def get_classification(feature, incr=False): """ 获得分类器 :param feature: :param incr :return: """ train_datas, class_label, _ = feature.get_key_words() train = train_datas # 构建适合 bayes 分类的数据集 if not sp.issparse(train_datas): train = feature.cal_weight_improve(train_datas, class_label) if incr: bayes = IncrBayes() else: bayes = Bayes() clf = Classification(bayes=bayes, subjective=feature.subjective) clf.get_classificator(train, class_label) if incr: incr_train_datas = Load.load_incr_datas() incr_train, incr_class_label, _ = feature.get_key_words(incr_train_datas) # 构建适合 bayes 分类的增量集 if not sp.issparse(incr_train): incr_train = feature.cal_weight_improve(incr_train, incr_class_label) clf.get_incr_classificator(incr_train, incr_class_label, train, class_label, method="five") return clf
def get_classification(feature, incr=False): """ 获得分类器 :param feature: :param incr :return: """ train_datas, class_label, _ = feature.get_key_words() train = train_datas # 构建适合 bayes 分类的数据集 if not sp.issparse(train_datas): train = feature.cal_weight_improve(train_datas, class_label) if incr: bayes = IncrBayes() else: bayes = Bayes() clf = Classification(bayes=bayes, subjective=feature.subjective) clf.get_classificator(train, class_label) if incr: incr_train_datas = Load.load_incr_datas() incr_train, incr_class_label, _ = feature.get_key_words( incr_train_datas) # 构建适合 bayes 分类的增量集 if not sp.issparse(incr_train): incr_train = feature.cal_weight_improve(incr_train, incr_class_label) clf.get_incr_classificator(incr_train, incr_class_label, train, class_label, method="five") return clf
out = os.path.join(TEXT_OUT, "best_train_test_index/test_index.txt") if not FileUtil.isexist(out) or FileUtil.isempty(out): clf0 = Classification() clf0.cross_validation(train, class_label, score="recall") test_index = np.loadtxt(out, dtype=int) test = train[test_index] test_label = np.asanyarray(class_label)[test_index].tolist() method_options = ("second", "four", "five") method_options_0 = ("B", "C", "D") linestyle = (':', '--', '-') plot.get_instance() for i in range(len(method_options)): bayes = IncrBayes() clf = Classification(bayes=bayes) clf.get_classificator(train, class_label, iscrossvalidate=crossvalidate, isbalance=False, minority_target=EMOTION_CLASS.keys()) # clf.get_classificator(train, class_label, isbalance=True, minority_target=["anger", "fear", "surprise"]) if(i == 0): pred = clf.predict(test) pred_unknow = clf.predict_unknow(test) print "origin precision:", clf.metrics_precision(test_label, pred_unknow) print "origin recall:", clf.metrics_recall(test_label, pred_unknow) print "origin f1:", clf.metrics_f1(test_label, pred_unknow) print "origin accuracy:", clf.metrics_accuracy(test_label, pred_unknow) print "origin zero_one_loss:", clf.metrics_zero_one_loss(test_label, pred_unknow) test_proba = clf.predict_max_proba(test) print "origin my_zero_one_loss:", clf.metrics_my_zero_one_loss(test_proba) print clf.metrics_correct(test_label, pred_unknow) # plot.plot_roc(test_label, clf.predict_proba(test), classes=clf.bayes.classes_.tolist(), text='origin')