts(self, sample, directory):
        self.logger.info("reading counts for sample: %s" % sample)
        fivepseq_out = FivePSeqOut(directory)

        self.data_summary_dict.update(
            {sample: self.read_data_summary(fivepseq_out)})
        self.meta_count_start_dict.update(
            {sample: self.read_meta_count_start(fivepseq_out)})
        self.meta_count_term_dict.update(
            {sample: self.read_meta_count_term(fivepseq_out)})

        self.frame_count_term_dict.update(
            {sample: self.read_frame_count_term(fivepseq_out)})
        self.frame_count_start_dict.update(
            {sample: self.read_frame_count_start(fivepseq_out)})
        self.frame_stats_df_dict.update(
            {sample: self.read_frame_stats_df(fivepseq_out)})
        self.amino_acid_df_dict.update(
            {sample: self.read_amino_acid_df(fivepseq_out, full=False)})
        self.amino_acid_df_full_dict.update(
            {sample: self.read_amino_acid_df(fivepseq_out, full=True)})
        self.codon_df_dict.update(
            {sample: self.read_codon_df(fivepseq_out, basesort=False)})
        self.codon_basesorted_df_dict.update(
            {sample: self.read_codon_df(fivepseq_out, basesort=True)})

        self.fft_signal_start_dict.update(
            {sample: self.read_fft_signal_start(fivepseq_out)})
        self.fft_signal_term_dict.update(
            {sample: self.read_fft_signal_term(fivepseq_out)})

        self.count_vector_list_start_dict.update(
            {sample: self.read_count_vector_list_start(fivepseq_out)})
        self.count_vector_list_term_dict.update(
            {sample: self.read_count_vector_list_term(fivepseq_out)})

        self.loci_meta_counts_dict.update(
            {sample: self.read_loci_meta_counts(fivepseq_out)})

        if self.args.tf is not None:
            filter = self.args.tf
            if filter == self.FILTER_TOP_POPULATED:
                self.logger.info("Applying filter %s" % filter)
                self.transcript_index = CountManager.top_populated_count_vector_indices(
                    self.count_vector_list_term_dict.get(sample),
                    self.args.span, 10000)
            elif filter == self.FILTER_CANONICAL_TRANSCRIPTS:
                self.logger.info("Applying filter %s" % filter)
                self.transcript_index = CountManager.canonical_transcript_indices(
                    directory)

        if self.transcript_index is not None:
            self.logger.info("Number of filtered transcripts: %d" %
                             len(self.transcript_index))
            self.frame_count_term_dict[sample] = self.frame_count_term_dict[
                sample].iloc[self.transcript_index, ]
            self.frame_count_start_dict[sample] = self.frame_count_start_dict[
                sample].iloc[self.transcript_index, ]
            self.frame_stats_df_dict[sample] = None

            self.count_vector_list_term_dict[sample] = [
                self.count_vector_list_term_dict[sample][i]
                for i in self.transcript_index
            ]
            self.count_vector_list_start_dict[sample] = [
                self.count_vector_list_start_dict[sample][i]
                for i in self.transcript_index
            ]
            self.meta_count_term_dict[
                sample] = CountManager.count_vector_to_df(
                    CountManager.compute_meta_counts(
                        self.count_vector_list_term_dict[sample]),
                    FivePSeqCounts.TERM, self.args.span)
            self.meta_count_start_dict[
                sample] = CountManager.count_vector_to_df(
                    CountManager.compute_meta_counts(
                        self.count_vector_list_start_dict[sample]),
                    FivePSeqCounts.TERM, self.args.span)

            # TODO amino acids pauses not subsettable

    def combine_counts(self):
        self.logger.info("Combining data counts.")
        for key in self.meta_count_start_dict.keys():
            df_start = self.meta_count_start_dict.get(key)
            df_term = self.meta_count_term_dict.get(key)
            frame_start = self.frame_count_start_dict.get(key)
            frame_term = self.frame_count_term_dict.get(key)
            amino_acid_df = self.amino_acid_df_dict.get(key)
            amino_acid_df_full = self.amino_acid_df_full_dict.get(key)
            codon_df = self.codon_df_dict.get(key)
            codon_basesorted_df = self.codon_basesorted_df_dict.get(key)
            if len(self.meta_count_start_combined) == 0:
                self.meta_count_start_combined = df_start.copy()
                self.meta_count_term_combined = df_term.copy()
                self.frame_count_START_combined = frame_start.copy()
                self.frame_count_TERM_combined = frame_term.copy()
                self.amino_acid_df_combined = amino_acid_df.copy()
                self.amino_acid_df_full_combined = amino_acid_df_full.copy()
                self.codon_df_combined = codon_df.copy()
                self.codon_basesorted_df_combined = codon_basesorted_df.copy()
            else:
                self.meta_count_start_combined.C += df_start.C
                self.meta_count_term_combined.C += df_term.C
                self.frame_count_START_combined.loc[:, (
                    'F0', 'F1', 'F2')] += frame_start.loc[:,
                                                          ('F0', 'F1', 'F2')]
                self.frame_count_TERM_combined.loc[:, (
                    'F0', 'F1', 'F2')] += frame_term.loc[:, ('F0', 'F1', 'F2')]
                if amino_acid_df is not None:
                    self.amino_acid_df_combined += amino_acid_df
                if amino_acid_df_full is not None:
                    self.amino_acid_df_full_combined += amino_acid_df_full
                if codon_df is not None:
                    self.codon_df_combined += codon_df
                if codon_basesorted_df is not None:
                    self.codon_basesorted_df_combined += codon_basesorted_df

    def plot_multiple_samples(self):
        self.logger.info("Generating plots")

        self.make_single_sample_plots(self.title)

        figure_list = []
        figure_list += [self.p_scatter_start, self.p_scatter_term]
        figure_list += [
            self.p_scatter_start_scaled, self.p_scatter_term_scaled
        ]
        figure_list += [self.p_triangle_term, self.p_triangle_start]
        figure_list += [self.p_aa_heatmap, None]
        figure_list += [self.p_aa_heatmap_scaled, None]
        figure_list += [self.p_frame_barplots_term, None]
        figure_list += [self.p_frame_barplots_start, None]
        figure_list += [self.p_fft_plot_start, self.p_fft_plot_term]

        if self.p_loci_meta_counts is not None:
            figure_list += [self.p_loci_meta_counts, None]

        if self.combine:
            self.make_combined_plots(self.title)

            figure_list += [
                self.p_scatter_start_combined, self.p_scatter_term_combined
            ]
            figure_list += [
                self.p_scatter_start_scaled_combined,
                self.p_scatter_term_scaled_combined
            ]
            figure_list += [
                self.p_triangle_term_combined, self.p_triangle_start_combined
            ]
            figure_list += [self.p_aa_heatmaps_combined, None]

        bokeh_composite(self.title, figure_list,
                        os.path.join(self.args.o, self.title + ".html"), 2)

    def write_supplement(self):
        # codon pauses
        self.logger.info("Generating supplement plots: codon pauses")
        codon_title = self.title + "_codon_pauses"

        if self.combine:
            bokeh_composite(
                codon_title, [
                    bokeh_heatmap_grid(
                        codon_title, self.codon_df_dict, scale=False),
                    bokeh_heatmap_grid(codon_title + "_scaled",
                                       self.codon_df_dict,
                                       scale=True),
                    bokeh_heatmap_grid(codon_title + "_combined",
                                       {"combined:": self.codon_df_combined},
                                       scale=False),
                    bokeh_heatmap_grid(codon_title + "_combined_scaled",
                                       {"combined:": self.codon_df_combined},
                                       scale=True),
                    bokeh_heatmap_grid(codon_title + "_basesorted",
                                       self.codon_basesorted_df_dict,
                                       scale=False),
                    bokeh_heatmap_grid(codon_title + "_basesorted_scaled",
                                       self.codon_basesorted_df_dict,
                                       scale=True),
                    bokeh_heatmap_grid(codon_title + "_basesorted_combined", {
                        "basesored_combined":
                        self.codon_basesorted_df_combined
                    },
                                       scale=False),
                    bokeh_heatmap_grid(
                        codon_title + "_basesorted_combined_scaled", {
                            "basesored_combined":
                            self.codon_basesorted_df_combined
                        },
                        scale=True)
                ], os.path.join(self.supplement_dir, codon_title + ".html"), 1)
        else:
            bokeh_composite(
                codon_title, [
                    bokeh_heatmap_grid(
                        codon_title, self.codon_df_dict, scale=False),
                    bokeh_heatmap_grid(codon_title + "_scaled",
                                       self.codon_df_dict,
                                       scale=True),
                    bokeh_heatmap_grid(codon_title + "_basesorted",
                                       self.codon_basesorted_df_dict,
                                       scale=False),
                    bokeh_heatmap_grid(codon_title + "_basesorted_scaled",
                                       self.codon_basesorted_df_dict,
                                       scale=True)
                ], os.path.join(self.supplement_dir, codon_title + ".html"), 1)
        # amino acid scatter-plots
        self.logger.info(
            "Generating supplement plots: amino acid scatter-plots")
        aa_scatterplots = []
        for aa in Codons.AMINO_ACID_TABLE.keys():
            self.logger.info("Plotting scatter for %s counts" % aa)

            aa_count_dict = {}

            for sample in self.samples:
                amino_acid_df_full = self.amino_acid_df_full_dict[sample]
                aa_df = pd.DataFrame(
                    data={
                        'D': map(int, amino_acid_df_full.columns),
                        'C': amino_acid_df_full.loc[aa, :]
                    })
                aa_df = aa_df.reset_index(drop=True)
                aa_count_dict.update({sample: aa_df})
            aa_sp = bokeh_scatter_plot(aa,
                                       FivePSeqCounts.TERM,
                                       aa_count_dict,
                                       self.colors_dict,
                                       scale=True,
                                       png_dir=self.supplement_png_dir,
                                       svg_dir=self.supplement_svg_dir)
            aa_scatterplots.append(aa_sp)

            if self.combine:
                aa_df = pd.DataFrame(
                    data={
                        'D': map(int,
                                 self.amino_acid_df_full_combined.columns),
                        'C': self.amino_acid_df_full_combined.loc[aa, :]
                    })
                aa_df = aa_df.reset_index(drop=True)
                aa_sp = bokeh_scatter_plot(aa + "_combined",
                                           FivePSeqCounts.TERM,
                                           {"combined": aa_df},
                                           self.combined_color_dict,
                                           scale=True,
                                           png_dir=self.supplement_png_dir,
                                           svg_dir=self.supplement_svg_dir)

                aa_scatterplots.append(aa_sp)

        bokeh_composite(
            self.title + "_amino_acid_scatterplots", aa_scatterplots,
            os.path.join(self.supplement_dir,
                         self.title + "_amino_acid_scatterplots.html"), 2)

    def is_phantomjs_installed(self):
        if self.phantomjs_installed is not None:
            return self.phantomjs_installed

        # prepare some data
        x = [1, 2, 3, 4, 5]
        y = [6, 7, 2, 4, 5]

        # output to static HTML file
        # output_file("lines.html")

        # create a new plot with a title and axis labels
        p = figure(title="simple line example",
                   x_axis_label='x',
                   y_axis_label='y')

        # add a line renderer with legend and line thickness
        p.line(x, y, legend="Temp.", line_width=2)

        p.output_backend = "svg"
        try:
            test_file_name = "fivepseq.phantom.test.svg"
            export_svgs(p, filename=test_file_name)
            self.phantomjs_installed = True
            os.remove(test_file_name)
        except:
            self.phantomjs_installed = False
            # TODO in the future fivepseq should attempt to install phantomjs from the very beginning
            logging.getLogger(config.FIVEPSEQ_PLOT_LOGGER).warning(
                "It seems like phantomjs is not installed no your system. "
                "Files may not be exported in svg and png formats, while html will still be available for viewing."
                "To install phantomjs, run 'conda install phantomjs selenium pillow'"
            )
        return self.phantomjs_installed

    def read_meta_count_term(self, fivepseq_out):
        file = fivepseq_out.get_file_path(FivePSeqOut.META_COUNT_TERM_FILE)
        try:
            meta_count_term = CountManager.read_meta_counts(file)
        except:
            self.logger.warn(
                "The file %s not found, plots for this will be skipped." %
                str(file))
            meta_count_term = None
        return meta_count_term

    def read_meta_count_start(self, fivepseq_out):
        file = fivepseq_out.get_file_path(FivePSeqOut.META_COUNT_START_FILE)
        try:
            meta_count_start = CountManager.read_meta_counts(file)
        except:
            self.logger.warn(
                "The file %s not found, plots for this will be skipped." %
                str(file))
            meta_count_start = None
        return meta_count_start

    def read_amino_acid_df(self, fivepseq_out, full=False):
        file = fivepseq_out.get_file_path(FivePSeqOut.AMINO_ACID_PAUSES_FILE)
        try:
            amino_acid_df = CountManager.read_amino_acid_df(file)

            if not full:
                if amino_acid_df.shape[1] > self.dist_for_amino_acid_heatmaps:
                    colrange = map(
                        str,
                        np.arange(-1 * self.dist_for_amino_acid_heatmaps, 0))
                    amino_acid_df = amino_acid_df.loc[:, colrange]

        except:
            self.logger.warn(
                "The file %s not found, plots for this will be skipped." %
                str(file))
            amino_acid_df = None
        return amino_acid_df

    def read_codon_df(self, fivepseq_out, basesort=False):
        file = fivepseq_out.get_file_path(FivePSeqOut.CODON_PAUSES_FILE)
        try:
            codon_df = CountManager.read_amino_acid_df(file)
            if basesort:
                sorted_index = [""] * len(codon_df.index)
                for i in range(len(codon_df.index)):
                    ind = codon_df.index[i]
                    aa = ind.split("_")[0]
                    codon = ind.split("_")[1]
                    sorted_index[i] = codon + "_" + aa
                codon_df.index = sorted_index
                codon_df = codon_df.reindex(sorted(sorted_index))
        except:
            self.logger.warn(
                "The file %s not found, plots for this will be skipped." %
                str(file))
            codon_df = None
        return codon_df

    def read_frame_count_term(self, fivepseq_out):
        file = fivepseq_out.get_file_path(FivePSeqOut.FRAME_COUNTS_TERM_FILE)
        try:
            frame_count_term = CountManager.read_frame_counts(file)
        except:
            self.logger.warn(
                "The file %s not found, plots for this will be skipped." %
                str(file))
            frame_count_term = None
        return frame_count_term

    def read_frame_count_start(self, fivepseq_out):
        file = fivepseq_out.get_file_path(FivePSeqOut.FRAME_COUNTS_START_FILE)
        try:
            frame_count_start = CountManager.read_frame_counts(file)
        except:
            self.logger.warn(
                "The file %s not found, plots for this will be skipped." %
                str(file))
            frame_count_start = None
        return frame_count_start

    def read_frame_stats_df(self, fivepseq_out):
        file = fivepseq_out.get_file_path(FivePSeqOut.FRAME_STATS_DF_FILE)
        if os.path.exists(file):
            frame_stats_df = pd.read_csv(file, sep="\t", header=0, index_col=0)
        else:
            frame_stats_df = None
        return frame_stats_df

    def read_count_vector_list_term(self, fivepseq_out):
        file = fivepseq_out.get_file_path(FivePSeqOut.COUNT_TERM_FILE)
        try:
            count_vector_list_term = CountManager.read_counts_as_list(file)
        except:
            self.logger.warn(
                "The file %s not found, plots for this will be skipped." %
                str(file))
            count_vector_list_term = None
        return count_vector_list_term

    def read_count_vector_list_start(self, fivepseq_out):
        file = fivepseq_out.get_file_path(FivePSeqOut.COUNT_START_FILE)
        try:
            count_vector_list_start = CountManager.read_counts_as_list(file)
        except:
            self.logger.warn(
                "The file %s not found, plots for this will be skipped." %
                str(file))
            count_vector_list_start = None
        return count_vector_list_start

    def read_loci_meta_counts(self, fivepseq_out):
        file = fivepseq_out.get_file_path(FivePSeqOut.LOCI_PAUSES_FILE)
        loci_meta_counts = None
        if os.path.exists(file):
            self.logger.info("Loci count file found")
            loci_meta_counts = CountManager.read_meta_counts(file)
        return loci_meta_counts

    def read_fft_signal_start(self, fivepseq_out):
        file = fivepseq_out.get_file_path(FivePSeqOut.FFT_SIGNALS_START)
        try:
            fft_signals_start = CountManager.read_meta_counts(file)
        except:
            self.logger.warn(
                "The file %s not found, plots for this will be skipped." %
                str(file))
            fft_signals_start = None
        return fft_signals_start

    def read_fft_signal_term(self, fivepseq_out):
        file = fivepseq_out.get_file_path(FivePSeqOut.FFT_SIGNALS_TERM)
        try:
            fft_signals_term = CountManager.read_meta_counts(file)
        except:
            self.logger.warn(
                "The file %s not found, plots for this will be skipped." %
                str(file))
            fft_signals_term = None
        return fft_signals_term

    def read_data_summary(self, fivepseq_out):
        file = fivepseq_out.get_file_path(FivePSeqOut.DATA_SUMMARY_FILE)
        try:
            data_summary = pd.read_csv(file,
                                       sep="\t",
                                       header=None,
                                       index_col=0)
        except:
            self.logger.warn(
                "The file %s was not found, table will not be generated" %
                str(file))
            data_summary = None
        return data_summary

    def make_single_sample_plots(self, title):
        self.p_scatter_term = bokeh_scatter_plot(title + self.METACOUNTS_TERM,
                                                 FivePSeqCounts.TERM,
                                                 self.meta_count_term_dict,
                                                 self.colors_dict,
                                                 png_dir=self.png_dir,
                                                 svg_dir=self.svg_dir)

        self.p_scatter_start = bokeh_scatter_plot(title +
                                                  self.METACOUNTS_START,
                                                  FivePSeqCounts.START,
                                                  self.meta_count_start_dict,
                                                  self.colors_dict,
                                                  png_dir=self.png_dir,
                                                  svg_dir=self.svg_dir)

        self.p_scatter_term_scaled = bokeh_scatter_plot(
            title + self.METACOUNTS_TERM_SCALED,
            FivePSeqCounts.TERM,
            self.meta_count_term_dict,
            self.colors_dict,
            scale=True,
            png_dir=self.png_dir,
            svg_dir=self.svg_dir)

        self.p_scatter_start_scaled = bokeh_scatter_plot(
            title + self.METACOUNTS_START_SCALED,
            FivePSeqCounts.START,
            self.meta_count_start_dict,
            self.colors_dict,
            scale=True,
            png_dir=self.png_dir,
            svg_dir=self.svg_dir)

        self.p_triangle_term = bokeh_triangle_plot(title + self.TRIANGLE_TERM,
                                                   self.frame_count_term_dict,
                                                   self.colors_dict,
                                                   png_dir=self.png_dir,
                                                   svg_dir=self.svg_dir)

        self.p_triangle_start = bokeh_triangle_plot(
            title + self.TRIANGLE_START,
            self.frame_count_start_dict,
            self.colors_dict,
            png_dir=self.png_dir,
            svg_dir=self.svg_dir)

        self.p_aa_heatmap = bokeh_heatmap_grid(title + self.AMINO_ACID_PAUSES,
                                               self.amino_acid_df_dict,
                                               png_dir=self.png_dir,
                                               svg_dir=self.svg_dir)

        self.p_aa_heatmap_scaled = bokeh_heatmap_grid(
            title + self.AMINO_ACID_PAUSES_SCALED,
            self.amino_acid_df_dict,
            scale=True,
            png_dir=self.png_dir,
            svg_dir=self.svg_dir)

        self.p_frame_barplots_term = bokeh_frame_barplots(
            title + self.FRAME_TERM,
            self.frame_count_term_dict,
            self.frame_stats_df_dict,
            self.colors_dict,
            png_dir=self.png_dir,
            svg_dir=self.svg_dir)

        self.p_frame_barplots_start = bokeh_frame_barplots(
            title + self.FRAME_START,
            self.frame_count_start_dict,
            self.frame_stats_df_dict,
            self.colors_dict,
            png_dir=self.png_dir,
            svg_dir=self.svg_dir)

        self.p_loci_meta_counts = bokeh_scatter_plot(
            title + "_loci_meta_counts",
            "loci",
            self.loci_meta_counts_dict,
            self.colors_dict,
            png_dir=self.png_dir,
            svg_dir=self.svg_dir)

        # fft plots
        self.p_fft_plot_start = bokeh_fft_plot(title + self.FFT_START,
                                               "start",
                                               self.fft_signal_start_dict,
                                               self.colors_dict,
                                               png_dir=self.png_dir,
                                               svg_dir=self.svg_dir)

        self.p_fft_plot_term = bokeh_fft_plot(title + self.FFT_TERM,
                                              "term",
                                              self.fft_signal_term_dict,
                                              self.colors_dict,
                                              png_dir=self.png_dir,
                                              svg_dir=self.svg_dir)

    def make_combined_plots(self, title):
        # Combined plots
        self.p_scatter_term_combined = bokeh_scatter_plot(
            title + self.METACOUNTS_TERM + "_combined",
            FivePSeqCounts.TERM, {"combined": self.meta_count_term_combined},
            self.combined_color_dict,
            png_dir=self.png_dir,
            svg_dir=self.svg_dir)

        self.p_scatter_start_combined = bokeh_scatter_plot(
            title + self.METACOUNTS_START + "_combined",
            FivePSeqCounts.START,
            {self.COMBINED: self.meta_count_start_combined},
            self.combined_color_dict,
            png_dir=self.png_dir,
            svg_dir=self.svg_dir)

        # Combined plots
        self.p_scatter_term_scaled_combined = bokeh_scatter_plot(
            title + self.METACOUNTS_TERM_SCALED + "_combined",
            FivePSeqCounts.TERM, {"combined": self.meta_count_term_combined},
            self.combined_color_dict,
            scale=True,
            png_dir=self.png_dir,
            svg_dir=self.svg_dir)

        self.p_scatter_start_scaled_combined = bokeh_scatter_plot(
            title + self.METACOUNTS_START_SCALED + "_combined",
            FivePSeqCounts.START,
            {self.COMBINED: self.meta_count_start_combined},
            self.combined_color_dict,
            scale=True,
            png_dir=self.png_dir,
            svg_dir=self.svg_dir)

        self.p_triangle_term_combined = bokeh_triangle_plot(
            title + self.TRIANGLE_TERM + "_combined",
            {self.COMBINED: self.frame_count_TERM_combined},
            self.combined_color_dict,
            png_dir=self.png_dir,
            svg_dir=self.svg_dir)

        self.p_triangle_start_combined = bokeh_triangle_plot(
            title + self.TRIANGLE_START + "_combined",
            {self.COMBINED: self.frame_count_START_combined},
            self.combined_color_dict,
            png_dir=self.png_dir,
            svg_dir=self.svg_dir)

        self.p_aa_heatmaps_combined = bokeh_heatmap_grid(
            title + self.AMINO_ACID_PAUSES + "_combined",
            {self.COMBINED: self.amino_acid_df_combined},
            png_dir=self.png_dir,
            svg_dir=self.svg_dir)
コード例 #28
0
squashed.head(10)
print(f"""The training set now consists of {len(squashed):,} distinct images,
for a total of {squashed["Distinct Defect Types"].sum():,} labeled mask instances.

Furthermore, we have kept a backup of {len(no_defects):,} images witout defects,
in case our model starts producing a lot of false positives and needs more training
on a background class.""")
""" use a consistent color palette per label throughout the notebook """
import colorlover as cl

# see: https://plot.ly/ipython-notebooks/color-scales/
colors = cl.scales['4']['qual']['Set3']
labels = np.array(range(1, 5))

# combining into a dictionary
palette = dict(zip(labels, np.array(cl.to_numeric(colors))))
# we want counts & frequency of the labels
classes = data.groupby(by='ClassId', as_index=False) \
               .agg({'ImageId':'count'}) \
               .rename(columns={'ImageId':'Count'})

classes['Frequency'] = round(classes.Count / classes.Count.sum() * 100, 2)
classes['Frequency'] = classes['Frequency'].astype(str) + '%'

# plotly for interactive graphs
fig = go.Figure(data=go.Bar(orientation='h',
                            x=classes.Count,
                            y=classes.ClassId,
                            hovertext=classes.Frequency,
                            text=classes.Count,
                            textposition='auto',
コード例 #29
0
ファイル: app.py プロジェクト: zsysuper/dash-sample-apps
# Variables
CAMERAS = [
    "CAM_FRONT",
    "CAM_BACK",
    "CAM_FRONT_ZOOMED",
    "CAM_FRONT_LEFT",
    "CAM_FRONT_RIGHT",
    "CAM_BACK_RIGHT",
    "CAM_BACK_LEFT",
]
LIDARS = ["LIDAR_TOP", "LIDAR_FRONT_RIGHT", "LIDAR_FRONT_LEFT"]

NAME2COLOR = dict(
    zip(
        ["bus", "car", "other_vehicle", "pedestrian", "truck"],
        cl.to_numeric(cl.scales["5"]["div"]["Spectral"]),
    ))

# Create Lyft object
lv5 = LyftDataset(data_path="./data",
                  json_path="./data/train_data",
                  verbose=True)
# Load a single scene
scene = lv5.scene[0]
token_list = get_token_list(scene)
INITIAL_TOKEN = scene["first_sample_token"]

app = dash.Dash(__name__, external_stylesheets=[dbc.themes.CYBORG])
server = app.server

controls = [
コード例 #30
0
ファイル: ploting.py プロジェクト: nmishra8/ASPLOS-17
        return [rgb_to_hex(item) for item in rgb]
    
algorithms_arranged = ['OPTIMAL',
                                             'RACE',
                                             'CONTROL',
                                             'ONLINE',
                                             'OFFLINE',
                                             'NUCLEAR',
                                             'HBM',
                                             
                                             'CALOREE-NP',
                                             'ADAPT-CONTROL',
                                             'ONLINE-ADAPT',
                                             'NUCLEAR-ADAPT',
                                             'HBM-ADAPT']
reds = rgb_to_hex(cl.to_numeric(cl.scales['6']['seq']['Reds']))
reds.reverse()
BuPus  = rgb_to_hex(cl.to_numeric(cl.scales['6']['seq']['BuPu']))
greens = rgb_to_hex(cl.to_numeric(cl.scales['3']['seq']['Greens']))

# plot eff
means_deadline = pd.DataFrame([],columns = algorithms_arranged)
for item in deadline:    
    df = pd.DataFrame(All_data['eff'][item], columns = algorithms)
    means_deadline = means_deadline.append(df.mean(),ignore_index=True)
    
means, errors = means_deadline.mean(), means_deadline.std()
fig, ax = plt.subplots()
means.plot.bar(yerr=errors, ax=ax, color = reds+BuPus+greens)

# plot latency
コード例 #31
0
    def plotk_static(self, kval, output_dir, bw=False, use_ind=False):
        """
        Generates a structure plot in svg format.
        :param kval: (int) Must match the K value from self.kvals
        :param output_dir: (string) Path of the plot file
        :param bw: (bool) If True, plots will be generated with patterns instead
        of colors to distinguish k groups.
        :param show_ind: (bool) If True, and if individual labels were provided
        with the --ind option, use those labels instead of population labels
        """

        numinds = self.number_indv

        clist = [[i / 255. for i in x] for x in cl.to_numeric(c)]

        # Update plot width according to the number of samples
        plt.rcParams["figure.figsize"] = (8 * numinds * .03, 2.64)

        fig = plt.figure()
        axe = fig.add_subplot(111, xlim=(-.5, numinds - .5), ylim=(0, 1))

        # Transforms the qvals matrix when K = 1. If K > 2, use the
        # original matrix
        if len(self.kvals[kval].qvals.shape) == 1:
            # This list comprehension ensures that the shape of the array
            # is (i, 1), where i is the number of samples
            qvalues = np.array([[x] for x in self.kvals[kval].qvals])
        else:
            qvalues = self.kvals[kval].qvals

        counter = 0
        for i in range(kval):

            # Determine color/pattern arguments
            kwargs = {}

            # Use colors todistinguish k groups
            if not bw:
                # Get bar color. If K exceeds the 12 colors, generate random
                # color
                try:
                    clr = clist[counter]
                    counter += 1
                except IndexError:
                    counter = 0
                    clr = clist[counter]

                kwargs["facecolor"] = clr
                kwargs["edgecolor"] = "grey"

            else:
                grey_rgb = [(float((i + 1)) / (float(qvalues.shape[1]) + 1))
                            for _ in range(3)]

                kwargs["facecolor"] = grey_rgb
                kwargs["edgecolor"] = "white"

            if i == 0:
                axe.bar(range(numinds), qvalues[:, i],
                        width=1, label="K {}".format(i + 1), **kwargs)
                former_q = qvalues[:, i]
            else:
                axe.bar(range(numinds), qvalues[:, i], bottom=former_q,
                        width=1, label="K {}".format(i + 1), **kwargs)
                former_q = former_q + qvalues[:, i]

        # Annotate population info
        if self.pops:
            pop_lines = list(OrderedDict.fromkeys(
                [x for y in self.pops_xrange for x in y]))[1:-1]

            for pl in pop_lines:

                # Add population delimiting lines
                plt.axvline(x=pl - 0.5, linewidth=1.5, color="black")

            if not use_ind:
                for p, pos in enumerate(self.pops_xpos):
                    axe.text(pos, -0.05, self.pops[p],
                             rotation=45, va="top", ha="right", fontsize=16,
                             weight="bold")

        if use_ind or not self.pops:
            for pos in range(self.number_indv):
                axe.text(pos, -0.05, self.indv[pos],
                         rotation=45, va="top", ha="right", fontsize=8)

        for axis in ["top", "bottom", "left", "right"]:
            axe.spines[axis].set_linewidth(2)
            axe.spines[axis].set_color("black")

        plt.yticks([])
        plt.xticks([])

        kfile = self.kvals[kval].file_path
        filename = splitext(basename(kfile))[0]
        filepath = join(output_dir, filename)

        plt.savefig("{}.svg".format(filepath), bbox_inches="tight")

        # Clear plot object
        plt.clf()
        plt.close()
コード例 #32
0
def plot_average_prices(results_dir, output_dir):
    """Plot average prices under different schemes"""

    # Prices from different models
    p_bau = analysis.get_average_prices(results_dir, 'bau_case.pickle', None,
                                        'PRICES', -1)
    p_rep = analysis.get_average_prices(results_dir, 'rep_case.pickle',
                                        'stage_2_rep', 'PRICES', -1)
    p_tax = analysis.get_average_prices(results_dir, 'rep_case.pickle',
                                        'stage_1_carbon_tax', 'PRICES', -1)
    p_price_dev_mppdc = analysis.get_average_prices(
        results_dir, 'mppdc_price_change_deviation_case.pickle',
        'stage_3_price_targeting', 'lamb', 1)
    p_price_dev_heuristic = analysis.get_average_prices(
        results_dir, 'heuristic_price_change_deviation_case.pickle',
        'stage_3_price_targeting', 'PRICES', -1)

    # Create figures
    c = cl.to_numeric(
        cl.flipper()['qual']['5']['Set1']
    )  # ['Accent', 'Dark2', 'Paired', 'Pastel1', 'Pastel2', 'Set1', 'Set2', 'Set3'])
    fig, ax = plt.subplots()
    ax.plot(p_bau.index.tolist(),
            p_bau['average_price_real'].tolist(),
            color=scale_rgb(c[1]),
            alpha=0.7,
            linewidth=0.9)
    ax.plot(p_tax.index.tolist(),
            p_tax['average_price_real'].tolist(),
            color=scale_rgb(c[0]),
            alpha=0.7,
            linewidth=0.9)
    ax.plot(p_rep.index.tolist(),
            p_rep['average_price_real'].tolist(),
            color=scale_rgb(c[2]),
            alpha=0.7,
            linewidth=0.9)
    ax.plot(p_price_dev_mppdc.index.tolist(),
            p_price_dev_mppdc['average_price_real'].tolist(),
            color=scale_rgb(c[3]),
            alpha=0.7,
            linewidth=0.9)
    ax.plot(p_price_dev_heuristic.index.tolist(),
            p_price_dev_heuristic['average_price_real'].tolist(),
            color=scale_rgb(c[4]),
            alpha=0.6,
            linewidth=0.9)

    fig.set_size_inches(3, 2.3)

    ax.set_ylabel('Average price ($/MWh)', fontsize=9, labelpad=-0.1)
    ax.set_xlabel('Year', fontsize=9)
    ax.tick_params(labelsize=8)
    ax.xaxis.set_major_locator(MultipleLocator(5))
    ax.xaxis.set_minor_locator(MultipleLocator(1))
    ax.yaxis.set_major_locator(MultipleLocator(20))
    ax.yaxis.set_minor_locator(MultipleLocator(5))

    ax.legend(['BAU', 'Tax', 'REP', 'MPPDC', 'Heuristic'],
              fontsize=7,
              ncol=2,
              frameon=False)
    fig.subplots_adjust(left=0.16, bottom=0.18, top=0.98, right=0.98)
    fig.savefig(os.path.join(output_dir, 'average_prices.png'))
    fig.savefig(os.path.join(output_dir, 'average_prices.pdf'))

    plt.show()
コード例 #33
0
import sys
sys.path.insert(0, '/Users/fabien/workspace/github/policosm')

import matplotlib.pyplot as plt
from descartes.patch import PolygonPatch
import colorlover as cl
from shapely.geometry import Polygon, shape
import random

from policosm.extractors.roadsGraph import *
from policosm.extractors.buildingsPolygons import *
import policosm.geoNetworks as pocogeo
from policosm.functions import *

colors = [(r / 255, v / 255, b / 255)
          for r, v, b in cl.to_numeric(cl.scales['9']['seq']['Purples'])]
edgeWidth = [1, 1, 1, 1, 1, 2, 2, 3, 3]


def drawRoadsBuildingsMatplotlib(polygons,
                                 G,
                                 displayRatio=1.0,
                                 edgeColorAttribute='level',
                                 edgeColorScale=9,
                                 nodeColorAttribute=None,
                                 nodeColorScale=None):
    fig = plt.figure()
    ax = fig.add_subplot(111)

    pos = {}
    for n in G.nodes():
コード例 #34
0
ファイル: plotop.py プロジェクト: RomaKoks/lastfm-export
import io
from enum import Enum

import colorlover as cl
import matplotlib.pyplot as plt

colors = cl.to_numeric(cl.scales['12']['qual']['Set3'])

int_colors = []
for color in colors:
    int_colors.append((int(color[0]), int(color[1]), int(color[2])))

selected_colors = []
for color in int_colors:
    selected_colors.append('#%02x%02x%02x' % color)


class TimePeriod:
    def get_value(self):
        pass

    def get_label(self):
        pass


class Duration(TimePeriod, Enum):
    WEEK = ('7', False)
    MONTH = ('30', False)
    QUARTER = ('90', False)
    SEMESTER = ('180', False)
    YEAR = ('365', False)