def main(num): # Generate configuration files depending on experiment being run utils.generate_config_files("atomic", num) # Loads the correct configuration file config_file = "config/atomic/config_{}.json".format(num) print(config_file) # Read config file to option config = cfg.read_config(cfg.load_config(config_file)) opt, meta = cfg.get_parameters(config) # Set the random seeds torch.manual_seed(opt.train.static.seed) random.seed(opt.train.static.seed) if config.gpu_mode: torch.cuda.manual_seed_all(opt.train.static.seed) # Where to find the data splits = ["train", "dev", "test"] opt.train.dynamic.epoch = 0 print("Loading Data") categories = opt.data.categories path = "data/atomic/processed/{}/{}.pickle".format( opt.exp, utils.make_name_string(opt.data)) data_loader = data.make_data_loader(opt, categories) loaded = data_loader.load_data(path) print(data_loader.sequences["train"]["total"].size(0)) data_loader.opt = opt data_loader.batch_size = opt.train.dynamic.bs print("Done.") # Initialize text_encoder text_encoder = TextEncoder(config.encoder_path, config.bpe_path) special = [data.start_token, data.end_token] special += ["<{}>".format(cat) for cat in categories] special += [data.blank_token] text_encoder.encoder = data_loader.vocab_encoder text_encoder.decoder = data_loader.vocab_decoder opt.data.maxe1 = data_loader.max_event opt.data.maxe2 = data_loader.max_effect opt.data.maxr = data.atomic_data.num_delimiter_tokens["category"] n_special = len(special) n_ctx = opt.data.maxe1 + opt.data.maxe2 n_vocab = len(text_encoder.encoder) + n_ctx print(data_loader.__dict__.keys()) opt.net.vSize = n_vocab print("Building Model") model = models.make_model(opt, n_vocab, n_ctx, n_special, load=(opt.net.init == "pt")) print("Done.") print("Files will be logged at: {}".format( utils.make_name(opt, prefix="results/losses/", is_dir=True, eval_=True))) data_loader.reset_offsets("train") # Get number of examples data.set_max_sizes(data_loader) if config.gpu_mode: print("Pushing to GPU: {}".format(config.gpu_index)) cfg.device = config.gpu_index cfg.do_gpu = True torch.cuda.set_device(cfg.device) if config.multigpu: model = models.multi_gpu(model, config.gpu_indices).cuda() else: model.cuda(cfg.device) print("Done.") print("Training") optimizer = OpenAIAdam(model.parameters(), lr=opt.train.dynamic.lr, schedule=opt.train.static.lrsched, warmup=opt.train.static.lrwarm, t_total=meta.iterations, b1=opt.train.static.b1, b2=opt.train.static.b2, e=opt.train.static.e, l2=opt.train.static.l2, vector_l2=opt.train.static.vl2, max_grad_norm=opt.train.static.clip) scorers = ["bleu", "rouge", "cider"] trainer = train.make_trainer(opt, meta, data_loader, model, optimizer) trainer.set_evaluator(opt, model, data_loader) trainer.run()
parser = argparse.ArgumentParser() parser.add_argument("--generation_set_size", type=str, default='full', choices=["full", "human"]) parser.add_argument("--device", type=int, default=0) parser.add_argument("--split", type=str, default="dev") parser.add_argument("--beam", type=int, default=10) parser.add_argument("--seed", type=int, default=42) parser.add_argument("--experiment_num", type=str, default="0") parser.add_argument("--model_name", type=str, default="models/conceptnet-generation/iteration-500-100000/transformer/rel_language-trainsize_100-devversion_12-maxe1_10-maxe2_15/model_transformer-nL_12-nH_12-hSize_768-edpt_0.1-adpt_0.1-rdpt_0.1-odpt_0.1-pt_gpt-afn_gelu-npos_1-demb_F-init_pt-vSize_40545/exp_generation-seed_123-es_0-l2_0.01-vl2_T-lrsched_warmup_linear-lrwarm_0.002-clip_1-loss_nll-b2_0.999-b1_0.9-e_1e-08/bs_1-trick_0-smax_40-sample_beam-numseq_1-gs_full-es_full-categories_None/1e-05_adam_64_13500.pickle") parser.add_argument("--gen_len", type=int, default=100) args = parser.parse_args() split = args.split # Generate configuration files depending on experiment being run utils.generate_config_files("conceptnet", args.experiment_num, eval_mode=True) # Loads the correct configuration file config_file = "config/conceptnet/config_{}.json".format(args.experiment_num) # Read config file to option config = cfg.read_config(cfg.load_config(config_file)) cfg.device = args.device eval_opt = cfg.get_eval_parameters(config) model_stuff = data.load_checkpoint(args.model_name) opt = model_stuff["opt"] opt.eval.update(eval_opt) # Set the random seeds
parser.add_argument("--k", type=int, default=10) parser.add_argument("--seed", type=int, default=42) parser.add_argument("--experiment_num", type=str, default="0") parser.add_argument( "--model_name", type=str, default= "models/atomic-generation/iteration-500-50000/transformer/categories_oEffect#oReact#oWant#xAttr#xEffect#xIntent#xNeed#xReact#xWant-maxe1_17-maxe2_35-maxr_1/model_transformer-nL_12-nH_12-hSize_768-edpt_0.1-adpt_0.1-rdpt_0.1-odpt_0.1-pt_gpt-afn_gelu-init_pt-vSize_40542/exp_generation-seed_123-l2_0.01-vl2_T-lrsched_warmup_linear-lrwarm_0.002-clip_1-loss_nll-b2_0.999-b1_0.9-e_1e-08/bs_1-smax_40-sample_greedy-numseq_1-gs_1000-es_1000-categories_oEffect#oReact#oWant#xAttr#xEffect#xIntent#xNeed#xReact#xWant/6.25e-05_adam_64_22000.pickle" ) parser.add_argument("--gen_len", type=int, default=100) args = parser.parse_args() split = args.split # Generate configuration files depending on experiment being run utils.generate_config_files("atomic", args.experiment_num, eval_mode=True) # Loads the correct configuration file config_file = "config/atomic/config_{}.json".format(args.experiment_num) # Read config file to option config = cfg.read_config(cfg.load_config(config_file)) cfg.device = config.gpu_index eval_opt = cfg.get_eval_parameters(config) model_stuff = data.load_checkpoint(args.model_name) opt = model_stuff["opt"] opt.eval.update(eval_opt) opt.train.dynamic.epoch = 0
def main(num): # Generate configuration files depending on experiment being run utils.generate_config_files("conceptnet", num) # Loads the correct configuration file config_file = "config/conceptnet/config_{}.json".format(num) print(config_file) # Read config file to option config = cfg.read_config(cfg.load_config(config_file)) opt, meta = cfg.get_parameters(config) # config.gpu_mode = torch.cuda.is_available() # Set the random seeds torch.manual_seed(opt.train.static.seed) random.seed(opt.train.static.seed) if config.gpu_mode: torch.cuda.manual_seed_all(opt.train.static.seed) # Load the data splits = ["train", "dev", "test"] opt.train.dynamic.epoch = 0 print("Loading Data") # Initialize path to pre-set data loader path = "data/conceptnet/processed/{}/{}.pickle".format( opt.exp, utils.make_name_string(opt.data)) # Make data loader data_loader = data.make_data_loader(opt) loaded = data_loader.load_data(path) print(data_loader.sequences["train"]["total"].size(0)) data_loader.opt = opt data_loader.batch_size = opt.train.dynamic.bs print("Done.") text_encoder = TextEncoder(config.encoder_path, config.bpe_path) categories = data.conceptnet_data.conceptnet_relations special = [data.start_token, data.end_token] special += ["<{}>".format(cat) for cat in categories] if loaded: text_encoder.encoder = data_loader.vocab_encoder text_encoder.decoder = data_loader.vocab_decoder else: for special_token in special: text_encoder.decoder[len(encoder)] = special_token text_encoder.encoder[special_token] = len(encoder) data_loader.make_tensors(text_encoder, special) # Set max size of different parts of relation context_size_e1 = data_loader.max_e1 context_size_e2 = data_loader.max_e2 context_size_r = data_loader.max_r opt.data.maxr = context_size_r n_special = len(special) n_ctx = context_size_e1 + context_size_r + context_size_e2 n_vocab = len(text_encoder.encoder) + n_ctx print(data_loader.__dict__.keys()) opt.net.vSize = n_vocab # Build Model print("Building Model") model = models.make_model(opt, n_vocab, n_ctx, n_special, load=(opt.net.init == "pt")) print("Done.") print("Files will be logged at: {}".format( utils.make_name(opt, prefix="results/losses/", is_dir=True, eval_=True))) data_loader.reset_offsets("train", keys=["total"]) data.set_max_sizes(data_loader) # Push to GPU if config.gpu_mode: print("Pushing to GPU: {}".format(config.gpu_index)) cfg.device = config.gpu_index cfg.do_gpu = True torch.cuda.set_device(cfg.device) if config.multigpu: model = models.multi_gpu(model, config.gpu_indices).cuda() else: model.cuda(cfg.device) print("Done.") print("Training") optimizer = OpenAIAdam(model.parameters(), lr=opt.train.dynamic.lr, schedule=opt.train.static.lrsched, warmup=opt.train.static.lrwarm, t_total=meta.iterations, b1=opt.train.static.b1, b2=opt.train.static.b2, e=opt.train.static.e, l2=opt.train.static.l2, vector_l2=opt.train.static.vl2, max_grad_norm=opt.train.static.clip) trainer = train.make_trainer(opt, meta, data_loader, model, optimizer) print(data_loader.sequences["dev"]["total"].max()) trainer.set_generator(opt, model, data_loader) trainer.set_evaluator(opt, model, data_loader) trainer.run()