def test_plot_multi_colour_swatches(self): """ Tests :func:`colour.plotting.common.plot_multi_colour_swatches` definition. """ figure, axes = plot_multi_colour_swatches([ ColourSwatch(RGB=(0.45293517, 0.31732158, 0.26414773)), ColourSwatch(RGB=(0.77875824, 0.57726450, 0.50453169)) ]) self.assertIsInstance(figure, Figure) self.assertIsInstance(axes, Axes)
def test_plot_single_colour_swatch(self): """ Tests :func:`colour.plotting.common.plot_single_colour_swatch` definition. """ figure, axes = plot_single_colour_swatch( ColourSwatch(RGB=(0.45620519, 0.03081071, 0.04091952))) self.assertIsInstance(figure, Figure) self.assertIsInstance(axes, Axes)
def test_plot_multi_colour_swatches(self): """ Test :func:`colour.plotting.common.plot_multi_colour_swatches` definition. """ figure, axes = plot_multi_colour_swatches([ ColourSwatch((0.45293517, 0.31732158, 0.26414773)), ColourSwatch((0.77875824, 0.57726450, 0.50453169)), ]) self.assertIsInstance(figure, Figure) self.assertIsInstance(axes, Axes) figure, axes = plot_multi_colour_swatches( np.array([ [0.45293517, 0.31732158, 0.26414773], [0.77875824, 0.57726450, 0.50453169], ]), direction="-y", ) self.assertIsInstance(figure, Figure) self.assertIsInstance(axes, Axes)
"""Showcases common plotting examples.""" from colour.plotting import ( ColourSwatch, colour_style, plot_multi_colour_swatches, plot_single_colour_swatch, ) from colour.utilities import message_box message_box("Common Plots") colour_style() message_box("Plotting a single colour.") plot_single_colour_swatch( ColourSwatch((0.32315746, 0.32983556, 0.33640183), "Neutral 5 (.70 D)"), text_size=32, ) print("\n") message_box("Plotting multiple colours.") plot_multi_colour_swatches( ( ColourSwatch((0.45293517, 0.31732158, 0.26414773), "Dark Skin"), ColourSwatch((0.77875824, 0.57726450, 0.50453169), "Light Skin"), ), text_size=32, )
def plot_blackbody_spectral_radiance( temperature=3500, cmfs='CIE 1931 2 Degree Standard Observer', blackbody='VY Canis Major', **kwargs): """ Plots given blackbody spectral radiance. Parameters ---------- temperature : numeric, optional Blackbody temperature. cmfs : unicode, optional Standard observer colour matching functions. blackbody : unicode, optional Blackbody name. Other Parameters ---------------- \\**kwargs : dict, optional {:func:`colour.plotting.artist`, :func:`colour.plotting.plot_single_sd`, :func:`colour.plotting.render`}, Please refer to the documentation of the previously listed definitions. Returns ------- tuple Current figure and axes. Examples -------- >>> plot_blackbody_spectral_radiance(3500, blackbody='VY Canis Major') ... # doctest: +ELLIPSIS (<Figure size ... with 2 Axes>, \ <matplotlib.axes._subplots.AxesSubplot object at 0x...>) .. image:: ../_static/Plotting_Plot_Blackbody_Spectral_Radiance.png :align: center :alt: plot_blackbody_spectral_radiance """ figure = plt.figure() figure.subplots_adjust(hspace=COLOUR_STYLE_CONSTANTS.geometry.short / 2) cmfs = first_item(filter_cmfs(cmfs).values()) sd = sd_blackbody(temperature, cmfs.shape) axes = figure.add_subplot(211) settings = { 'axes': axes, 'title': '{0} - Spectral Radiance'.format(blackbody), 'y_label': 'W / (sr m$^2$) / m', } settings.update(kwargs) settings['standalone'] = False plot_single_sd(sd, cmfs.name, **settings) axes = figure.add_subplot(212) with domain_range_scale('1'): XYZ = sd_to_XYZ(sd, cmfs) RGB = normalise_maximum(XYZ_to_plotting_colourspace(XYZ)) settings = { 'axes': axes, 'aspect': None, 'title': '{0} - Colour'.format(blackbody), 'x_label': '{0}K'.format(temperature), 'y_label': '', 'x_ticker': False, 'y_ticker': False, } settings.update(kwargs) settings['standalone'] = False figure, axes = plot_single_colour_swatch(ColourSwatch(name='', RGB=RGB), **settings) settings = {'axes': axes, 'standalone': True} settings.update(kwargs) return render(**settings)
def generate_documentation_plots(output_directory): """ Generates documentation plots. Parameters ---------- output_directory : unicode Output directory. """ filter_warnings() colour_style() np.random.seed(0) # ************************************************************************* # "README.rst" # ************************************************************************* filename = os.path.join(output_directory, 'Examples_Colour_Automatic_Conversion_Graph.png') plot_automatic_colour_conversion_graph(filename) arguments = { 'tight_layout': True, 'transparent_background': True, 'filename': os.path.join(output_directory, 'Examples_Plotting_Visible_Spectrum.png') } plt.close( plot_visible_spectrum('CIE 1931 2 Degree Standard Observer', **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Examples_Plotting_Illuminant_F1_SD.png') plt.close(plot_single_illuminant_sd('FL1', **arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Examples_Plotting_Blackbodies.png') blackbody_sds = [ sd_blackbody(i, SpectralShape(0, 10000, 10)) for i in range(1000, 15000, 1000) ] plt.close( plot_multi_sds(blackbody_sds, y_label='W / (sr m$^2$) / m', use_sds_colours=True, normalise_sds_colours=True, legend_location='upper right', bounding_box=(0, 1250, 0, 2.5e15), **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Examples_Plotting_Cone_Fundamentals.png') plt.close( plot_single_cmfs('Stockman & Sharpe 2 Degree Cone Fundamentals', y_label='Sensitivity', bounding_box=(390, 870, 0, 1.1), **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Examples_Plotting_Luminous_Efficiency.png') plt.close( plot_multi_sds((sd_mesopic_luminous_efficiency_function(0.2), PHOTOPIC_LEFS['CIE 1924 Photopic Standard Observer'], SCOTOPIC_LEFS['CIE 1951 Scotopic Standard Observer']), y_label='Luminous Efficiency', legend_location='upper right', y_tighten=True, margins=(0, 0, 0, .1), **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Examples_Plotting_BabelColor_Average.png') plt.close( plot_multi_sds(COLOURCHECKERS_SDS['BabelColor Average'].values(), use_sds_colours=True, title=('BabelColor Average - ' 'Spectral Distributions'), **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Examples_Plotting_ColorChecker_2005.png') plt.close( plot_single_colour_checker('ColorChecker 2005', text_parameters={'visible': False}, **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Examples_Plotting_Chromaticities_Prediction.png') plt.close( plot_corresponding_chromaticities_prediction(2, 'Von Kries', 'Bianco', **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Examples_Plotting_CCT_CIE_1960_UCS_Chromaticity_Diagram.png') plt.close( plot_planckian_locus_in_chromaticity_diagram_CIE1960UCS( ['A', 'B', 'C'], **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Examples_Plotting_Chromaticities_CIE_1931_Chromaticity_Diagram.png') RGB = np.random.random((32, 32, 3)) plt.close( plot_RGB_chromaticities_in_chromaticity_diagram_CIE1931( RGB, 'ITU-R BT.709', colourspaces=['ACEScg', 'S-Gamut'], show_pointer_gamut=True, **arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Examples_Plotting_CRI.png') plt.close( plot_single_sd_colour_rendering_index_bars(ILLUMINANTS_SDS['FL2'], **arguments)[0]) # ************************************************************************* # Documentation # ************************************************************************* arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_CVD_Simulation_Machado2009.png') plt.close(plot_cvd_simulation_Machado2009(RGB, **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Single_Colour_Checker.png') plt.close(plot_single_colour_checker('ColorChecker 2005', **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Multi_Colour_Checkers.png') plt.close( plot_multi_colour_checkers(['ColorChecker 1976', 'ColorChecker 2005'], **arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Single_SD.png') data = { 500: 0.0651, 520: 0.0705, 540: 0.0772, 560: 0.0870, 580: 0.1128, 600: 0.1360 } sd = SpectralDistribution(data, name='Custom') plt.close(plot_single_sd(sd, **arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Multi_SDS.png') data_1 = { 500: 0.004900, 510: 0.009300, 520: 0.063270, 530: 0.165500, 540: 0.290400, 550: 0.433450, 560: 0.594500 } data_2 = { 500: 0.323000, 510: 0.503000, 520: 0.710000, 530: 0.862000, 540: 0.954000, 550: 0.994950, 560: 0.995000 } spd1 = SpectralDistribution(data_1, name='Custom 1') spd2 = SpectralDistribution(data_2, name='Custom 2') plt.close(plot_multi_sds([spd1, spd2], **arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Single_CMFS.png') plt.close( plot_single_cmfs('CIE 1931 2 Degree Standard Observer', **arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Multi_CMFS.png') cmfs = ('CIE 1931 2 Degree Standard Observer', 'CIE 1964 10 Degree Standard Observer') plt.close(plot_multi_cmfs(cmfs, **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Single_Illuminant_SD.png') plt.close(plot_single_illuminant_sd('A', **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Multi_Illuminant_SDS.png') plt.close(plot_multi_illuminant_sds(['A', 'B', 'C'], **arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Visible_Spectrum.png') plt.close(plot_visible_spectrum(**arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Single_Lightness_Function.png') plt.close(plot_single_lightness_function('CIE 1976', **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Multi_Lightness_Functions.png') plt.close( plot_multi_lightness_functions(['CIE 1976', 'Wyszecki 1963'], **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Single_Luminance_Function.png') plt.close(plot_single_luminance_function('CIE 1976', **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Multi_Luminance_Functions.png') plt.close( plot_multi_luminance_functions(['CIE 1976', 'Newhall 1943'], **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Blackbody_Spectral_Radiance.png') plt.close( plot_blackbody_spectral_radiance(3500, blackbody='VY Canis Major', **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Blackbody_Colours.png') plt.close( plot_blackbody_colours(SpectralShape(150, 12500, 50), **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Single_Colour_Swatch.png') RGB = ColourSwatch(RGB=(0.45620519, 0.03081071, 0.04091952)) plt.close(plot_single_colour_swatch(RGB, **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Multi_Colour_Swatches.png') RGB_1 = ColourSwatch(RGB=(0.45293517, 0.31732158, 0.26414773)) RGB_2 = ColourSwatch(RGB=(0.77875824, 0.57726450, 0.50453169)) plt.close(plot_multi_colour_swatches([RGB_1, RGB_2], **arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Single_Function.png') plt.close(plot_single_function(lambda x: x**(1 / 2.2), **arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Multi_Functions.png') functions = { 'Gamma 2.2': lambda x: x**(1 / 2.2), 'Gamma 2.4': lambda x: x**(1 / 2.4), 'Gamma 2.6': lambda x: x**(1 / 2.6), } plt.close(plot_multi_functions(functions, **arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Image.png') path = os.path.join(output_directory, 'Logo_Medium_001.png') plt.close(plot_image(read_image(str(path)), **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Corresponding_Chromaticities_Prediction.png') plt.close( plot_corresponding_chromaticities_prediction(1, 'Von Kries', 'CAT02', **arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Spectral_Locus.png') plt.close( plot_spectral_locus(spectral_locus_colours='RGB', **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Chromaticity_Diagram_Colours.png') plt.close(plot_chromaticity_diagram_colours(**arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Chromaticity_Diagram.png') plt.close(plot_chromaticity_diagram(**arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Chromaticity_Diagram_CIE1931.png') plt.close(plot_chromaticity_diagram_CIE1931(**arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Chromaticity_Diagram_CIE1960UCS.png') plt.close(plot_chromaticity_diagram_CIE1960UCS(**arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Chromaticity_Diagram_CIE1976UCS.png') plt.close(plot_chromaticity_diagram_CIE1976UCS(**arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_SDS_In_Chromaticity_Diagram.png') A = ILLUMINANTS_SDS['A'] D65 = ILLUMINANTS_SDS['D65'] plt.close(plot_sds_in_chromaticity_diagram([A, D65], **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_SDS_In_Chromaticity_Diagram_CIE1931.png') plt.close( plot_sds_in_chromaticity_diagram_CIE1931([A, D65], **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_SDS_In_Chromaticity_Diagram_CIE1960UCS.png') plt.close( plot_sds_in_chromaticity_diagram_CIE1960UCS([A, D65], **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_SDS_In_Chromaticity_Diagram_CIE1976UCS.png') plt.close( plot_sds_in_chromaticity_diagram_CIE1976UCS([A, D65], **arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Pointer_Gamut.png') plt.close(plot_pointer_gamut(**arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_RGB_Colourspaces_In_Chromaticity_Diagram.png') plt.close( plot_RGB_colourspaces_in_chromaticity_diagram( ['ITU-R BT.709', 'ACEScg', 'S-Gamut'], **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_RGB_Colourspaces_In_Chromaticity_Diagram_CIE1931.png') plt.close( plot_RGB_colourspaces_in_chromaticity_diagram_CIE1931( ['ITU-R BT.709', 'ACEScg', 'S-Gamut'], **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_RGB_Colourspaces_In_' 'Chromaticity_Diagram_CIE1960UCS.png') plt.close( plot_RGB_colourspaces_in_chromaticity_diagram_CIE1960UCS( ['ITU-R BT.709', 'ACEScg', 'S-Gamut'], **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_RGB_Colourspaces_In_' 'Chromaticity_Diagram_CIE1976UCS.png') plt.close( plot_RGB_colourspaces_in_chromaticity_diagram_CIE1976UCS( ['ITU-R BT.709', 'ACEScg', 'S-Gamut'], **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_RGB_Chromaticities_In_' 'Chromaticity_Diagram.png') RGB = np.random.random((128, 128, 3)) plt.close( plot_RGB_chromaticities_in_chromaticity_diagram( RGB, 'ITU-R BT.709', **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_RGB_Chromaticities_In_' 'Chromaticity_Diagram_CIE1931.png') plt.close( plot_RGB_chromaticities_in_chromaticity_diagram_CIE1931( RGB, 'ITU-R BT.709', **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_RGB_Chromaticities_In_' 'Chromaticity_Diagram_CIE1960UCS.png') plt.close( plot_RGB_chromaticities_in_chromaticity_diagram_CIE1960UCS( RGB, 'ITU-R BT.709', **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_RGB_Chromaticities_In_' 'Chromaticity_Diagram_CIE1976UCS.png') plt.close( plot_RGB_chromaticities_in_chromaticity_diagram_CIE1976UCS( RGB, 'ITU-R BT.709', **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Ellipses_MacAdam1942_In_Chromaticity_Diagram.png') plt.close( plot_ellipses_MacAdam1942_in_chromaticity_diagram(**arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Ellipses_MacAdam1942_In_' 'Chromaticity_Diagram_CIE1931.png') plt.close( plot_ellipses_MacAdam1942_in_chromaticity_diagram_CIE1931( **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Ellipses_MacAdam1942_In_' 'Chromaticity_Diagram_CIE1960UCS.png') plt.close( plot_ellipses_MacAdam1942_in_chromaticity_diagram_CIE1960UCS( **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Ellipses_MacAdam1942_In_' 'Chromaticity_Diagram_CIE1976UCS.png') plt.close( plot_ellipses_MacAdam1942_in_chromaticity_diagram_CIE1976UCS( **arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Single_CCTF.png') plt.close(plot_single_cctf('ITU-R BT.709', **arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Multi_CCTFs.png') plt.close(plot_multi_cctfs(['ITU-R BT.709', 'sRGB'], **arguments)[0]) data = np.array([ [ None, np.array([0.95010000, 1.00000000, 1.08810000]), np.array([0.40920000, 0.28120000, 0.30600000]), np.array([ [0.02495100, 0.01908600, 0.02032900], [0.10944300, 0.06235900, 0.06788100], [0.27186500, 0.18418700, 0.19565300], [0.48898900, 0.40749400, 0.44854600], ]), None, ], [ None, np.array([0.95010000, 1.00000000, 1.08810000]), np.array([0.30760000, 0.48280000, 0.42770000]), np.array([ [0.02108000, 0.02989100, 0.02790400], [0.06194700, 0.11251000, 0.09334400], [0.15255800, 0.28123300, 0.23234900], [0.34157700, 0.56681300, 0.47035300], ]), None, ], [ None, np.array([0.95010000, 1.00000000, 1.08810000]), np.array([0.39530000, 0.28120000, 0.18450000]), np.array([ [0.02436400, 0.01908600, 0.01468800], [0.10331200, 0.06235900, 0.02854600], [0.26311900, 0.18418700, 0.12109700], [0.43158700, 0.40749400, 0.39008600], ]), None, ], [ None, np.array([0.95010000, 1.00000000, 1.08810000]), np.array([0.20510000, 0.18420000, 0.57130000]), np.array([ [0.03039800, 0.02989100, 0.06123300], [0.08870000, 0.08498400, 0.21843500], [0.18405800, 0.18418700, 0.40111400], [0.32550100, 0.34047200, 0.50296900], [0.53826100, 0.56681300, 0.80010400], ]), None, ], [ None, np.array([0.95010000, 1.00000000, 1.08810000]), np.array([0.35770000, 0.28120000, 0.11250000]), np.array([ [0.03678100, 0.02989100, 0.01481100], [0.17127700, 0.11251000, 0.01229900], [0.30080900, 0.28123300, 0.21229800], [0.52976000, 0.40749400, 0.11720000], ]), None, ], ]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Constant_Hue_Loci.png') plt.close(plot_constant_hue_loci(data, 'IPT', **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Single_Munsell_Value_Function.png') plt.close(plot_single_munsell_value_function('ASTM D1535', **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Multi_Munsell_Value_Functions.png') plt.close( plot_multi_munsell_value_functions(['ASTM D1535', 'McCamy 1987'], **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Single_SD_Rayleigh_Scattering.png') plt.close(plot_single_sd_rayleigh_scattering(**arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_The_Blue_Sky.png') plt.close(plot_the_blue_sky(**arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Colour_Quality_Bars.png') illuminant = ILLUMINANTS_SDS['FL2'] light_source = LIGHT_SOURCES_SDS['Kinoton 75P'] light_source = light_source.copy().align(SpectralShape(360, 830, 1)) cqs_i = colour_quality_scale(illuminant, additional_data=True) cqs_l = colour_quality_scale(light_source, additional_data=True) plt.close(plot_colour_quality_bars([cqs_i, cqs_l], **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Single_SD_Colour_Rendering_Index_Bars.png') illuminant = ILLUMINANTS_SDS['FL2'] plt.close( plot_single_sd_colour_rendering_index_bars(illuminant, **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Multi_SDS_Colour_Rendering_Indexes_Bars.png') light_source = LIGHT_SOURCES_SDS['Kinoton 75P'] plt.close( plot_multi_sds_colour_rendering_indexes_bars( [illuminant, light_source], **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Single_SD_Colour_Quality_Scale_Bars.png') illuminant = ILLUMINANTS_SDS['FL2'] plt.close( plot_single_sd_colour_quality_scale_bars(illuminant, **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Multi_SDS_Colour_Quality_Scales_Bars.png') light_source = LIGHT_SOURCES_SDS['Kinoton 75P'] plt.close( plot_multi_sds_colour_quality_scales_bars([illuminant, light_source], **arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Planckian_Locus.png') plt.close(plot_planckian_locus(**arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Planckian_Locus_CIE1931.png') plt.close(plot_planckian_locus_CIE1931(**arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Planckian_Locus_CIE1960UCS.png') plt.close(plot_planckian_locus_CIE1960UCS(**arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Planckian_Locus_In_Chromaticity_Diagram.png') plt.close( plot_planckian_locus_in_chromaticity_diagram(['A', 'B', 'C'], **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Planckian_Locus_In_Chromaticity_Diagram_CIE1931.png') plt.close( plot_planckian_locus_in_chromaticity_diagram_CIE1931(['A', 'B', 'C'], **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Planckian_Locus_In_Chromaticity_Diagram_CIE1960UCS.png') plt.close( plot_planckian_locus_in_chromaticity_diagram_CIE1960UCS( ['A', 'B', 'C'], **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_RGB_Colourspaces_Gamuts.png') plt.close( plot_RGB_colourspaces_gamuts(['ITU-R BT.709', 'ACEScg', 'S-Gamut'], **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_RGB_Colourspaces_Gamuts.png') plt.close( plot_RGB_colourspaces_gamuts(['ITU-R BT.709', 'ACEScg', 'S-Gamut'], **arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_RGB_Scatter.png') plt.close(plot_RGB_scatter(RGB, 'ITU-R BT.709', **arguments)[0]) filename = os.path.join( output_directory, 'Plotting_Plot_Colour_Automatic_Conversion_Graph.png') plot_automatic_colour_conversion_graph(filename) # ************************************************************************* # "tutorial.rst" # ************************************************************************* arguments['filename'] = os.path.join(output_directory, 'Tutorial_Visible_Spectrum.png') plt.close(plot_visible_spectrum(**arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Tutorial_Sample_SD.png') sample_sd_data = { 380: 0.048, 385: 0.051, 390: 0.055, 395: 0.060, 400: 0.065, 405: 0.068, 410: 0.068, 415: 0.067, 420: 0.064, 425: 0.062, 430: 0.059, 435: 0.057, 440: 0.055, 445: 0.054, 450: 0.053, 455: 0.053, 460: 0.052, 465: 0.052, 470: 0.052, 475: 0.053, 480: 0.054, 485: 0.055, 490: 0.057, 495: 0.059, 500: 0.061, 505: 0.062, 510: 0.065, 515: 0.067, 520: 0.070, 525: 0.072, 530: 0.074, 535: 0.075, 540: 0.076, 545: 0.078, 550: 0.079, 555: 0.082, 560: 0.087, 565: 0.092, 570: 0.100, 575: 0.107, 580: 0.115, 585: 0.122, 590: 0.129, 595: 0.134, 600: 0.138, 605: 0.142, 610: 0.146, 615: 0.150, 620: 0.154, 625: 0.158, 630: 0.163, 635: 0.167, 640: 0.173, 645: 0.180, 650: 0.188, 655: 0.196, 660: 0.204, 665: 0.213, 670: 0.222, 675: 0.231, 680: 0.242, 685: 0.251, 690: 0.261, 695: 0.271, 700: 0.282, 705: 0.294, 710: 0.305, 715: 0.318, 720: 0.334, 725: 0.354, 730: 0.372, 735: 0.392, 740: 0.409, 745: 0.420, 750: 0.436, 755: 0.450, 760: 0.462, 765: 0.465, 770: 0.448, 775: 0.432, 780: 0.421 } sd = SpectralDistribution(sample_sd_data, name='Sample') plt.close(plot_single_sd(sd, **arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Tutorial_SD_Interpolation.png') sd_copy = sd.copy() sd_copy.interpolate(SpectralShape(400, 770, 1)) plt.close( plot_multi_sds([sd, sd_copy], bounding_box=[730, 780, 0.25, 0.5], **arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Tutorial_Sample_Swatch.png') sd = SpectralDistribution(sample_sd_data) cmfs = STANDARD_OBSERVERS_CMFS['CIE 1931 2 Degree Standard Observer'] illuminant = ILLUMINANTS_SDS['D65'] with domain_range_scale('1'): XYZ = sd_to_XYZ(sd, cmfs, illuminant) RGB = XYZ_to_sRGB(XYZ) plt.close( plot_single_colour_swatch(ColourSwatch('Sample', RGB), text_parameters={'size': 'x-large'}, **arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Tutorial_Neutral5.png') patch_name = 'neutral 5 (.70 D)' patch_sd = COLOURCHECKERS_SDS['ColorChecker N Ohta'][patch_name] with domain_range_scale('1'): XYZ = sd_to_XYZ(patch_sd, cmfs, illuminant) RGB = XYZ_to_sRGB(XYZ) plt.close( plot_single_colour_swatch(ColourSwatch(patch_name.title(), RGB), text_parameters={'size': 'x-large'}, **arguments)[0]) arguments['filename'] = os.path.join(output_directory, 'Tutorial_Colour_Checker.png') plt.close( plot_single_colour_checker(colour_checker='ColorChecker 2005', text_parameters={'visible': False}, **arguments)[0]) arguments['filename'] = os.path.join( output_directory, 'Tutorial_CIE_1931_Chromaticity_Diagram.png') xy = XYZ_to_xy(XYZ) plot_chromaticity_diagram_CIE1931(standalone=False) x, y = xy plt.plot(x, y, 'o-', color='white') # Annotating the plot. plt.annotate(patch_sd.name.title(), xy=xy, xytext=(-50, 30), textcoords='offset points', arrowprops=dict(arrowstyle='->', connectionstyle='arc3, rad=-0.2')) plt.close( render(standalone=True, limits=(-0.1, 0.9, -0.1, 0.9), x_tighten=True, y_tighten=True, **arguments)[0]) # ************************************************************************* # "basics.rst" # ************************************************************************* arguments['filename'] = os.path.join(output_directory, 'Basics_Logo_Small_001_CIE_XYZ.png') RGB = read_image(os.path.join(output_directory, 'Logo_Small_001.png'))[..., 0:3] XYZ = sRGB_to_XYZ(RGB) plt.close( plot_image(XYZ, text_parameters={'text': 'sRGB to XYZ'}, **arguments)[0])
def plot_multi_colour_checkers( colour_checkers: Union[ColourChecker, str, Sequence[Union[ColourChecker, str]]], **kwargs: Any, ) -> Tuple[plt.Figure, plt.Axes]: """ Plot and compares given colour checkers. Parameters ---------- colour_checkers Color checker to plot, count must be less than or equal to 2. ``colour_checkers`` elements can be of any type or form supported by the :func:`colour.plotting.filter_colour_checkers` definition. Other Parameters ---------------- kwargs {:func:`colour.plotting.artist`, :func:`colour.plotting.plot_multi_colour_swatches`, :func:`colour.plotting.render`}, See the documentation of the previously listed definitions. Returns ------- :class:`tuple` Current figure and axes. Examples -------- >>> plot_multi_colour_checkers(['ColorChecker 1976', 'ColorChecker 2005']) ... # doctest: +ELLIPSIS (<Figure size ... with 1 Axes>, <...AxesSubplot...>) .. image:: ../_static/Plotting_Plot_Multi_Colour_Checkers.png :align: center :alt: plot_multi_colour_checkers """ filtered_colour_checkers = list( filter_colour_checkers(colour_checkers).values()) attest( len(filtered_colour_checkers) <= 2, "Only two colour checkers can be compared at a time!", ) _figure, axes = artist(**kwargs) compare_swatches = len(filtered_colour_checkers) == 2 colour_swatches = [] colour_checker_names = [] for colour_checker in filtered_colour_checkers: colour_checker_names.append(colour_checker.name) for label, xyY in colour_checker.data.items(): XYZ = xyY_to_XYZ(xyY) RGB = XYZ_to_plotting_colourspace(XYZ, colour_checker.illuminant) colour_swatches.append( ColourSwatch(np.clip(np.ravel(RGB), 0, 1), label.title())) if compare_swatches: colour_swatches = [ swatch for pairs in zip( colour_swatches[0:len(colour_swatches) // 2], colour_swatches[len(colour_swatches) // 2:], ) for swatch in pairs ] background_colour = "0.1" width = height = 1.0 spacing = 0.25 columns = 6 settings: Dict[str, Any] = { "axes": axes, "width": width, "height": height, "spacing": spacing, "columns": columns, "direction": "-y", "text_kwargs": { "size": 8 }, "background_colour": background_colour, "compare_swatches": "Stacked" if compare_swatches else None, } settings.update(kwargs) settings["standalone"] = False plot_multi_colour_swatches(colour_swatches, **settings) axes.text( 0.5, 0.005, (f"{', '.join(colour_checker_names)} - " f"{CONSTANTS_COLOUR_STYLE.colour.colourspace.name} - " f"Colour Rendition Chart"), transform=axes.transAxes, color=CONSTANTS_COLOUR_STYLE.colour.bright, ha="center", va="bottom", zorder=CONSTANTS_COLOUR_STYLE.zorder.midground_label, ) settings.update({ "axes": axes, "standalone": True, "title": ", ".join(colour_checker_names), }) return render(**settings)
# -*- coding: utf-8 -*- """ Showcases common plotting examples. """ from colour.plotting import (ColourSwatch, colour_style, plot_multi_colour_swatches, plot_single_colour_swatch) from colour.utilities import message_box message_box('Common Plots') colour_style() message_box('Plotting a single colour.') plot_single_colour_swatch(ColourSwatch('Neutral 5 (.70 D)', RGB=(0.32315746, 0.32983556, 0.33640183)), text_size=32) print('\n') message_box('Plotting multiple colours.') plot_multi_colour_swatches( (ColourSwatch('Dark Skin', RGB=(0.45293517, 0.31732158, 0.26414773)), ColourSwatch('Light Skin', RGB=(0.77875824, 0.57726450, 0.50453169))), text_size=32)
def plot_the_blue_sky( cmfs: Union[MultiSpectralDistributions, str, Sequence[Union[ MultiSpectralDistributions, str]], ] = "CIE 1931 2 Degree Standard Observer", **kwargs: Any, ) -> Tuple[plt.Figure, plt.Axes]: """ Plot the blue sky. Parameters ---------- cmfs Standard observer colour matching functions used for computing the spectrum domain and colours. ``cmfs`` can be of any type or form supported by the :func:`colour.plotting.filter_cmfs` definition. Other Parameters ---------------- kwargs {:func:`colour.plotting.artist`, :func:`colour.plotting.plot_single_sd`, :func:`colour.plotting.plot_multi_colour_swatches`, :func:`colour.plotting.render`}, See the documentation of the previously listed definitions. Returns ------- :class:`tuple` Current figure and axes. Examples -------- >>> plot_the_blue_sky() # doctest: +ELLIPSIS (<Figure size ... with 2 Axes>, <...AxesSubplot...>) .. image:: ../_static/Plotting_Plot_The_Blue_Sky.png :align: center :alt: plot_the_blue_sky """ figure = plt.figure() figure.subplots_adjust(hspace=CONSTANTS_COLOUR_STYLE.geometry.short / 2) cmfs = cast(MultiSpectralDistributions, first_item(filter_cmfs(cmfs).values())) ASTMG173_sd = cast(SpectralDistribution, SD_ASTMG173_ETR.copy()) rayleigh_sd = sd_rayleigh_scattering() ASTMG173_sd.align(rayleigh_sd.shape) sd = rayleigh_sd * ASTMG173_sd axes = figure.add_subplot(211) settings: Dict[str, Any] = { "axes": axes, "title": "The Blue Sky - Synthetic Spectral Distribution", "y_label": "W / m-2 / nm-1", } settings.update(kwargs) settings["standalone"] = False plot_single_sd(sd, cmfs, **settings) axes = figure.add_subplot(212) x_label = ("The sky is blue because molecules in the atmosphere " "scatter shorter wavelengths more than longer ones.\n" "The synthetic spectral distribution is computed as " "follows: " "(ASTM G-173 ETR * Standard Air Rayleigh Scattering).") settings = { "axes": axes, "aspect": None, "title": "The Blue Sky - Colour", "x_label": x_label, "y_label": "", "x_ticker": False, "y_ticker": False, } settings.update(kwargs) settings["standalone"] = False blue_sky_color = XYZ_to_plotting_colourspace( sd_to_XYZ(cast(SpectralDistribution, sd))) figure, axes = plot_single_colour_swatch( ColourSwatch(normalise_maximum(blue_sky_color)), **settings) settings = {"axes": axes, "standalone": True} settings.update(kwargs) return render(**settings)
def plot_multi_colour_checkers(colour_checkers=None, **kwargs): """ Plots and compares given colour checkers. Parameters ---------- colour_checkers : array_like, optional Color checker names, must be less than or equal to 2 names. Other Parameters ---------------- \\**kwargs : dict, optional {:func:`colour.plotting.artist`, :func:`colour.plotting.plot_multi_colour_swatches`, :func:`colour.plotting.render`}, Please refer to the documentation of the previously listed definitions. Returns ------- tuple Current figure and axes. Examples -------- >>> plot_multi_colour_checkers(['ColorChecker 1976', 'ColorChecker 2005']) ... # doctest: +ELLIPSIS (<Figure size ... with 1 Axes>, \ <matplotlib.axes._subplots.AxesSubplot object at 0x...>) .. image:: ../_static/Plotting_Plot_Multi_Colour_Checkers.png :align: center :alt: plot_multi_colour_checkers """ if colour_checkers is None: colour_checkers = ['ColorChecker 1976', 'ColorChecker 2005'] else: assert len(colour_checkers) <= 2, ( 'Only two colour checkers can be compared at a time!') colour_checkers = filter_colour_checkers(colour_checkers).values() _figure, axes = artist(**kwargs) compare_swatches = len(colour_checkers) == 2 colour_swatches = [] colour_checker_names = [] for colour_checker in colour_checkers: colour_checker_names.append(colour_checker.name) for label, xyY in colour_checker.data.items(): XYZ = xyY_to_XYZ(xyY) RGB = XYZ_to_plotting_colourspace(XYZ, colour_checker.illuminant) colour_swatches.append( ColourSwatch(label.title(), np.clip(np.ravel(RGB), 0, 1))) if compare_swatches: colour_swatches = [ swatch for pairs in zip(colour_swatches[0:len(colour_swatches) // 2], colour_swatches[len(colour_swatches) // 2:]) for swatch in pairs ] background_colour = '0.1' width = height = 1.0 spacing = 0.25 columns = 6 settings = { 'axes': axes, 'width': width, 'height': height, 'spacing': spacing, 'columns': columns, 'text_parameters': { 'size': 8 }, 'background_colour': background_colour, 'compare_swatches': 'Stacked' if compare_swatches else None, } settings.update(kwargs) settings['standalone'] = False plot_multi_colour_swatches(colour_swatches, **settings) axes.text(0.5, 0.005, '{0} - {1} - Colour Rendition Chart'.format( ', '.join(colour_checker_names), COLOUR_STYLE_CONSTANTS.colour.colourspace.name), transform=axes.transAxes, color=COLOUR_STYLE_CONSTANTS.colour.bright, ha='center', va='bottom') settings.update({ 'axes': axes, 'standalone': True, 'title': ', '.join(colour_checker_names), }) return render(**settings)
def plot_the_blue_sky(cmfs='CIE 1931 2 Degree Standard Observer', **kwargs): """ Plots the blue sky. Parameters ---------- cmfs : unicode, optional Standard observer colour matching functions. Other Parameters ---------------- \\**kwargs : dict, optional {:func:`colour.plotting.artist`, :func:`colour.plotting.plot_single_sd`, :func:`colour.plotting.plot_multi_colour_swatches`, :func:`colour.plotting.render`}, Please refer to the documentation of the previously listed definitions. Returns ------- tuple Current figure and axes. Examples -------- >>> plot_the_blue_sky() # doctest: +SKIP .. image:: ../_static/Plotting_Plot_The_Blue_Sky.png :align: center :alt: plot_the_blue_sky """ figure = plt.figure() figure.subplots_adjust(hspace=COLOUR_STYLE_CONSTANTS.geometry.short / 2) cmfs = first_item(filter_cmfs(cmfs).values()) ASTM_G_173_sd = ASTM_G_173_ETR.copy() rayleigh_sd = sd_rayleigh_scattering() ASTM_G_173_sd.align(rayleigh_sd.shape) sd = rayleigh_sd * ASTM_G_173_sd axes = figure.add_subplot(211) settings = { 'axes': axes, 'title': 'The Blue Sky - Synthetic Spectral Distribution', 'y_label': u'W / m-2 / nm-1', } settings.update(kwargs) settings['standalone'] = False plot_single_sd(sd, cmfs, **settings) axes = figure.add_subplot(212) x_label = ('The sky is blue because molecules in the atmosphere ' 'scatter shorter wavelengths more than longer ones.\n' 'The synthetic spectral distribution is computed as ' 'follows: ' '(ASTM G-173 ETR * Standard Air Rayleigh Scattering).') settings = { 'axes': axes, 'aspect': None, 'title': 'The Blue Sky - Colour', 'x_label': x_label, 'y_label': '', 'x_ticker': False, 'y_ticker': False, } settings.update(kwargs) settings['standalone'] = False blue_sky_color = XYZ_to_plotting_colourspace(sd_to_XYZ(sd)) figure, axes = plot_single_colour_swatch( ColourSwatch('', normalise_maximum(blue_sky_color)), **settings) settings = {'axes': axes, 'standalone': True} settings.update(kwargs) return render(**settings)
def the_blue_sky_plot(cmfs='CIE 1931 2 Degree Standard Observer', **kwargs): """ Plots the blue sky. Parameters ---------- cmfs : unicode, optional Standard observer colour matching functions. Other Parameters ---------------- \**kwargs : dict, optional {:func:`colour.plotting.render`}, Please refer to the documentation of the previously listed definition. Returns ------- Figure Current figure or None. Examples -------- >>> the_blue_sky_plot() # doctest: +SKIP """ canvas(**kwargs) cmfs, name = get_cmfs(cmfs), cmfs ASTM_G_173_spd = ASTM_G_173_ETR.copy() rayleigh_spd = rayleigh_scattering_spd() ASTM_G_173_spd.align(rayleigh_spd.shape) spd = rayleigh_spd * ASTM_G_173_spd matplotlib.pyplot.subplots_adjust(hspace=0.4) matplotlib.pyplot.figure(1) matplotlib.pyplot.subplot(211) settings = { 'title': 'The Blue Sky - Synthetic Spectral Power Distribution', 'y_label': u'W / m-2 / nm-1', 'standalone': False } settings.update(kwargs) single_spd_plot(spd, name, **settings) matplotlib.pyplot.subplot(212) settings = { 'title': 'The Blue Sky - Colour', 'x_label': ('The sky is blue because molecules in the atmosphere ' 'scatter shorter wavelengths more than longer ones.\n' 'The synthetic spectral power distribution is computed as ' 'follows: ' '(ASTM G-173 ETR * Standard Air Rayleigh Scattering).'), 'y_label': '', 'aspect': None, 'standalone': False } blue_sky_color = XYZ_to_sRGB(spectral_to_XYZ(spd)) single_colour_swatch_plot( ColourSwatch('', normalise_maximum(blue_sky_color)), **settings) settings = {'standalone': True} settings.update(kwargs) return render(**settings)
def generate_documentation_plots(output_directory: str): """ Generate documentation plots. Parameters ---------- output_directory Output directory. """ filter_warnings() colour_style() np.random.seed(0) # ************************************************************************* # "README.rst" # ************************************************************************* filename = os.path.join( output_directory, "Examples_Colour_Automatic_Conversion_Graph.png" ) plot_automatic_colour_conversion_graph(filename) arguments = { "tight_layout": True, "transparent_background": True, "filename": os.path.join( output_directory, "Examples_Plotting_Visible_Spectrum.png" ), } plt.close( plot_visible_spectrum( "CIE 1931 2 Degree Standard Observer", **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Examples_Plotting_Illuminant_F1_SD.png" ) plt.close(plot_single_illuminant_sd("FL1", **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Examples_Plotting_Blackbodies.png" ) blackbody_sds = [ sd_blackbody(i, SpectralShape(0, 10000, 10)) for i in range(1000, 15000, 1000) ] plt.close( plot_multi_sds( blackbody_sds, y_label="W / (sr m$^2$) / m", plot_kwargs={"use_sd_colours": True, "normalise_sd_colours": True}, legend_location="upper right", bounding_box=(0, 1250, 0, 2.5e6), **arguments, )[0] ) arguments["filename"] = os.path.join( output_directory, "Examples_Plotting_Cone_Fundamentals.png" ) plt.close( plot_single_cmfs( "Stockman & Sharpe 2 Degree Cone Fundamentals", y_label="Sensitivity", bounding_box=(390, 870, 0, 1.1), **arguments, )[0] ) arguments["filename"] = os.path.join( output_directory, "Examples_Plotting_Luminous_Efficiency.png" ) plt.close( plot_multi_sds( ( sd_mesopic_luminous_efficiency_function(0.2), SDS_LEFS_PHOTOPIC["CIE 1924 Photopic Standard Observer"], SDS_LEFS_SCOTOPIC["CIE 1951 Scotopic Standard Observer"], ), y_label="Luminous Efficiency", legend_location="upper right", y_tighten=True, margins=(0, 0, 0, 0.1), **arguments, )[0] ) arguments["filename"] = os.path.join( output_directory, "Examples_Plotting_BabelColor_Average.png" ) plt.close( plot_multi_sds( SDS_COLOURCHECKERS["BabelColor Average"].values(), plot_kwargs={"use_sd_colours": True}, title=("BabelColor Average - " "Spectral Distributions"), **arguments, )[0] ) arguments["filename"] = os.path.join( output_directory, "Examples_Plotting_ColorChecker_2005.png" ) plt.close( plot_single_colour_checker( "ColorChecker 2005", text_kwargs={"visible": False}, **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Examples_Plotting_Chromaticities_Prediction.png" ) plt.close( plot_corresponding_chromaticities_prediction( 2, "Von Kries", **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Examples_Plotting_Chromaticities_CIE_1931_Chromaticity_Diagram.png", ) RGB = np.random.random((32, 32, 3)) plt.close( plot_RGB_chromaticities_in_chromaticity_diagram_CIE1931( RGB, "ITU-R BT.709", colourspaces=["ACEScg", "S-Gamut"], show_pointer_gamut=True, **arguments, )[0] ) arguments["filename"] = os.path.join( output_directory, "Examples_Plotting_CRI.png" ) plt.close( plot_single_sd_colour_rendering_index_bars( SDS_ILLUMINANTS["FL2"], **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Examples_Plotting_Colour_Rendition_Report.png" ) plt.close( plot_single_sd_colour_rendition_report( SDS_ILLUMINANTS["FL2"], **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Examples_Plotting_Plot_Visible_Spectrum_Section.png" ) plt.close( plot_visible_spectrum_section( section_colours="RGB", section_opacity=0.15, **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Examples_Plotting_Plot_RGB_Colourspace_Section.png" ) plt.close( plot_RGB_colourspace_section( "sRGB", section_colours="RGB", section_opacity=0.15, **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Examples_Plotting_CCT_CIE_1960_UCS_Chromaticity_Diagram.png", ) plt.close( plot_planckian_locus_in_chromaticity_diagram_CIE1960UCS( ["A", "B", "C"], **arguments )[0] ) # ************************************************************************* # Documentation # ************************************************************************* arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_CVD_Simulation_Machado2009.png" ) plt.close(plot_cvd_simulation_Machado2009(RGB, **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Single_Colour_Checker.png" ) plt.close(plot_single_colour_checker("ColorChecker 2005", **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Multi_Colour_Checkers.png" ) plt.close( plot_multi_colour_checkers( ["ColorChecker 1976", "ColorChecker 2005"], **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Single_SD.png" ) data = { 500: 0.0651, 520: 0.0705, 540: 0.0772, 560: 0.0870, 580: 0.1128, 600: 0.1360, } sd = SpectralDistribution(data, name="Custom") plt.close(plot_single_sd(sd, **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Multi_SDS.png" ) data_1 = { 500: 0.004900, 510: 0.009300, 520: 0.063270, 530: 0.165500, 540: 0.290400, 550: 0.433450, 560: 0.594500, } data_2 = { 500: 0.323000, 510: 0.503000, 520: 0.710000, 530: 0.862000, 540: 0.954000, 550: 0.994950, 560: 0.995000, } spd1 = SpectralDistribution(data_1, name="Custom 1") spd2 = SpectralDistribution(data_2, name="Custom 2") plt.close(plot_multi_sds([spd1, spd2], **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Single_CMFS.png" ) plt.close( plot_single_cmfs("CIE 1931 2 Degree Standard Observer", **arguments)[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Multi_CMFS.png" ) cmfs = ( "CIE 1931 2 Degree Standard Observer", "CIE 1964 10 Degree Standard Observer", ) plt.close(plot_multi_cmfs(cmfs, **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Single_Illuminant_SD.png" ) plt.close(plot_single_illuminant_sd("A", **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Multi_Illuminant_SDS.png" ) plt.close(plot_multi_illuminant_sds(["A", "B", "C"], **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Visible_Spectrum.png" ) plt.close(plot_visible_spectrum(**arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Single_Lightness_Function.png" ) plt.close(plot_single_lightness_function("CIE 1976", **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Multi_Lightness_Functions.png" ) plt.close( plot_multi_lightness_functions( ["CIE 1976", "Wyszecki 1963"], **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Single_Luminance_Function.png" ) plt.close(plot_single_luminance_function("CIE 1976", **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Multi_Luminance_Functions.png" ) plt.close( plot_multi_luminance_functions( ["CIE 1976", "Newhall 1943"], **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Blackbody_Spectral_Radiance.png" ) plt.close( plot_blackbody_spectral_radiance( 3500, blackbody="VY Canis Major", **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Blackbody_Colours.png" ) plt.close( plot_blackbody_colours(SpectralShape(150, 12500, 50), **arguments)[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Single_Colour_Swatch.png" ) RGB = ColourSwatch((0.45620519, 0.03081071, 0.04091952)) plt.close(plot_single_colour_swatch(RGB, **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Multi_Colour_Swatches.png" ) RGB_1 = ColourSwatch((0.45293517, 0.31732158, 0.26414773)) RGB_2 = ColourSwatch((0.77875824, 0.57726450, 0.50453169)) plt.close(plot_multi_colour_swatches([RGB_1, RGB_2], **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Single_Function.png" ) plt.close(plot_single_function(lambda x: x ** (1 / 2.2), **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Multi_Functions.png" ) functions = { "Gamma 2.2": lambda x: x ** (1 / 2.2), "Gamma 2.4": lambda x: x ** (1 / 2.4), "Gamma 2.6": lambda x: x ** (1 / 2.6), } plt.close(plot_multi_functions(functions, **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Image.png" ) path = os.path.join( colour.__path__[0], "examples", "plotting", "resources", "Ishihara_Colour_Blindness_Test_Plate_3.png", ) plt.close(plot_image(read_image(str(path)), **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Corresponding_Chromaticities_Prediction.png", ) plt.close( plot_corresponding_chromaticities_prediction( 1, "Von Kries", **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Spectral_Locus.png" ) plt.close( plot_spectral_locus(spectral_locus_colours="RGB", **arguments)[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Chromaticity_Diagram_Colours.png" ) plt.close( plot_chromaticity_diagram_colours(diagram_colours="RGB", **arguments)[ 0 ] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Chromaticity_Diagram.png" ) plt.close(plot_chromaticity_diagram(**arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Chromaticity_Diagram_CIE1931.png" ) plt.close(plot_chromaticity_diagram_CIE1931(**arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Chromaticity_Diagram_CIE1960UCS.png" ) plt.close(plot_chromaticity_diagram_CIE1960UCS(**arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Chromaticity_Diagram_CIE1976UCS.png" ) plt.close(plot_chromaticity_diagram_CIE1976UCS(**arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_SDS_In_Chromaticity_Diagram.png" ) A = SDS_ILLUMINANTS["A"] D65 = SDS_ILLUMINANTS["D65"] plt.close(plot_sds_in_chromaticity_diagram([A, D65], **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_SDS_In_Chromaticity_Diagram_CIE1931.png", ) plt.close( plot_sds_in_chromaticity_diagram_CIE1931([A, D65], **arguments)[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_SDS_In_Chromaticity_Diagram_CIE1960UCS.png", ) plt.close( plot_sds_in_chromaticity_diagram_CIE1960UCS([A, D65], **arguments)[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_SDS_In_Chromaticity_Diagram_CIE1976UCS.png", ) plt.close( plot_sds_in_chromaticity_diagram_CIE1976UCS([A, D65], **arguments)[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Pointer_Gamut.png" ) plt.close(plot_pointer_gamut(**arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_RGB_Colourspaces_In_Chromaticity_Diagram.png", ) plt.close( plot_RGB_colourspaces_in_chromaticity_diagram( ["ITU-R BT.709", "ACEScg", "S-Gamut"], **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_RGB_Colourspaces_In_Chromaticity_Diagram_CIE1931.png", ) plt.close( plot_RGB_colourspaces_in_chromaticity_diagram_CIE1931( ["ITU-R BT.709", "ACEScg", "S-Gamut"], **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_RGB_Colourspaces_In_" "Chromaticity_Diagram_CIE1960UCS.png", ) plt.close( plot_RGB_colourspaces_in_chromaticity_diagram_CIE1960UCS( ["ITU-R BT.709", "ACEScg", "S-Gamut"], **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_RGB_Colourspaces_In_" "Chromaticity_Diagram_CIE1976UCS.png", ) plt.close( plot_RGB_colourspaces_in_chromaticity_diagram_CIE1976UCS( ["ITU-R BT.709", "ACEScg", "S-Gamut"], **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_RGB_Chromaticities_In_" "Chromaticity_Diagram.png", ) RGB = np.random.random((128, 128, 3)) plt.close( plot_RGB_chromaticities_in_chromaticity_diagram( RGB, "ITU-R BT.709", **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_RGB_Chromaticities_In_" "Chromaticity_Diagram_CIE1931.png", ) plt.close( plot_RGB_chromaticities_in_chromaticity_diagram_CIE1931( RGB, "ITU-R BT.709", **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_RGB_Chromaticities_In_" "Chromaticity_Diagram_CIE1960UCS.png", ) plt.close( plot_RGB_chromaticities_in_chromaticity_diagram_CIE1960UCS( RGB, "ITU-R BT.709", **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_RGB_Chromaticities_In_" "Chromaticity_Diagram_CIE1976UCS.png", ) plt.close( plot_RGB_chromaticities_in_chromaticity_diagram_CIE1976UCS( RGB, "ITU-R BT.709", **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Ellipses_MacAdam1942_In_Chromaticity_Diagram.png", ) plt.close( plot_ellipses_MacAdam1942_in_chromaticity_diagram(**arguments)[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Ellipses_MacAdam1942_In_" "Chromaticity_Diagram_CIE1931.png", ) plt.close( plot_ellipses_MacAdam1942_in_chromaticity_diagram_CIE1931(**arguments)[ 0 ] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Ellipses_MacAdam1942_In_" "Chromaticity_Diagram_CIE1960UCS.png", ) plt.close( plot_ellipses_MacAdam1942_in_chromaticity_diagram_CIE1960UCS( **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Ellipses_MacAdam1942_In_" "Chromaticity_Diagram_CIE1976UCS.png", ) plt.close( plot_ellipses_MacAdam1942_in_chromaticity_diagram_CIE1976UCS( **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Single_CCTF.png" ) plt.close(plot_single_cctf("ITU-R BT.709", **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Multi_CCTFs.png" ) plt.close(plot_multi_cctfs(["ITU-R BT.709", "sRGB"], **arguments)[0]) data = np.array( [ [ None, np.array([0.95010000, 1.00000000, 1.08810000]), np.array([0.40920000, 0.28120000, 0.30600000]), np.array( [ [0.02495100, 0.01908600, 0.02032900], [0.10944300, 0.06235900, 0.06788100], [0.27186500, 0.18418700, 0.19565300], [0.48898900, 0.40749400, 0.44854600], ] ), None, ], [ None, np.array([0.95010000, 1.00000000, 1.08810000]), np.array([0.30760000, 0.48280000, 0.42770000]), np.array( [ [0.02108000, 0.02989100, 0.02790400], [0.06194700, 0.11251000, 0.09334400], [0.15255800, 0.28123300, 0.23234900], [0.34157700, 0.56681300, 0.47035300], ] ), None, ], [ None, np.array([0.95010000, 1.00000000, 1.08810000]), np.array([0.39530000, 0.28120000, 0.18450000]), np.array( [ [0.02436400, 0.01908600, 0.01468800], [0.10331200, 0.06235900, 0.02854600], [0.26311900, 0.18418700, 0.12109700], [0.43158700, 0.40749400, 0.39008600], ] ), None, ], [ None, np.array([0.95010000, 1.00000000, 1.08810000]), np.array([0.20510000, 0.18420000, 0.57130000]), np.array( [ [0.03039800, 0.02989100, 0.06123300], [0.08870000, 0.08498400, 0.21843500], [0.18405800, 0.18418700, 0.40111400], [0.32550100, 0.34047200, 0.50296900], [0.53826100, 0.56681300, 0.80010400], ] ), None, ], [ None, np.array([0.95010000, 1.00000000, 1.08810000]), np.array([0.35770000, 0.28120000, 0.11250000]), np.array( [ [0.03678100, 0.02989100, 0.01481100], [0.17127700, 0.11251000, 0.01229900], [0.30080900, 0.28123300, 0.21229800], [0.52976000, 0.40749400, 0.11720000], ] ), None, ], ] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Constant_Hue_Loci.png" ) plt.close(plot_constant_hue_loci(data, "IPT", **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Single_Munsell_Value_Function.png" ) plt.close(plot_single_munsell_value_function("ASTM D1535", **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Multi_Munsell_Value_Functions.png" ) plt.close( plot_multi_munsell_value_functions( ["ASTM D1535", "McCamy 1987"], **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Single_SD_Rayleigh_Scattering.png" ) plt.close(plot_single_sd_rayleigh_scattering(**arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_The_Blue_Sky.png" ) plt.close(plot_the_blue_sky(**arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Colour_Quality_Bars.png" ) illuminant = SDS_ILLUMINANTS["FL2"] light_source = SDS_LIGHT_SOURCES["Kinoton 75P"] light_source = light_source.copy().align(SpectralShape(360, 830, 1)) cqs_i = colour_quality_scale(illuminant, additional_data=True) cqs_l = colour_quality_scale(light_source, additional_data=True) plt.close(plot_colour_quality_bars([cqs_i, cqs_l], **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Single_SD_Colour_Rendering_Index_Bars.png", ) illuminant = SDS_ILLUMINANTS["FL2"] plt.close( plot_single_sd_colour_rendering_index_bars(illuminant, **arguments)[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Multi_SDS_Colour_Rendering_Indexes_Bars.png", ) light_source = SDS_LIGHT_SOURCES["Kinoton 75P"] plt.close( plot_multi_sds_colour_rendering_indexes_bars( [illuminant, light_source], **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Single_SD_Colour_Quality_Scale_Bars.png", ) illuminant = SDS_ILLUMINANTS["FL2"] plt.close( plot_single_sd_colour_quality_scale_bars(illuminant, **arguments)[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Multi_SDS_Colour_Quality_Scales_Bars.png", ) light_source = SDS_LIGHT_SOURCES["Kinoton 75P"] plt.close( plot_multi_sds_colour_quality_scales_bars( [illuminant, light_source], **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Hull_Section_Colours.png" ) vertices, faces, _outline = primitive_cube(1, 1, 1, 64, 64, 64) XYZ_vertices = RGB_to_XYZ( vertices["position"] + 0.5, RGB_COLOURSPACE_sRGB.whitepoint, RGB_COLOURSPACE_sRGB.whitepoint, RGB_COLOURSPACE_sRGB.matrix_RGB_to_XYZ, ) hull = trimesh.Trimesh(XYZ_vertices, faces, process=False) plt.close( plot_hull_section_colours(hull, section_colours="RGB", **arguments)[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Hull_Section_Contour.png" ) plt.close( plot_hull_section_contour(hull, section_colours="RGB", **arguments)[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Visible_Spectrum_Section.png" ) plt.close( plot_visible_spectrum_section( section_colours="RGB", section_opacity=0.15, **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_RGB_Colourspace_Section.png" ) plt.close( plot_RGB_colourspace_section( "sRGB", section_colours="RGB", section_opacity=0.15, **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Planckian_Locus.png" ) plt.close( plot_planckian_locus(planckian_locus_colours="RGB", **arguments)[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Planckian_Locus_In_Chromaticity_Diagram.png", ) plt.close( plot_planckian_locus_in_chromaticity_diagram( ["A", "B", "C"], **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Planckian_Locus_In_Chromaticity_Diagram_CIE1931.png", ) plt.close( plot_planckian_locus_in_chromaticity_diagram_CIE1931( ["A", "B", "C"], **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Planckian_Locus_In_Chromaticity_Diagram_CIE1960UCS.png", ) plt.close( plot_planckian_locus_in_chromaticity_diagram_CIE1960UCS( ["A", "B", "C"], **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Single_SD_Colour_Rendition_Report_Full.png", ) plt.close( plot_single_sd_colour_rendition_report( SDS_ILLUMINANTS["FL2"], **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Single_SD_Colour_Rendition_Report_Intermediate.png", ) plt.close( plot_single_sd_colour_rendition_report( SDS_ILLUMINANTS["FL2"], "Intermediate", **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_Single_SD_Colour_Rendition_Report_Simple.png", ) plt.close( plot_single_sd_colour_rendition_report( SDS_ILLUMINANTS["FL2"], "Simple", **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_RGB_Colourspaces_Gamuts.png" ) plt.close( plot_RGB_colourspaces_gamuts( ["ITU-R BT.709", "ACEScg", "S-Gamut"], **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_RGB_Colourspaces_Gamuts.png" ) plt.close( plot_RGB_colourspaces_gamuts( ["ITU-R BT.709", "ACEScg", "S-Gamut"], **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Plotting_Plot_RGB_Scatter.png" ) plt.close(plot_RGB_scatter(RGB, "ITU-R BT.709", **arguments)[0]) filename = os.path.join( output_directory, "Plotting_Plot_Colour_Automatic_Conversion_Graph.png" ) plot_automatic_colour_conversion_graph(filename) # ************************************************************************* # "tutorial.rst" # ************************************************************************* arguments["filename"] = os.path.join( output_directory, "Tutorial_Visible_Spectrum.png" ) plt.close(plot_visible_spectrum(**arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Tutorial_Sample_SD.png" ) sample_sd_data = { 380: 0.048, 385: 0.051, 390: 0.055, 395: 0.060, 400: 0.065, 405: 0.068, 410: 0.068, 415: 0.067, 420: 0.064, 425: 0.062, 430: 0.059, 435: 0.057, 440: 0.055, 445: 0.054, 450: 0.053, 455: 0.053, 460: 0.052, 465: 0.052, 470: 0.052, 475: 0.053, 480: 0.054, 485: 0.055, 490: 0.057, 495: 0.059, 500: 0.061, 505: 0.062, 510: 0.065, 515: 0.067, 520: 0.070, 525: 0.072, 530: 0.074, 535: 0.075, 540: 0.076, 545: 0.078, 550: 0.079, 555: 0.082, 560: 0.087, 565: 0.092, 570: 0.100, 575: 0.107, 580: 0.115, 585: 0.122, 590: 0.129, 595: 0.134, 600: 0.138, 605: 0.142, 610: 0.146, 615: 0.150, 620: 0.154, 625: 0.158, 630: 0.163, 635: 0.167, 640: 0.173, 645: 0.180, 650: 0.188, 655: 0.196, 660: 0.204, 665: 0.213, 670: 0.222, 675: 0.231, 680: 0.242, 685: 0.251, 690: 0.261, 695: 0.271, 700: 0.282, 705: 0.294, 710: 0.305, 715: 0.318, 720: 0.334, 725: 0.354, 730: 0.372, 735: 0.392, 740: 0.409, 745: 0.420, 750: 0.436, 755: 0.450, 760: 0.462, 765: 0.465, 770: 0.448, 775: 0.432, 780: 0.421, } sd = SpectralDistribution(sample_sd_data, name="Sample") plt.close(plot_single_sd(sd, **arguments)[0]) arguments["filename"] = os.path.join( output_directory, "Tutorial_SD_Interpolation.png" ) sd_copy = sd.copy() sd_copy.interpolate(SpectralShape(400, 770, 1)) plt.close( plot_multi_sds( [sd, sd_copy], bounding_box=[730, 780, 0.25, 0.5], **arguments )[0] ) arguments["filename"] = os.path.join( output_directory, "Tutorial_Sample_Swatch.png" ) sd = SpectralDistribution(sample_sd_data) cmfs = MSDS_CMFS_STANDARD_OBSERVER["CIE 1931 2 Degree Standard Observer"] illuminant = SDS_ILLUMINANTS["D65"] with domain_range_scale("1"): XYZ = sd_to_XYZ(sd, cmfs, illuminant) RGB = XYZ_to_sRGB(XYZ) plt.close( plot_single_colour_swatch( ColourSwatch(RGB, "Sample"), text_kwargs={"size": "x-large"}, **arguments, )[0] ) arguments["filename"] = os.path.join( output_directory, "Tutorial_Neutral5.png" ) patch_name = "neutral 5 (.70 D)" patch_sd = SDS_COLOURCHECKERS["ColorChecker N Ohta"][patch_name] with domain_range_scale("1"): XYZ = sd_to_XYZ(patch_sd, cmfs, illuminant) RGB = XYZ_to_sRGB(XYZ) plt.close( plot_single_colour_swatch( ColourSwatch(RGB, patch_name.title()), text_kwargs={"size": "x-large"}, **arguments, )[0] ) arguments["filename"] = os.path.join( output_directory, "Tutorial_Colour_Checker.png" ) plt.close( plot_single_colour_checker( colour_checker="ColorChecker 2005", text_kwargs={"visible": False}, **arguments, )[0] ) arguments["filename"] = os.path.join( output_directory, "Tutorial_CIE_1931_Chromaticity_Diagram.png" ) xy = XYZ_to_xy(XYZ) plot_chromaticity_diagram_CIE1931(standalone=False) x, y = xy plt.plot(x, y, "o-", color="white") # Annotating the plot. plt.annotate( patch_sd.name.title(), xy=xy, xytext=(-50, 30), textcoords="offset points", arrowprops=dict(arrowstyle="->", connectionstyle="arc3, rad=-0.2"), ) plt.close( render( standalone=True, limits=(-0.1, 0.9, -0.1, 0.9), x_tighten=True, y_tighten=True, **arguments, )[0] ) # ************************************************************************* # "basics.rst" # ************************************************************************* arguments["filename"] = os.path.join( output_directory, "Basics_Logo_Small_001_CIE_XYZ.png" ) RGB = read_image(os.path.join(output_directory, "Logo_Small_001.png"))[ ..., 0:3 ] XYZ = sRGB_to_XYZ(RGB) plt.close( plot_image(XYZ, text_kwargs={"text": "sRGB to XYZ"}, **arguments)[0] )
def blackbody_spectral_radiance_plot( temperature=3500, cmfs='CIE 1931 2 Degree Standard Observer', blackbody='VY Canis Major', **kwargs): """ Plots given blackbody spectral radiance. Parameters ---------- temperature : numeric, optional Blackbody temperature. cmfs : unicode, optional Standard observer colour matching functions. blackbody : unicode, optional Blackbody name. Other Parameters ---------------- \**kwargs : dict, optional {:func:`colour.plotting.render`}, Please refer to the documentation of the previously listed definition. Returns ------- Figure Current figure or None. Examples -------- >>> blackbody_spectral_radiance_plot() # doctest: +SKIP """ canvas(**kwargs) cmfs = get_cmfs(cmfs) matplotlib.pyplot.subplots_adjust(hspace=0.4) spd = blackbody_spd(temperature, cmfs.shape) matplotlib.pyplot.figure(1) matplotlib.pyplot.subplot(211) settings = { 'title': '{0} - Spectral Radiance'.format(blackbody), 'y_label': 'W / (sr m$^2$) / m', 'standalone': False } settings.update(kwargs) single_spd_plot(spd, cmfs.name, **settings) XYZ = spectral_to_XYZ(spd, cmfs) RGB = normalise_maximum(XYZ_to_sRGB(XYZ / 100)) matplotlib.pyplot.subplot(212) settings = { 'title': '{0} - Colour'.format(blackbody), 'x_label': '{0}K'.format(temperature), 'y_label': '', 'aspect': None, 'standalone': False } single_colour_swatch_plot(ColourSwatch(name='', RGB=RGB), **settings) settings = {'standalone': True} settings.update(kwargs) return render(**settings)