def run(self, data): """ Expects a level2 file structure to be passed. """ fname = data.filename.split('/')[-1] az = data['level1/spectrometer/pixel_pointing/pixel_az'][0, :] el = data['level1/spectrometer/pixel_pointing/pixel_el'][0, :] mjd = data['level1/spectrometer/MJD'][:] self.distances = {k: np.zeros(az.size) for k in ['sun', 'moon']} for src, v in self.distances.items(): s_az, s_el, s_ra, s_dec = Coordinates.sourcePosition( src, mjd, Coordinates.comap_longitude, Coordinates.comap_latitude) self.distances[src] = Coordinates.AngularSeperation( az, el, s_az, s_el) sources = list(self.distances.keys()) for src in sources: self.distances[f'{src}_mean'] = np.array( [np.mean(self.distances[src])])
def create_maps(self, data, tod, filters, sel): """ Bin maps into instrument frame centred on source """ mjd = data['level1/spectrometer/MJD'][:] # We do Jupiter in the Az/El frame but celestial in sky frame #if self.source.upper() == 'JUPITER': az = data['level1/spectrometer/pixel_pointing/pixel_az'][:] el = data['level1/spectrometer/pixel_pointing/pixel_el'][:] N = az.shape[1] // 2 * 2 daz = np.gradient(az[0, :]) * 50. daz = daz[sel] az = az[:, sel] el = el[:, sel] cw = daz > 1e-2 ccw = daz < 1e-2 mjd = mjd[sel] npix = self.Nx * self.Ny temp_maps = { 'map': np.zeros(npix, dtype=np.float64), 'cov': np.zeros(npix, dtype=np.float64) } maps = { 'map': np.zeros( (tod.shape[0], tod.shape[1], tod.shape[2], self.Nx, self.Ny)), 'cov': np.zeros( (tod.shape[0], tod.shape[1], tod.shape[2], self.Nx, self.Ny)) } feed_avg = { 'map': np.zeros((tod.shape[0], self.Nx, self.Ny)), 'cov': np.zeros((tod.shape[0], self.Nx, self.Ny)) } scan_maps = { 'CW': { 'map': np.zeros((self.Nx, self.Ny)), 'cov': np.zeros((self.Nx, self.Ny)) }, 'CCW': { 'map': np.zeros((self.Nx, self.Ny)), 'cov': np.zeros((self.Nx, self.Ny)) } } azSource, elSource, raSource, decSource = Coordinates.sourcePosition( self.source, mjd, self.lon, self.lat) self.src_el = np.mean(elSource) self.src_az = np.mean(azSource) for ifeed in tqdm(self.feedlist, desc=f'{self.name}:create_maps:{self.source}'): feed_tod = tod[ifeed, ...] #if self.source.upper() == 'JUPITER': x, y = Coordinates.Rotate(azSource, elSource, az[ifeed, :], el[ifeed, :], 0) pixels, pX, pY = self.getpixels(x, y, self.dx, self.dy, self.Nx, self.Ny) mask = np.ones(pixels.size, dtype=int) for isb in range(tod.shape[1]): for ichan in range(1, tod.shape[2] - 1): # Always skip edges for k in temp_maps.keys(): temp_maps[k][:] = 0. z = (feed_tod[isb, ichan, sel] - filters[ifeed, isb, ichan]) mask[:] = 1 mask[(pixels == -1) | np.isnan(z) | np.isinf(z)] = 0 if np.sum(np.isfinite(z)) == 0: continue rms = stats.AutoRMS(z) weights = { 'map': z.astype(np.float64) / rms**2, 'cov': np.ones(z.size) / rms**2 } for k in temp_maps.keys(): binFuncs.binValues(temp_maps[k], pixels, weights=weights[k], mask=mask) maps[k][ifeed, isb, ichan, ...] = np.reshape(temp_maps[k], (self.Ny, self.Nx)) feed_avg[k][ifeed, ...] += np.reshape(temp_maps[k], (self.Ny, self.Nx)) if (ifeed == 0): for (key, direction) in zip(['CW', 'CCW'], [cw, ccw]): for k in temp_maps.keys(): temp_maps[k][:] = 0. binFuncs.binValues( temp_maps[k], pixels[direction], weights=weights[k][direction], mask=mask[direction]) scan_maps[key][k] += np.reshape( temp_maps[k], (self.Ny, self.Nx)) xygrid = np.meshgrid( (np.arange(self.Nx) + 0.5) * self.dx - self.Nx * self.dx / 2., (np.arange(self.Ny) + 0.5) * self.dy - self.Ny * self.dy / 2.) feed_avg['xygrid'] = xygrid maps['xygrid'] = xygrid feed_avg = self.average_maps(feed_avg) for key in scan_maps.keys(): scan_maps[key] = self.average_maps(scan_maps[key]) scan_maps[key]['xygrid'] = xygrid map_axes = np.array([a for a in maps['map'].shape]) map_axes[2] = int(map_axes[2] / self.binwidth) map_axes = np.insert(map_axes, 3, self.binwidth) maps['map'] = np.nansum(np.reshape(maps['map'], map_axes), axis=3) maps['cov'] = np.nansum(np.reshape(maps['cov'], map_axes), axis=3) maps = self.average_maps(maps) self.map_freqs = np.mean(np.reshape( data[f'{self.level2}/frequency'][...], map_axes[1:4]), axis=-1) return maps, feed_avg, scan_maps
def create_maps(self, data, tod, filters, sel): """ Bin maps into instrument frame centred on source """ mjd = data['spectrometer/MJD'][:] # We do Jupiter in the Az/El frame but celestial in sky frame #if self.source.upper() == 'JUPITER': az = data['spectrometer/pixel_pointing/pixel_az'][:] el = data['spectrometer/pixel_pointing/pixel_el'][:] N = az.shape[1] // 2 * 2 daz = np.gradient(az[0, :]) * 50. daz = daz[sel] az = az[:, sel] el = el[:, sel] cw = daz > 1e-2 ccw = daz < 1e-2 mjd = mjd[sel] npix = self.Nx * self.Ny temp_maps = { 'map': np.zeros(npix, dtype=np.float64), 'cov': np.zeros(npix, dtype=np.float64) } maps = { 'maps': { 'map': np.zeros( (tod.shape[0], tod.shape[1], self.Nx, self.Ny)), 'cov': np.zeros((tod.shape[0], tod.shape[1], self.Nx, self.Ny)) } } maps['feed_avg'] = { 'map': np.zeros((tod.shape[0], 1, self.Nx, self.Ny)), 'cov': np.zeros((tod.shape[0], 1, self.Nx, self.Ny)) } maps['CW'] = { 'map': np.zeros((1, 1, self.Nx, self.Ny)), 'cov': np.zeros((1, 1, self.Nx, self.Ny)) } maps['CCW'] = { 'map': np.zeros((1, 1, self.Nx, self.Ny)), 'cov': np.zeros((1, 1, self.Nx, self.Ny)) } selections = { k: selection for k, selection in zip(maps.keys(), [ np.ones(az.shape[-1], dtype=bool), np.ones(az.shape[-1], dtype=bool), cw, ccw ]) } slices = { k: sl for k, sl in zip(maps.keys(), [ lambda ifeed, isb: [ slice(ifeed, ifeed + 1), slice(isb, isb + 1), slice(None), slice(None) ], lambda ifeed, isb: [ slice(ifeed, ifeed + 1), slice(None), slice(None), slice(None) ], lambda ifeed, isb: [slice(None), slice(None), slice(None), slice(None)], lambda ifeed, isb: [slice(None), slice(None), slice(None), slice(None)] ]) } self.source_positions = { k: a for k, a in zip(['az', 'el', 'ra', 'dec'], Coordinates.sourcePosition(self.source, mjd, self.lon, self.lat)) } self.source_positions['mean_el'] = np.mean(self.source_positions['el']) self.source_positions['mean_az'] = np.mean(self.source_positions['az']) for ifeed in tqdm(self.feedlist, desc=f'{self.name}:create_maps:{self.source}'): feed_tod = tod[ifeed, ...] pixels = self.get_pixel_positions(self.source_positions['az'], self.source_positions['el'], az[ifeed, :], el[ifeed, :]) mask = np.ones(pixels.size, dtype=int) for isb in range(tod.shape[1]): for k in temp_maps.keys(): temp_maps[k][:] = 0. z = (feed_tod[isb, sel] - filters[ifeed, isb]) mask[:] = 1 mask[(pixels == -1) | np.isnan(z) | np.isinf(z)] = 0 if np.sum(np.isfinite(z)) == 0: continue rms = stats.AutoRMS(z) weights = { 'map': z.astype(np.float64) / rms**2, 'cov': np.ones(z.size) / rms**2 } for k in temp_maps.keys(): for mode, map_data in maps.items(): if ('CW' in mode) & (ifeed > 1): continue binFuncs.binValues( temp_maps[k], pixels[selections[mode]], weights=weights[k][selections[mode]], mask=mask[selections[mode]]) maps[mode][k][slices[mode](ifeed, isb)] = np.reshape( temp_maps[k], (self.Ny, self.Nx)) xygrid = np.meshgrid( (np.arange(self.Nx) + 0.5) * self.dx - self.Nx * self.dx / 2., (np.arange(self.Ny) + 0.5) * self.dy - self.Ny * self.dy / 2.) for k, v in maps.items(): maps[k] = self.average_maps(maps[k]) maps[k]['xygrid'] = xygrid return maps