def mlpGetPredictions(train, data, parameters, x_cols=DataColumns.getSelectedCols3()): """ Classify input data Arguments: train {array} -- labeled pandas dataframe data {array} -- unlabeled pandas dataframe parameters {namedTuple} -- parameters for classifier """ xtrain = train.loc[:, x_cols] ytrain = train.loc[:, "label"] xdata = data.loc[:, x_cols] mlpClassifier = MLPClassifier( hidden_layer_sizes=parameters.hidden_layer_sizes, solver=parameters.solver, alpha=parameters.alpha, batch_size=parameters.batch_size, learning_rate=parameters.learning_rate, learning_rate_init=parameters.learning_rate_init, max_iter=parameters.max_iter, random_state=parameters.random_state, verbose=parameters.verbose, early_stopping=parameters.early_stopping, validation_fraction=parameters.validation_fraction ) mlpClassifier.fit(xtrain, ytrain.values.ravel()) ypred=mlpClassifier.predict(xdata) return(ypred)
def getKnnPredictions(train, data, k, x_cols=DataColumns.getSelectedCols3()): """ Classify input data Arguments: train {array} -- labeled pandas dataframe data {array} -- unlabeled pandas dataframe k {int} -- number of nearest neighbors Keyword Arguments: x_cols {array} -- x column names (default: {DataColumns.getSelectedCols3()}) """ xtrain = train.loc[:,x_cols] ytrain = train.loc[:,"label"] xdata = data.loc[:,x_cols] knnClassifier = KNeighborsClassifier(n_neighbors=k, weights="uniform", metric="euclidean") knnClassifier.fit(xtrain, ytrain.values.ravel()) ypred=knnClassifier.predict(xdata) return(ypred)
data = DataHandler.calculateTotalForce(data) data = DataHandler.calculateStepTime(data) data = DataHandler.calculateForceValues(data) data = DataHandler.calculateStepStartValues(data) data = DataHandler.calculateStepMaxTimeValues(data) data = DataHandler.calculateStepEndTimeValues(data) data = DataHandler.calculatePhaseForceValues(data) data = DataHandler.calculatePressTimeValues(data) pd.set_option('display.max_columns', None) data #%% Bagging test avg_acc, real_label, pred_label = Ensemble.testBagging( data, DataColumns.getSelectedCols3()) pred_label_df = pred_label real_label_df = real_label pred_label_df = pred_label_df.replace("Normal", 0) pred_label_df = pred_label_df.replace("Fall", 1) real_label_df = real_label_df.replace("Normal", 0) real_label_df = real_label_df.replace("Fall", 1) avg_auc = roc_auc_score(real_label_df, pred_label_df) print("AUC score: ", round(avg_auc, 2)) #%% 2d scatter from sklearn.decomposition import PCA