コード例 #1
0
def inference_viva_net(options: dict, sv_instance: SharedValues,
                       model: Tuple[int, datetime, bool, str]):
    postgres_pool = create_postgres_pool()
    postgres_con = postgres_pool.getconn()
    postgres_cur = postgres_con.cursor()

    print("Loading images ...")

    model_id = model[0]

    data = list(get_images(postgres_cur, DRA_KEYFRAMES_ID))
    data_ids = [item[0] for item in data]
    data = [os.path.join(DOCKER_ATTACH_MEDIA, item[1]) for item in data]

    predict_gen = tf.data.Dataset.from_generator(
        lambda: gen(data),
        output_types=tf.float32,
        output_shapes=[DEFAULT_TARGET_SIZE[0], DEFAULT_TARGET_SIZE[1], 3])

    predict_gen = predict_gen.batch(options['batch_size']).prefetch(
        tf.data.experimental.AUTOTUNE)
    predict_gen = iter(predict_gen)

    redis_con = create_redis_connection()
    redis_con.set(os.environ['REDIS_KEY_INFERENCE_TOTAL'], len(data))
    redis_con.set(os.environ['REDIS_KEY_INFERENCE_CURRENT'], 0)
    sse_send_inference_data(sv_instance, redis_con)

    # Classes should/could not be deleted otherwise mapping to classes will fail
    with open(os.path.join(FILE_PATH_TFS_MODEL_DIR, CLASS_MAP_FILE_NAME),
              "r") as f:
        db_class_ids = [int(x.strip()) for x in f.readlines()]

    # delete all previous image predictions for current model
    delete_predictions_of_model(postgres_cur, model_id)
    postgres_con.commit()
    postgres_cur.close()
    postgres_pool.putconn(postgres_con)

    # start internal multiprocessing - start a process for each TFS server to query
    tfs_client_manager(data_ids, db_class_ids, model_id, options, predict_gen,
                       len(data), sv_instance, redis_con)

    redis_con.close()

    postgres_con = postgres_pool.getconn()
    postgres_cur = postgres_con.cursor()
    previous_prediction_model = get_previous_stored_model(postgres_cur)
    set_inference_done(postgres_cur, model_id)
    postgres_con.commit()
    if previous_prediction_model is not None:
        delete_predictions_of_model(postgres_cur, previous_prediction_model)
        postgres_con.commit()
    postgres_cur.close()
    postgres_pool.putconn(postgres_con)

    postgres_pool.closeall()
コード例 #2
0
ファイル: Export.py プロジェクト: TIBHannover/VIVA
def start_export(redis_pool: redis.ConnectionPool,
                 sv_instance: SharedValues) -> None:
    # input validation
    if any(x not in request.form for x in ["threshold", "app"]):
        abort(400, "Missing parameter")
    try:
        threshold = int(request.form['threshold'])
        if threshold < 0 or threshold > 100:
            raise ValueError()
    except ValueError:
        abort(400, "Wrong parameter value")
        return  # senseless but avoids warning
    app_name = request.form['app']
    if app_name not in DJANGO_APP_NAMES:
        abort(400, "Wrong parameter value")

    # check run conditions
    redis_con = redis.Redis(connection_pool=redis_pool)
    if app_name == os.environ['DJANGO_APP_NAME_CONCEPT'] and \
            (redis_con.get(os.environ['REDIS_KEY_INFERENCE_RUN']) or "0") == "1":
        redis_con.close()
        abort(400, "Inference is currently running")

    with export_start_lock:
        redis_reset_startup(
            redis_con, "Export",
            os.environ['REDIS_KEY_EXPORT_RUN'].format(app_name),
            os.environ['REDIS_KEY_EXPORT_TIME'].format(app_name),
            os.environ['REDIS_KEY_EXPORT_TIME_ETE'].format(app_name),
            os.environ['REDIS_KEY_EXPORT_EXCEPTION'].format(app_name),
            os.environ['REDIS_KEY_EXPORT_CURRENT'].format(app_name),
            os.environ['REDIS_KEY_EXPORT_TOTAL'].format(app_name))
        redis_con.set(
            os.environ['REDIS_KEY_EXPORT_THRESHOLD'].format(app_name),
            threshold)

        # set event in shared memory for export start
        sv_instance.export[app_name].start.set()

    sse_send_export_data(sv_instance, app_name, redis_con)
    if app_name == os.environ['DJANGO_APP_NAME_CONCEPT']:
        sse_send_inference_data(sv_instance, redis_con)
    redis_con.close()
コード例 #3
0
def start_inference(redis_pool: redis.ConnectionPool,
                    sv_instance: SharedValues) -> None:
    redis_con = redis.Redis(connection_pool=redis_pool)
    # input validation
    gpu_selection, batch_size = input_validation_train_infer(
        redis_con, sv_instance.compatible_gpus)

    # check run conditions
    if (redis_con.get(os.environ['REDIS_KEY_EXPORT_RUN'].format(
            os.environ['DJANGO_APP_NAME_CONCEPT'])) or "0") == "1":
        redis_con.close()
        abort(400, "Export is currently running")
    check_if_inference_already_stored()

    with inference_start_lock:
        redis_reset_startup(redis_con, "Inference",
                            os.environ['REDIS_KEY_INFERENCE_RUN'],
                            os.environ['REDIS_KEY_INFERENCE_TIME'],
                            os.environ['REDIS_KEY_INFERENCE_TIME_ETE'],
                            os.environ['REDIS_KEY_INFERENCE_EXCEPTION'],
                            os.environ['REDIS_KEY_INFERENCE_CURRENT'],
                            os.environ['REDIS_KEY_INFERENCE_TOTAL'])
        redis_con.delete(os.environ['REDIS_KEY_INFERENCE_GPUS'])
        [
            redis_con.lpush(os.environ['REDIS_KEY_INFERENCE_GPUS'], gpu_idx)
            for gpu_idx in reversed(gpu_selection)
        ]
        redis_con.set(os.environ['REDIS_KEY_INFERENCE_BATCH_SIZE'], batch_size)

        # set event in shared memory for export start
        sv_instance.inference.start.set()

    sse_send_inference_data(sv_instance, redis_con)
    sse_send_export_data(sv_instance, os.environ['DJANGO_APP_NAME_CONCEPT'],
                         redis_con)
    redis_con.close()
コード例 #4
0
def tfs_client_manager(data_ids: list, db_class_ids: list, model_id: int,
                       options: dict, predict_gen: tf.data.Dataset,
                       data_length: int, sv_instance: SharedValues,
                       redis_con: redis.Redis):
    batch_size = options["batch_size"]
    batch_count = data_length
    batch_add_count = 0
    batch_queue = multiprocessing.Queue()  # FIFO queue

    process_count = len(options['gpu_selection'])
    process_count = 1 if process_count == 0 else min(8, process_count)
    process_list = []
    for idx in range(process_count):
        process = multiprocessing.Process(
            target=process_batch_queue,
            args=(batch_queue, batch_size, model_id, data_ids, db_class_ids,
                  idx, sv_instance))
        process_list.append(process)
        process.start()

    sv_instance.inference.num_finished.value = 0
    sv_instance.inference.running.value = 1
    last_finished_step = 0

    redis_con.set(os.environ['REDIS_KEY_INFERENCE_TIME_ETE'],
                  int(datetime.timestamp(datetime.now())))

    while True:
        q_size = batch_queue.qsize()

        # Feed the queue
        if q_size < process_count * 4 and batch_add_count < batch_count:
            if batch_add_count != batch_count and batch_add_count > process_count * 4 \
                    and batch_count > process_count > q_size and batch_count % process_count == 0:
                print(
                    "Warning: Batch queue is nearly empty ({:d})."
                    "Reduced performance might be caused by empty batch queue that cannot be filled up that quickly!"
                    .format(q_size))
            batch_queue.put((batch_add_count, next(predict_gen)))
            batch_add_count += 1

        # stop monitoring and manipulation of queue
        if batch_add_count == batch_count:
            sv_instance.inference.running.value = 0  # signal the clients to stop if queue.get returns nothing
            process_alive = [process.is_alive() for process in process_list]
            if not any(process_alive):
                break

        if q_size > process_count:
            time.sleep(0.2)

        # Update database and send clients message if count of finished images reached defined steps
        new_finished_step = math.floor(
            sv_instance.inference.num_finished.value /
            (max(12, batch_size) * process_count))
        if last_finished_step != new_finished_step:
            redis_con.set(os.environ['REDIS_KEY_INFERENCE_CURRENT'],
                          sv_instance.inference.num_finished.value)
            threading.Thread(target=sse_send_inference_data,
                             args=(sv_instance, redis_con)).start()
            last_finished_step = new_finished_step

    sse_send_inference_data(sv_instance, redis_con)
コード例 #5
0
ファイル: __init__.py プロジェクト: TIBHannover/VIVA
 def inference_update():
     redis_con = redis.Redis(connection_pool=redis_pool)
     sse_send_inference_data(sv_instance, redis_con)
     redis_con.close()
     return ""