def queryDatalog(self, datalog, **kwargs): if 'loglevel' in kwargs: set_logger(kwargs['loglevel'], kwargs.get('debug', False)) logger.info("query datalog:\n{}\n".format(pprint.pformat(datalog))) self.analyze(datalog, **kwargs) source_results = [] if self.mode in ['single', 'union']: source_results = [ self.querySubDatalog(p, **kwargs) for p in self.parsers ] elif self.mode == 'single_view': view_schema = {} for p in self.parsers[:-1]: source = 'postgres' if 'postgres' in p.query_columns else 'view' view_schema[p.return_table] = [ col['column'] for col in p.query_columns[source] ] source_result = None for p in self.parsers[:-1]: if not source_result: source_result = self.querySubDatalog( p, returnview=p.return_table, **kwargs) else: source_result = self.querySubDatalog( p, withview=source_result, viewschema=view_schema, returnview=p.return_table, **kwargs) source_results = [ self.querySubDatalog(self.parsers[-1], withview=source_result, viewschema=view_schema, **kwargs) ] elif self.mode == 'single_union': None elif self.mode in ['view']: source_results = [ self.querySubDatalog(p, **kwargs) for p in self.parsers[:1] ] if 'debug' in kwargs: return None combiner = Combiner(self.mode, source_results, self.parsers) return combiner.process(**kwargs)
def run(name, configFile, ttsConfigFile, contentFile, videoFile, logFile): OutputPath.init(configFile) #thread = ThreadWritableObject(configFile, name, logFile) #thread.start() #sys.stdout = thread #sys.errout = thread # XXX: Actually, it does NOT work try: print('Now: ', datetime.now().strftime('%Y-%m-%d %H:%M:%S')) Network.setIsEnabled(True) tts = Tts(ttsConfigFile) combiner = Combiner(configFile) combiner.combine(tts, contentFile, videoFile) except KeyboardInterrupt: pass except Exception as e: print('Error occurs at', datetime.now().strftime('%Y-%m-%d %H:%M:%S')) traceback.print_exc(file=sys.stdout) finally: pass
def __init__(self, node='root'): super(Affixer, self).__init__() self.scanner = BiLSTMScanner(hidden_size=1) self.pivoter = BiScanner(morpho_size=tpr.dmorph + 2, nfeature=5, node=node + '-pivoter') self.stem_modifier = StemModifier() if node == 'root': self.reduplicator = Affixer('reduplicant') self.unpivoter = BiScanner(morpho_size=tpr.dmorph + 2, nfeature=5, node=node + '-unpivoter') self.redup = Parameter( torch.zeros(1)) # xxx need to modulate by morph self.affix_thunker = Thunker() self.combiner = Combiner() self.node = node
''' ''' web_crawler = WebCrawler() image_analyzer = ImageAnalyzer() cur_file = os.getcwd() dm = DataMiner(cur_file, web_crawler, 'http://www.bbc.com/travel?referer=https%3A%2F%2Fwww.bbc.com%2Fnews%2Flive%2Fworld-53039952') dm.gather_text(show_status = True, mx_phrazes = 40) dm.gather_images(web_crawler, mx_images = 10) dm.generate_images_captions(image_analyzer) ''' text_classifier = TextClassifierDenseBBC() text_classifier.build_model() text_classifier.train_model(show_status=True) combiner = Combiner(os.path.join(os.getcwd(), 'Data', 'TextFiles'), text_classifier) combiner.process_text_data() text_report, image_report = combiner.get_data_report() ''' combiner = Combiner() # build and train text classifier text_classifier = TextClassifierDenseBBC() text_classifier.build_model() text_classifier.train_model(show_status = True) # train phaze is finished combiner = Combiner()
def __init__(self, num_embeddings, embedding_dims, edge_output_size, device, w, is_att=False, transfer=False, nor=0, if_no_time=0, threhold=None, second_order=False, if_updated=0, drop_p=0, num_negative=5, act='tanh', if_propagation=1, decay_method='exp', weight=None, relation_size=None, bias=True): super(DyGNN, self).__init__() self.embedding_dims = embedding_dims self.num_embeddings = num_embeddings self.nor = nor #self.weight = weight.to(device) self.device = device self.transfer = transfer self.if_propagation = if_propagation self.if_no_time = if_no_time self.second_order = second_order # self.cuda = cuda self.combiner = Combiner(embedding_dims, embedding_dims, act).to(device) self.decay_method = decay_method self.if_updated = if_updated self.threhold = threhold print('Only propagate to relevance nodes below time interval: ', threhold) # self.tanh = nn.Tanh().to(device) if act == 'tanh': self.act = nn.Tanh().to(device) elif act == 'sigmoid': self.act = nn.Sigmoid().to(device) else: self.act = nn.ReLU().to(device) self.decayer = Decayer(device, w, decay_method) self.edge_updater_head = Edge_updater_nn(embedding_dims, edge_output_size, act, relation_size).to(device) self.edge_updater_tail = Edge_updater_nn(embedding_dims, edge_output_size, act, relation_size).to(device) if if_no_time: self.node_updater_head = nn.LSTMCell(edge_output_size, embedding_dims, bias).to(device) self.node_updater_tail = nn.LSTMCell(edge_output_size, embedding_dims, bias).to(device) else: self.node_updater_head = TLSTM(edge_output_size, embedding_dims).to(device) self.node_updater_tail = TLSTM(edge_output_size, embedding_dims).to(device) self.tran_head_edge_head = nn.Linear(edge_output_size, embedding_dims, bias).to(device) self.tran_head_edge_tail = nn.Linear(edge_output_size, embedding_dims, bias).to(device) self.tran_tail_edge_head = nn.Linear(edge_output_size, embedding_dims, bias).to(device) self.tran_tail_edge_tail = nn.Linear(edge_output_size, embedding_dims, bias).to(device) self.is_att = is_att if self.is_att: self.attention = Attention(embedding_dims).to(device) self.num_negative = num_negative self.recent_timestamp = torch.zeros((num_embeddings, 1), dtype=torch.float, requires_grad=False).to(device) self.interaction_timestamp = lil_matrix( (num_embeddings, num_embeddings), dtype=np.float32) self.cell_head = nn.Embedding(num_embeddings, embedding_dims, weight).to(device) self.cell_head.weight.requires_grad = False self.cell_tail = nn.Embedding(num_embeddings, embedding_dims, weight).to(device) self.cell_tail.weight.requires_grad = False self.hidden_head = nn.Embedding(num_embeddings, embedding_dims, weight).to(device) self.hidden_head.weight.requires_grad = False self.hidden_tail = nn.Embedding(num_embeddings, embedding_dims, weight).to(device) self.hidden_tail.weight.requires_grad = False self.node_representations = nn.Embedding(num_embeddings, embedding_dims, weight).to(device) self.node_representations.weight.requires_grad = False if transfer: self.transfer2head = nn.Linear(embedding_dims, embedding_dims, False).to(device) self.transfer2tail = nn.Linear(embedding_dims, embedding_dims, False).to(device) if drop_p >= 0: self.dropout = nn.Dropout(p=drop_p).to(device) self.cell_head_copy = nn.Embedding.from_pretrained( self.cell_head.weight.clone()).to(device) self.cell_tail_copy = nn.Embedding.from_pretrained( self.cell_tail.weight.clone()).to(device) self.hidden_head_copy = nn.Embedding.from_pretrained( self.hidden_head.weight.clone()).to(device) self.hidden_tail_copy = nn.Embedding.from_pretrained( self.hidden_tail.weight.clone()).to(device) self.node_representations_copy = nn.Embedding.from_pretrained( self.node_representations.weight.clone()).to(device)
from combiner import Combiner from analyzer import Analyzer from combiner_config import MessagesConfig, PostsConfig, LocationsConfig, LikesConfig, CommentsConfig from analyzer_config import MessagesAnalyzerConfig, CommentsAnalyzerConfig, PostsAnalyzerConfig combiner = Combiner(config=PostsConfig) files = combiner.combine() analyzer = Analyzer(config=PostsAnalyzerConfig) analyzer.analyze()
import sys from combiner import Combiner from config.config_importer import ConfigImporter from filter import Filter import csv_exporter import csv_importer args = sys.argv if len(args) != 4: print(""" Usage: python main.py <input_file.csv> <output_file.csv> <config_file.json> """) exit() equipment_pieces = csv_importer.import_file(args[1]) config = ConfigImporter(args[3]).load() combinations = Combiner(equipment_pieces).generate_combinations() filtered_combinations = Filter(config, combinations).filter() csv_exporter.export_combinations(equipment_pieces, filtered_combinations, args[2])
import sys from base import ctx from combiner import Combiner from excepthook import excepthook if __name__ == "__main__": # Install global exception hook sys._excepthook = sys.excepthook sys.excepthook = excepthook app = Combiner(ctx) exit_code = app.run() sys.excepthook = excepthook sys.exit(exit_code)