コード例 #1
0
ファイル: tests_array.py プロジェクト: nick-shaw/colour
    def test_interval(self):
        """
        Tests :func:`colour.utilities.array.interval` definition.
        """

        np.testing.assert_almost_equal(interval(range(0, 10, 2)),
                                       np.array([2]))

        np.testing.assert_almost_equal(interval([1, 2, 3, 4, 6, 6.5]),
                                       np.array([0.5, 1, 2]))
コード例 #2
0
ファイル: tests_array.py プロジェクト: Nick-Shaw/colour
    def test_interval(self):
        """
        Tests :func:`colour.utilities.array.interval` definition.
        """

        np.testing.assert_almost_equal(
            interval(range(0, 10, 2)),
            np.array([2]))

        np.testing.assert_almost_equal(
            interval([1, 2, 3, 4, 6, 6.5]),
            np.array([0.5, 1, 2]))
コード例 #3
0
ファイル: interpolation.py プロジェクト: Nick-Shaw/colour
    def x(self, value):
        """
        Setter for **self.__x** private attribute.

        Parameters
        ----------
        value : array_like
            Attribute value.
        """

        if value is not None:
            value = np.atleast_1d(value).astype(np.float_)

            assert value.ndim == 1, (
                '"x" independent variable must have exactly one dimension!')

            value_interval = interval(value)[0]

            xp1 = value[0] - value_interval * 2
            xp2 = value[0] - value_interval
            xp3 = value[-1] + value_interval
            xp4 = value[-1] + value_interval * 2

            self._xp = np.concatenate(((xp1, xp2), value, (xp3, xp4)))

        self.__x = value
コード例 #4
0
ファイル: interpolation.py プロジェクト: yeekzhang/colour
    def x(self, value):
        """
        Setter for **self.__x** private attribute.

        Parameters
        ----------
        value : array_like
            Attribute value.
        """

        if value is not None:
            value = np.atleast_1d(value).astype(np.float_)

            assert value.ndim == 1, (
                '"x" independent variable must have exactly one dimension!')

            value_interval = interval(value)[0]

            xp1 = value[0] - value_interval * 2
            xp2 = value[0] - value_interval
            xp3 = value[-1] + value_interval
            xp4 = value[-1] + value_interval * 2

            self._xp = np.concatenate(((xp1, xp2), value, (xp3, xp4)))

        self.__x = value
コード例 #5
0
ファイル: interpolation.py プロジェクト: ajun73/Work_Code
    def _evaluate(self, x):
        """
        Performs the interpolator evaluation at given points.

        Parameters
        ----------
        x : ndarray
            Points to evaluate the interpolant at.

        Returns
        -------
        ndarray
            Interpolated points values.
        """

        self._validate_dimensions()
        self._validate_interpolation_range(x)

        x_interval = interval(self._x)[0]
        x_f = np.floor(x / x_interval)

        windows = (x_f[:, np.newaxis] + np.arange(-self._window + 1,
                                                  self._window + 1))
        clip_l = min(self._x_p) / x_interval
        clip_h = max(self._x_p) / x_interval
        windows = np.clip(windows, clip_l, clip_h) - clip_l
        windows = np.around(windows).astype(np.int_)

        return np.sum(
            self._y_p[windows] *
            self._kernel(x[:, np.newaxis] / x_interval - windows -
                         min(self._x_p) / x_interval, **self._kernel_args),
            axis=-1)
コード例 #6
0
ファイル: interpolation.py プロジェクト: ajun73/Work_Code
    def x(self, value):
        """
        Setter for the **self.x** property.
        """

        if value is not None:
            value = np.atleast_1d(value).astype(self._dtype)

            assert value.ndim == 1, (
                '"x" independent variable must have exactly one dimension!')

            value_interval = interval(value)

            if value_interval.size != 1:
                warning(('"x" independent variable is not uniform, '
                         'unpredictable results may occur!'))

            self._x = value

            if self._window is not None:
                self._x_p = np.pad(
                    self._x, (self._window, self._window),
                    'linear_ramp',
                    end_values=(
                        np.min(self._x) - self._window * value_interval[0],
                        np.max(self._x) + self._window * value_interval[0]))
コード例 #7
0
ファイル: interpolation.py プロジェクト: ajun73/Work_Code
    def x(self, value):
        """
        Setter for the **self.x** property.
        """

        if value is not None:
            value = np.atleast_1d(value).astype(self._dtype)

            assert value.ndim == 1, (
                '"x" independent variable must have exactly one dimension!')

            value_interval = interval(value)[0]

            xp1 = value[0] - value_interval * 2
            xp2 = value[0] - value_interval
            xp3 = value[-1] + value_interval
            xp4 = value[-1] + value_interval * 2

            self._xp = np.concatenate(((xp1, xp2), value, (xp3, xp4)))

        self._x = value