def train(config): model = Mode(config, True) train_dataloader = torch.utils.data.DataLoader( COCODataset(config.train_list, config.image_size, True, config.batch_size, config.jitter, shuffle=True, seed=config.seed, random=True, num_workers=config.num_workers), batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers, pin_memory=True) val_dataloader = torch.utils.data.DataLoader( COCODataset(config.val_list, config.image_size, False, config.batch_size, config.jitter), batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers, pin_memory=True) model.train(train_dataloader, val_dataloader)
def evaluate(config, name): model = Mode(config, True) model.net.eval() val_dataloader = torch.utils.data.DataLoader( COCODataset(config.val_list, config.image_size, False, config.batch_size, config.jitter, shuffle=False, seed=0, random=False, num_workers=config.num_workers), batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers, pin_memory=True) if name == 'coco': model.eval_coco(val_dataloader) elif name == 'voc': classes = [ "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor" ] model.eval_voc(val_dataloader, classes)
def evaluate(config, name): model = Mode(config, False) val_dataloader = torch.utils.data.DataLoader( COCODataset(config.val_list, config.image_size, False, config.batch_size, config.jitter, shuffle=False, seed=0, random=False, num_workers=config.num_workers), batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers, pin_memory=True) if name == 'coco': model.eval_coco(val_dataloader) elif name == 'voc': model.eval_voc(val_dataloader)
def train(config): config["global_step"] = config.get("start_step", 0) is_training = False if config.get("export_onnx") else True # Load and initialize network net = ModelMain(config, is_training=is_training) net.train(is_training) # Optimizer and learning rate optimizer = _get_optimizer(config, net) lr_scheduler = optim.lr_scheduler.StepLR( optimizer, step_size=config["lr"]["decay_step"], gamma=config["lr"]["decay_gamma"]) # Set data parallel net = nn.DataParallel(net) net = net.cuda() # Restore pretrain model if config["pretrain_snapshot"]: logging.info("Load pretrained weights from {}".format( config["pretrain_snapshot"])) state_dict = torch.load(config["pretrain_snapshot"]) net.load_state_dict(state_dict) # Only export onnx # if config.get("export_onnx"): # real_model = net.module # real_model.eval() # dummy_input = torch.randn(8, 3, config["img_h"], config["img_w"]).cuda() # save_path = os.path.join(config["sub_working_dir"], "pytorch.onnx") # logging.info("Exporting onnx to {}".format(save_path)) # torch.onnx.export(real_model, dummy_input, save_path, verbose=False) # logging.info("Done. Exiting now.") # sys.exit() # Evaluate interface # if config["evaluate_type"]: # logging.info("Using {} to evaluate model.".format(config["evaluate_type"])) # evaluate_func = importlib.import_module(config["evaluate_type"]).run_eval # config["online_net"] = net # YOLO loss with 3 scales yolo_losses = [] for i in range(3): yolo_losses.append( YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) # DataLoader dataloader = torch.utils.data.DataLoader(COCODataset( config["train_path"], (config["img_w"], config["img_h"]), is_training=True), batch_size=config["batch_size"], shuffle=True, num_workers=32, pin_memory=True) # Start the training loop logging.info("Start training.") for epoch in range(config["epochs"]): for step, samples in enumerate(dataloader): images, labels = samples["image"], samples["label"] start_time = time.time() config["global_step"] += 1 # Forward and backward optimizer.zero_grad() outputs = net(images) losses_name = ["total_loss", "x", "y", "w", "h", "conf", "cls"] losses = [] for _ in range(len(losses_name)): losses.append([]) for i in range(3): _loss_item = yolo_losses[i](outputs[i], labels) for j, l in enumerate(_loss_item): losses[j].append(l) losses = [sum(l) for l in losses] loss = losses[0] loss.backward() optimizer.step() if step > 0 and step % 10 == 0: _loss = loss.item() duration = float(time.time() - start_time) example_per_second = config["batch_size"] / duration lr = optimizer.param_groups[0]['lr'] logging.info( "epoch [%.3d] iter = %d loss = %.2f example/sec = %.3f lr = %.5f " % (epoch, step, _loss, example_per_second, lr)) config["tensorboard_writer"].add_scalar( "lr", lr, config["global_step"]) config["tensorboard_writer"].add_scalar( "example/sec", example_per_second, config["global_step"]) for i, name in enumerate(losses_name): value = _loss if i == 0 else losses[i] config["tensorboard_writer"].add_scalar( name, value, config["global_step"]) # if step > 0 and step % 1000 == 0: # net.train(False) # _save_checkpoint(net.state_dict(), config) # net.train(True) _save_checkpoint(net.state_dict(), config) lr_scheduler.step() # net.train(False) _save_checkpoint(net.state_dict(), config) # net.train(True) logging.info("Bye~")
def train(config): config["global_step"] = config.get("start_step", 0) is_training = False if config.get("export_onnx") else True anchors = [int(x) for x in config["yolo"]["anchors"].split(",")] anchors = [[[anchors[i], anchors[i + 1]], [anchors[i + 2], anchors[i + 3]], [anchors[i + 4], anchors[i + 5]]] for i in range(0, len(anchors), 6)] anchors.reverse() config["yolo"]["anchors"] = [] for i in range(3): config["yolo"]["anchors"].append(anchors[i]) # Load and initialize network net = ModelMain_SN(config, is_training=is_training) net.train(is_training) # Optimizer and learning rate optimizer = _get_optimizer(config, net) lr_scheduler = optim.lr_scheduler.StepLR( optimizer, step_size=config["lr"]["decay_step"], gamma=config["lr"]["decay_gamma"]) # Set data parallel net = nn.DataParallel(net) net = net.cuda() # Restore pretrain model if config["pretrain_snapshot"]: logging.info("Load pretrained weights from {}".format( config["pretrain_snapshot"])) state_dict = torch.load(config["pretrain_snapshot"]) net.load_state_dict(state_dict) # YOLO loss with 3 scales yolo_losses = [] for i in range(3): yolo_losses.append( YOLOLayer(config["batch_size"], i, config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) # DataLoader dataloader = torch.utils.data.DataLoader(COCODataset( config["train_path"], (config["img_w"], config["img_h"]), is_training=True, is_scene=False), batch_size=config["batch_size"], shuffle=True, drop_last=True, num_workers=0, pin_memory=True) # Start the training loop logging.info("Start training.") dataload_len = len(dataloader) for epoch in range(config["epochs"]): recall = 0 mini_step = 0 for step, samples in enumerate(dataloader): images, labels = samples["image"], samples["label"] start_time = time.time() config["global_step"] += 1 for mini_batch in range(8): mini_step += 1 # Forward and backward optimizer.zero_grad() outputs = net(images) losses_name = [ "total_loss", "x", "y", "w", "h", "conf", "cls", "recall" ] losses = [0] * len(losses_name) for i in range(3): _loss_item = yolo_losses[i](outputs[i], labels) for j, l in enumerate(_loss_item): losses[j] += l # losses = [sum(l) for l in losses] loss = losses[0] loss.backward() optimizer.step() _loss = loss.item() # example_per_second = config["batch_size"] / duration # lr = optimizer.param_groups[0]['lr'] strftime = datetime.datetime.now().strftime("%H:%M:%S") if (losses[7] / 3 >= recall / (step + 1)) or mini_batch == 7: recall += losses[7] / 3 print( '%s [Epoch %d/%d,batch %03d/%d loss:x %.5f,y %.5f,w %.5f,h %.5f,conf %.5f,cls %.5f,total %.5f,rec %.3f,avrec %.3f %d]' % (strftime, epoch, config["epochs"], step, dataload_len, losses[1], losses[2], losses[3], losses[4], losses[5], losses[6], _loss, losses[7] / 3, recall / (step + 1), mini_batch)) break else: print( '%s [Epoch %d/%d,batch %03d/%d loss:x %.5f,y %.5f,w %.5f,h %.5f,conf %.5f,cls %.5f,total %.5f,rec %.3f,prerc %.3f %d]' % (strftime, epoch, config["epochs"], step, dataload_len, losses[1], losses[2], losses[3], losses[4], losses[5], losses[6], _loss, losses[7] / 3, recall / step, mini_batch)) if (epoch % 2 == 0 and recall / len(dataloader) > 0.7 ) or recall / len(dataloader) > 0.96: torch.save( net.state_dict(), '%s/%.4f_%04d.weights' % (checkpoint_dir, recall / len(dataloader), epoch)) lr_scheduler.step() # net.train(True) logging.info("Bye bye")
def evaluate(config): is_training = False # Load and initialize network net = ModelMain(config, is_training=is_training) net.train(is_training) # Set data parallel net = nn.DataParallel(net) net = net.cuda() # Restore pretrain model if config["pretrain_snapshot"]: state_dict = torch.load(config["pretrain_snapshot"]) net.load_state_dict(state_dict) else: logging.warning("missing pretrain_snapshot!!!") # YOLO loss with 3 scales yolo_losses = [] for i in range(3): yolo_losses.append( YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) # DataLoader dataloader = torch.utils.data.DataLoader(COCODataset( config["val_path"], (config["img_w"], config["img_h"]), is_training=False), batch_size=config["batch_size"], shuffle=False, num_workers=16, pin_memory=False) # Start the eval loop logging.info("Start eval.") n_gt = 0 correct = 0 for step, samples in enumerate(dataloader): images, labels = samples["image"], samples["label"] labels = labels.cuda() with torch.no_grad(): outputs = net(images) output_list = [] for i in range(3): output_list.append(yolo_losses[i](outputs[i])) output = torch.cat(output_list, 1) output = non_max_suppression(output, 80, conf_thres=0.2) # calculate for sample_i in range(labels.size(0)): # Get labels for sample where width is not zero (dummies) target_sample = labels[sample_i, labels[sample_i, :, 3] != 0] for obj_cls, tx, ty, tw, th in target_sample: # Get rescaled gt coordinates tx1, tx2 = config["img_w"] * ( tx - tw / 2), config["img_w"] * (tx + tw / 2) ty1, ty2 = config["img_h"] * ( ty - th / 2), config["img_h"] * (ty + th / 2) n_gt += 1 box_gt = torch.cat([ coord.unsqueeze(0) for coord in [tx1, ty1, tx2, ty2] ]).view(1, -1) sample_pred = output[sample_i] if sample_pred is not None: # Iterate through predictions where the class predicted is same as gt for x1, y1, x2, y2, conf, obj_conf, obj_pred in sample_pred[ sample_pred[:, 6] == obj_cls]: box_pred = torch.cat([ coord.unsqueeze(0) for coord in [x1, y1, x2, y2] ]).view(1, -1) iou = bbox_iou(box_pred, box_gt) if iou >= config["iou_thres"]: correct += 1 break if n_gt: logging.info('Batch [%d/%d] mAP: %.5f' % (step, len(dataloader), float(correct / n_gt))) logging.info('Mean Average Precision: %.5f' % float(correct / n_gt))
anchors = [[[anchors[i], anchors[i + 1]], [anchors[i + 2], anchors[i + 3]], [anchors[i + 4], anchors[i + 5]]] for i in range(0, len(anchors), 6)] anchors.reverse() config["yolo"]["anchors"] = [] for i in range(3): config["yolo"]["anchors"].append(anchors[i]) yolo_losses = [] for i in range(3): yolo_losses.append( YOLOLayer(config["batch_size"], i, config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) dataloader = torch.utils.data.DataLoader(COCODataset( config["train_path"], (config["img_w"], config["img_h"]), is_training=True, is_scene=True), batch_size=config["batch_size"], shuffle=True, drop_last=True, num_workers=0, pin_memory=True) def validate(net): n_gt = 0 correct = 0 for step, samples in enumerate(dataloader): images, labels, image_paths = samples["image"], samples[ "label"], samples["img_path"] labels = labels.cuda()
def train(config): config["global_step"] = config.get("start_step", 0) is_training = False if config.get("export_onnx") else True anchors = [int(x) for x in config["yolo"]["anchors"].split(",")] anchors = [[[anchors[i], anchors[i + 1]], [anchors[i + 2], anchors[i + 3]], [anchors[i + 4], anchors[i + 5]]] for i in range(0, len(anchors), 6)] anchors.reverse() config["yolo"]["anchors"] = [] for i in range(3): config["yolo"]["anchors"].append(anchors[i]) # Load and initialize network net = ModelMain(config, is_training=is_training) net.train(is_training) # Optimizer and learning rate optimizer = _get_optimizer(config, net) lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=15) # lr_scheduler = optim.lr_scheduler.StepLR( # optimizer, # step_size=config["lr"]["decay_step"], # gamma=config["lr"]["decay_gamma"]) # Set data parallel net = nn.DataParallel(net) net = net.cuda() # Restore pretrain model if config["pretrain_snapshot"]: logging.info("Load pretrained weights from {}".format( config["pretrain_snapshot"])) state_dict = torch.load(config["pretrain_snapshot"]) net.load_state_dict(state_dict) # Only export onnx # if config.get("export_onnx"): # real_model = net.module # real_model.eval() # dummy_input = torch.randn(8, 3, config["img_h"], config["img_w"]).cuda() # save_path = os.path.join(config["sub_working_dir"], "pytorch.onnx") # logging.info("Exporting onnx to {}".format(save_path)) # torch.onnx.export(real_model, dummy_input, save_path, verbose=False) # logging.info("Done. Exiting now.") # sys.exit() # Evaluate interface # if config["evaluate_type"]: # logging.info("Using {} to evaluate model.".format(config["evaluate_type"])) # evaluate_func = importlib.import_module(config["evaluate_type"]).run_eval # config["online_net"] = net # YOLO loss with 3 scales yolo_losses = [] for i in range(3): yolo_losses.append( YOLOLayer(config["batch_size"], i, config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) # DataLoader dataloader = torch.utils.data.DataLoader(COCODataset( config["train_path"], (config["img_w"], config["img_h"]), is_training=True, is_scene=True), batch_size=config["batch_size"], shuffle=True, drop_last=True, num_workers=0, pin_memory=True) # Start the training loop logging.info("Start training.") dataload_len = len(dataloader) best_acc = 0.5 for epoch in range(config["epochs"]): recall = 0 mini_step = 0 for step, samples in enumerate(dataloader): images, labels = samples["image"], samples["label"] config["global_step"] += 1 # Forward and backward optimizer.zero_grad() outputs = net(images.cuda()) losses_name = [ "total_loss", "x", "y", "w", "h", "conf", "cls", "recall" ] losses = [0] * len(losses_name) for i in range(3): _loss_item = yolo_losses[i](outputs[i], labels) for j, l in enumerate(_loss_item): losses[j] += l # losses = [sum(l) for l in losses] loss = losses[0] loss.backward() optimizer.step() _loss = loss.item() # example_per_second = config["batch_size"] / duration lr = optimizer.param_groups[0]['lr'] strftime = datetime.datetime.now().strftime("%H:%M:%S") # if (losses[7] / 3 >= recall / (step + 1)):#mini_batch为0走这里 recall += losses[7] / 3 print( '%s [Epoch %d/%d,batch %03d/%d loss:x %.5f,y %.5f,w %.5f,h %.5f,conf %.5f,cls %.5f,total %.5f,rec %.3f,avrec %.3f %.3f]' % (strftime, epoch, config["epochs"], step, dataload_len, losses[1], losses[2], losses[3], losses[4], losses[5], losses[6], _loss, losses[7] / 3, recall / (step + 1), lr)) if recall / len(dataloader) > best_acc: best_acc = recall / len(dataloader) if epoch > 0: torch.save( net.state_dict(), '%s/%.4f_%04d.weights' % (checkpoint_dir, recall / len(dataloader), epoch)) lr_scheduler.step() net.train(is_training) torch.cuda.empty_cache() # net.train(True) logging.info("Bye bye")
def evaluate(config): is_training = False # Load and initialize network net = ModelMain(config, is_training=is_training) net.train(is_training) # Set data parallel net = nn.DataParallel(net) net = net.cuda() # Restore pretrain model if config["pretrain_snapshot"]: state_dict = torch.load(config["pretrain_snapshot"]) net.load_state_dict(state_dict) else: logging.warning("missing pretrain_snapshot!!!") # YOLO loss with 3 scales yolo_losses = [] for i in range(3): yolo_losses.append(YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) # DataLoader dataloader = torch.utils.data.DataLoader(dataset=COCODataset(config["test_path"], config["img_w"]), batch_size=config["batch_size"], shuffle=False, num_workers=8, pin_memory=False) # Start the eval loop #logging.info("Start eval.") n_gt = 0 correct = 0 #logging.debug('%s' % str(dataloader)) gt_histro={} pred_histro = {} correct_histro = {} for i in range(config["yolo"]["classes"]): gt_histro[i] = 1 pred_histro[i] = 1 correct_histro[i] = 0 # images 是一个batch里的全部图片,labels是一个batch里面的全部标签 for step, (images, labels) in enumerate(dataloader): labels = labels.cuda() with torch.no_grad(): outputs = net(images) output_list = [] for i in range(3): output_list.append(yolo_losses[i](outputs[i])) # 把三个尺度上的预测结果在第1维度(第0维度是batch里的照片,第1维度是一张照片里面的各个预测框,第2维度是各个预测数值)上拼接起来 output = torch.cat(output_list, dim=1) #logging.info('%s' % str(output.shape)) # 进行NMS抑制 #output = non_max_suppression(prediction=output, num_classes=config["yolo"]["classes"], conf_thres=config["conf_thresh"], nms_thres=config["nms_thresh"]) output = class_nms(prediction=output, num_classes=config["yolo"]["classes"],conf_thres=config["conf_thresh"], nms_thres=config["nms_thresh"]) # calculate for sample_i in range(labels.size(0)): # 计算所有的预测数量 sample_pred = output[sample_i] if sample_pred is not None: #logging.debug(sample_pred.shape) for i in range(sample_pred.shape[0]): pred_histro[int(sample_pred[i,6])] += 1 # Get labels for sample where width is not zero (dummies) target_sample = labels[sample_i, labels[sample_i, :, 3] != 0] # Ground truth的 分类编号obj_cls、相对中心x、相对中心y、相对宽w、相对高h n_gt=0 correct=0 for obj_cls, tx, ty, tw, th in target_sample: # Get rescaled gt coordinates # 转化为输入像素尺寸的 左上角像素tx1 ty1,右下角像素tx2 ty2 tx1, tx2 = config["img_w"] * (tx - tw / 2), config["img_w"] * (tx + tw / 2) ty1, ty2 = config["img_h"] * (ty - th / 2), config["img_h"] * (ty + th / 2) # 计算ground truth数量,用于统计信息 n_gt += 1 gt_histro[int(obj_cls)] += 1 # 转化为 shape(1,4)的tensor,用来计算IoU box_gt = torch.cat([coord.unsqueeze(0) for coord in [tx1, ty1, tx2, ty2]]).view(1, -1) # logging.info('%s' % str(box_gt.shape)) sample_pred = output[sample_i] if sample_pred is not None: # Iterate through predictions where the class predicted is same as gt # 对于每一个ground truth,遍历预测结果 for x1, y1, x2, y2, conf, obj_conf, obj_pred in sample_pred[sample_pred[:, 6] == obj_cls]: # 如果当前预测分类 == 当前真实分类 #logging.info("%d" % obj_cls) box_pred = torch.cat([coord.unsqueeze(0) for coord in [x1, y1, x2, y2]]).view(1, -1) #pred_histro[int(obj_pred)] += 1 iou = bbox_iou(box_pred, box_gt) #if iou >= config["iou_thres"] and obj_conf >= config["obj_thresh"]: if iou >= config["iou_thresh"]: correct += 1 correct_histro[int(obj_pred)] += 1 break #logging.debug("----------------") #logging.debug(correct_histro[4]) #logging.debug(pred_histro[4]) #logging.debug(gt_histro[4]) if n_gt: types = config["types"] reverse_types = {} # 建立一个反向的types for key in types.keys(): reverse_types[types[key]] = key #logging.info('Batch [%d/%d] mAP: %.5f' % (step, len(dataloader), float(correct / n_gt))) logging.info('Precision:%s' % str([reverse_types[i] +':'+ str(int(100 * correct_histro[i] / pred_histro[i])) for i in range(config["yolo"]["classes"]) ])) logging.info('Recall :%s' % str([reverse_types[i] +':'+ str(int(100 * correct_histro[i] / gt_histro[i])) for i in range(config["yolo"]["classes"])]))
def evaluate(config): is_training = False # Load and initialize network net = ModelMain(config, is_training=is_training) net.train(is_training) # Set data parallel net = nn.DataParallel(net) net = net.cuda() # Restore pretrain model if config["pretrain_snapshot"]: logging.info("Load checkpoint: {}".format(config["pretrain_snapshot"])) state_dict = torch.load(config["pretrain_snapshot"]) net.load_state_dict(state_dict) else: logging.warning("missing pretrain_snapshot!!!") # YOLO loss with 3 scales yolo_losses = [] for i in range(3): yolo_losses.append( YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) # DataLoader. dataloader = torch.utils.data.DataLoader(COCODataset( config["val_path"], (config["img_w"], config["img_h"]), is_training=False), batch_size=config["batch_size"], shuffle=False, num_workers=8, pin_memory=False) # Coco Prepare. index2category = json.load(open("coco_index2category.json")) # Start the eval loop logging.info("Start eval.") coco_results = [] coco_img_ids = set([]) for step, samples in enumerate(dataloader): images, labels = samples["image"], samples["label"] image_paths, origin_sizes = samples["image_path"], samples[ "origin_size"] with torch.no_grad(): outputs = net(images) output_list = [] for i in range(3): output_list.append(yolo_losses[i](outputs[i])) output = torch.cat(output_list, 1) batch_detections = non_max_suppression(output, config["yolo"]["classes"], conf_thres=0.01, nms_thres=0.45) for idx, detections in enumerate(batch_detections): image_id = int(os.path.basename(image_paths[idx])[-16:-4]) coco_img_ids.add(image_id) if detections is not None: origin_size = eval(origin_sizes[idx]) detections = detections.cpu().numpy() for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections: x1 = x1 / config["img_w"] * origin_size[0] x2 = x2 / config["img_w"] * origin_size[0] y1 = y1 / config["img_h"] * origin_size[1] y2 = y2 / config["img_h"] * origin_size[1] w = x2 - x1 h = y2 - y1 coco_results.append({ "image_id": image_id, "category_id": index2category[str(int(cls_pred.item()))], "bbox": (float(x1), float(y1), float(w), float(h)), "score": float(conf), }) logging.info("Now {}/{}".format(step, len(dataloader))) save_results_path = "coco_results.json" with open(save_results_path, "w") as f: json.dump(coco_results, f, sort_keys=True, indent=4, separators=(',', ':')) logging.info("Save coco format results to {}".format(save_results_path)) # COCO api logging.info("Using coco-evaluate tools to evaluate.") cocoGt = COCO(config["annotation_path"]) cocoDt = cocoGt.loadRes(save_results_path) cocoEval = COCOeval(cocoGt, cocoDt, "bbox") cocoEval.params.imgIds = list(coco_img_ids) # real imgIds cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize()
def train(): global_step = 0 is_training = True # Load and Initialize Network net = ModelMain(is_training) net.train(is_training) # Optimizer and Lr optimizer = _get_optimizer(net) lr_scheduler = optim.lr_scheduler.StepLR( optimizer, step_size=lr_decay_step, #20 gamma=lr_decay_gamma) # 0.1 # Set Data Paraller: net = nn.DataParallel(net) net = net.cuda() logging.info("Net of Cuda is Done!") # Restore pretrain model 从预训练模型中恢复 if pretrain_snapshot: logging.info( "Load pretrained weights from {}".format(pretrain_snapshot)) state_dic = torch.load(pretrain_snapshot) net.load_state_dict(state_dic) yolo_losses = [] for i in range(3): yolo_losses.append( YOLOLoss(anchors[i], classes, (img_w, img_h)).cuda()) print('YOLO_Losses: \n', yolo_losses) # DataLoader train_data_loader = DATA.DataLoader(dataset=COCODataset(train_path, (img_w, img_h), is_training=True), batch_size=batch_size, shuffle=True, pin_memory=False) # Start the training loop logging.info("Start training......") for epoch in range(epochs): for step, samples in enumerate(train_data_loader): images, labels = samples['image'].cuda(), samples["label"].cuda() start_time = time.time() global_step += 1 # Forward & Backward optimizer.zero_grad() outputs = net(images) losses_name = ["total_loss", "x", "y", "w", "h", "conf", "cls"] losses = [[]] * len( losses_name) # [[]] ---> [[], [], [], [], [], [], []] for i in range(3): # YOLO 3 scales _loss_item = yolo_losses[i](outputs[i], labels) for j, l in enumerate(_loss_item): # print('j: ', j, 'l: ', l) j: index(0-6); l内容: 总loss, x, y, w, h, conf, cls losses[j].append(l) losses = [sum(l) for l in losses] loss = losses[0] # losses[0]为总Loss conf = losses[5] loss.backward() optimizer.step() if step > 0 and step % 10 == 0: _loss = loss.item() _conf = conf.item() duration = float(time.time() - start_time) # 总用时 example_per_second = batch_size / duration # 每个样本用时 lr = optimizer.param_groups[0]['lr'] logging.info( "epoch [%.3d] iter = %d loss = %.2f conf = %.2f example/sec = %.3f lr = %.5f " % (epoch, step, _loss, _conf, example_per_second, lr)) if step >= 0 and step % 1000 == 0: # net.train(False) _save_checkpoint(net.state_dict(), epoch, step) # net.train(True) lr_scheduler.step() _save_checkpoint(net.state_dict(), 100, 9999) logging.info("Bye~")
def evaluate(config): # checkpoint_paths = {'58': r'\\192.168.25.58\Team-CV\checkpoints\torch_yolov3'} checkpoint_paths = {'39': r'C:\Users\Administrator\Desktop\checkpoint/'} # checkpoint_paths = {'68': r'E:\github\YOLOv3_PyTorch\evaluate\weights'} post_weights = {k: 0 for k in checkpoint_paths.keys()} weight_index = {k: 0 for k in checkpoint_paths.keys()} time_inter = 10 dataloader = torch.utils.data.DataLoader(COCODataset( config["train_path"], (config["img_w"], config["img_h"]), is_training=False, is_scene=True), batch_size=config["batch_size"], shuffle=False, num_workers=0, pin_memory=False, drop_last=True) # DataLoader net, yolo_losses = build_yolov3(config) while 1: for key, checkpoint_path in checkpoint_paths.items(): os.makedirs(checkpoint_path + '/result', exist_ok=True) checkpoint_weights = os.listdir(checkpoint_path) checkpoint_result = os.listdir(checkpoint_path + '/result') checkpoint_result = [ cweight.split("_")[2][:-4] for cweight in checkpoint_result if cweight.endswith('ini') ] checkpoint_weights = [ cweight for cweight in checkpoint_weights if cweight.endswith('weights') ] if weight_index[key] >= len(checkpoint_weights): print('weight_index[key]', weight_index[key], len(checkpoint_weights)) time.sleep(time_inter) continue if post_weights[key] == checkpoint_weights[weight_index[key]]: print('post_weights[key]', post_weights[key]) time.sleep(time_inter) continue post_weights[key] = checkpoint_weights[weight_index[key]] if post_weights[key].endswith("_.weights"): #检查权重是否保存完 print("post_weights[key].split('_')", post_weights[key].split('_')) time.sleep(time_inter) continue if checkpoint_weights[weight_index[key]].split( "_")[1][:-8] in checkpoint_result: print('weight_index[key] +', weight_index[key]) weight_index[key] += 1 time.sleep(time_inter // 20) continue weight_index[key] += 1 try: if config["pretrain_snapshot"]: # Restore pretrain model state_dict = torch.load(config["pretrain_snapshot"]) logging.info("loading model from %s" % config["pretrain_snapshot"]) net.load_state_dict(state_dict) else: state_dict = torch.load( os.path.join(checkpoint_path, post_weights[key])) logging.info( "loading model from %s" % os.path.join(checkpoint_path, post_weights[key])) net.load_state_dict(state_dict) except Exception as E: print(E) time.sleep(time_inter) continue logging.info("Start eval.") # Start the eval loop n_gt = 0 correct = 0 imagepath_list = [] for step, samples in enumerate(dataloader): images, labels, image_paths = samples["image"], samples[ "label"], samples["img_path"] labels = labels.cuda() with torch.no_grad(): output = net(images) time1 = datetime.datetime.now() map = mAP(output, labels, 352) # output = non_max_suppression(output, 1, conf_thres=0.5) # output = soft_nms_n(output, score_threshold=0.5) if ((datetime.datetime.now() - time1).seconds > 10): logging.info('Batch %d time is too long ' % (step)) n_gt = 1 break print( "map time", (datetime.datetime.now() - time1).seconds * 1000 + (datetime.datetime.now() - time1).microseconds // 1000) # calculate # for sample_i in range(labels.size(0)): # # Get labels for sample where width is not zero (dummies) # target_sample = labels[sample_i, labels[sample_i, :, 3] != 0] # for obj_cls, tx, ty, tw, th in target_sample: # # Get rescaled gt coordinates # tx1, tx2 = config["img_w"] * (tx - tw / 2), config["img_w"] * (tx + tw / 2) # ty1, ty2 = config["img_h"] * (ty - th / 2), config["img_h"] * (ty + th / 2) # n_gt += 1 # box_gt = torch.cat([coord.unsqueeze(0) for coord in [tx1, ty1, tx2, ty2]]).view(1, -1) # sample_pred = output[sample_i] # last_current=correct # if sample_pred is not None: # # Iterate through predictions where the class predicted is same as gt # for x1, y1, x2, y2, conf, obj_conf, obj_pred in sample_pred[sample_pred[:, 6] == obj_cls.cuda()]: # box_pred = torch.cat([coord.unsqueeze(0) for coord in [x1, y1, x2, y2]]).view(1, -1) # iou = bbox_iou(box_pred, box_gt) # if iou >= config["iou_thres"]: # correct += 1 # break # if last_current==correct and image_paths[sample_i] not in imagepath_list: # imagepath_list.append(image_paths[sample_i]) # print("get result time", time.time() - start) logging.info('Mean Average Precision: %.5f' % map) # if n_gt: # logging.info('Batch [%d/%d] err_count:%d mAP: %.5f' % (step, len(dataloader), len(imagepath_list),float(correct / n_gt))) # logging.info('Mean Average Precision: %.5f' % float(correct / n_gt)) logging.info('Mean Average Precision: %.5f' % map) # Mean_Average = float(correct / n_gt) # ini_name = os.path.join(checkpoint_path+'/result/', '%.4f_%s.ini'%((float(post_weights[key].split("_")[0])+float(correct / n_gt))/2,post_weights[key].replace(".weights",""))) # write_ini(ini_name, Mean_Average, imagepath_list) break
def evaluate(config): is_training = False # Load and initialize network net = ModelMain(config, is_training=is_training) net.train(is_training) # Set data parallel net = nn.DataParallel(net) net = net.cuda() # Restore pretrain model if config["pretrain_snapshot"]: state_dict = torch.load(config["pretrain_snapshot"]) net.load_state_dict(state_dict) else: logging.warning("missing pretrain_snapshot!!!") # YOLO loss with 3 scales yolo_losses = [] for i in range(3): yolo_losses.append(YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) # DataLoader dataloader = torch.utils.data.DataLoader(dataset=COCODataset(config["val_path"], config["img_w"]), batch_size=config["batch_size"], shuffle=True, num_workers=1, pin_memory=False) # Start the eval loop logging.info("Start eval.") n_gt = 0 correct = 0 logging.info('%s' % str(dataloader)) gt_histro={} pred_histro = {} correct_histro = {} for i in range(config["yolo"]["classes"]): gt_histro[i] = 1 pred_histro[i] = 1 correct_histro[i] = 0 # images 是一个batch里的全部图片,labels是一个batch里面的全部标签 for step, (images, labels) in enumerate(dataloader): labels = labels.cuda() with torch.no_grad(): outputs = net(images) output_list = [] for i in range(3): output_list.append(yolo_losses[i](outputs[i])) # 把三个尺度上的预测结果在第1维度(第0维度是batch里的照片,第1维度是一张照片里面的各个预测框,第2维度是各个预测数值)上拼接起来 batch_output = torch.cat(output_list, dim=1) logging.info('%s' % str(batch_output.shape)) # 进行NMS抑制 batch_output = non_max_suppression(prediction=batch_output, num_classes=config["yolo"]["classes"], conf_thres=config["conf_thresh"], nms_thres=config["nms_thresh"]) # calculate for sample_index_in_batch in range(labels.size(0)): # fetched img sample in tensor( C(RxGxB) x H x W ), transform to cv2 format in H x W x C(BxGxR) sample_image = images[sample_index_in_batch].numpy() sample_image = np.transpose(sample_image, (1, 2, 0)) sample_image = cv2.cvtColor(sample_image, cv2.COLOR_RGB2BGR) logging.debug("fetched img %d size %s" % (sample_index_in_batch, sample_image.shape)) # Get labels for sample where width is not zero (dummies)(init all labels to zeros in array) target_sample = labels[sample_index_in_batch, labels[sample_index_in_batch, :, 3] != 0] # get prediction for this sample sample_pred = batch_output[sample_index_in_batch] if sample_pred is not None: for x1, y1, x2, y2, conf, obj_conf, obj_pred in sample_pred: # for each prediction box # logging.info("%d" % obj_cls) box_pred = torch.cat([coord.unsqueeze(0) for coord in [x1, y1, x2, y2]]).view(1, -1) sample_image = draw_prediction(sample_image,conf, obj_conf, int(obj_pred), (x1, y1, x2, y2), config) # 每一个ground truth的 分类编号obj_cls、相对中心x、相对中心y、相对宽w、相对高h for obj_cls, tx, ty, tw, th in target_sample: # Get rescaled gt coordinates # 转化为输入像素尺寸的 左上角像素tx1 ty1,右下角像素tx2 ty2 tx1, tx2 = config["img_w"] * (tx - tw / 2), config["img_w"] * (tx + tw / 2) ty1, ty2 = config["img_h"] * (ty - th / 2), config["img_h"] * (ty + th / 2) # 计算ground truth数量,用于统计信息 n_gt += 1 gt_histro[int(obj_cls)] += 1 # 转化为 shape(1,4)的tensor,用来计算IoU box_gt = torch.cat([coord.unsqueeze(0) for coord in [tx1, ty1, tx2, ty2]]).view(1, -1) # logging.info('%s' % str(box_gt.shape)) sample_pred = batch_output[sample_index_in_batch] if sample_pred is not None: # Iterate through predictions where the class predicted is same as gt # 对于每一个ground truth,遍历预测结果 for x1, y1, x2, y2, conf, obj_conf, obj_pred in sample_pred[sample_pred[:, 6] == obj_cls]: # 如果当前预测分类 == 当前真实分类 #logging.info("%d" % obj_cls) box_pred = torch.cat([coord.unsqueeze(0) for coord in [x1, y1, x2, y2]]).view(1, -1) pred_histro[int(obj_pred)] += 1 iou = bbox_iou(box_pred, box_gt) if iou >= config["iou_thresh"]: correct += 1 correct_histro[int(obj_pred)] += 1 break if n_gt: types = config["types"] reverse_types = {} # 建立一个反向的types for key in types.keys(): reverse_types[types[key]] = key logging.info('Batch [%d/%d] mAP: %.5f' % (step, len(dataloader), float(correct / n_gt))) logging.info('mAP Histro:%s' % str([ reverse_types[i] +':'+ str(int(100 * correct_histro[i] / gt_histro[i])) for i in range(config["yolo"]["classes"] ) ])) logging.info('Recall His:%s' % str([ reverse_types[i] +':'+ str(int(100 * correct_histro[i] / pred_histro[i])) for i in range(config["yolo"]["classes"]) ])) logging.info('Mean Average Precision: %.5f' % float(correct / n_gt))
def evaluate(config): is_training = False # Load and initialize network net = ModelMain(config, is_training=is_training) net.train(is_training) # Set data parallel net = nn.DataParallel(net) net = net.cuda() # Restore pretrain model if config["pretrain_snapshot"]: logging.info("Load checkpoint: {}".format(config["pretrain_snapshot"])) state_dict = torch.load(config["pretrain_snapshot"]) net.load_state_dict(state_dict) else: logging.warning("missing pretrain_snapshot!!!") # YOLO loss with 3 scales yolo_losses = [] for i in range(3): yolo_losses.append( YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) # DataLoader. dataloader = torch.utils.data.DataLoader(COCODataset( config["val_path"], (config["img_w"], config["img_h"]), is_training=False), batch_size=config["batch_size"], shuffle=False, num_workers=8, pin_memory=False) # Coco Prepare. index2category = json.load(open("coco_index2category.json")) # Start the eval loop logging.info("Start eval.") coco_results = [] coco_img_ids = set([]) APs = [] for step, samples in enumerate(dataloader): images, labels = samples["image"], samples["label"] image_paths, origin_sizes = samples["image_path"], samples[ "origin_size"] with torch.no_grad(): outputs = net(images) output_list = [] for i in range(3): output_list.append(yolo_losses[i](outputs[i])) output = torch.cat(output_list, 1) batch_detections = non_max_suppression(output, config["yolo"]["classes"], conf_thres=0.0001, nms_thres=0.45) for idx, detections in enumerate(batch_detections): correct = [] annotations = labels[idx, labels[idx, :, 3] != 0] image_id = int(os.path.basename(image_paths[idx])[-16:-4]) coco_img_ids.add(image_id) if detections is None: if annotations.size(0) != 0: APs.append(0) continue detections = detections[np.argsort(-detections[:, 4])] origin_size = eval(origin_sizes[idx]) detections = detections.cpu().numpy() # =========================================================================================================================== # The amount of padding that was added pad_x = max(origin_size[1] - origin_size[0], 0) * (config["img_w"] / max(origin_size)) pad_y = max(origin_size[0] - origin_size[1], 0) * (config["img_w"] / max(origin_size)) # Image height and width after padding is removed unpad_h = config["img_w"] - pad_y unpad_w = config["img_w"] - pad_x # =========================================================================================================================== if annotations.size(0) == 0: correct.extend([0 for _ in range(len(detections))]) else: target_boxes = torch.FloatTensor(annotations[:, 1:].shape) target_boxes[:, 0] = (annotations[:, 1] - annotations[:, 3] / 2) target_boxes[:, 1] = (annotations[:, 2] - annotations[:, 4] / 2) target_boxes[:, 2] = (annotations[:, 1] + annotations[:, 3] / 2) target_boxes[:, 3] = (annotations[:, 2] + annotations[:, 4] / 2) target_boxes *= config["img_w"] detected = [] for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections: pred_bbox = (x1, y1, x2, y2) #x1 = x1 / config["img_w"] * origin_size[0] #x2 = x2 / config["img_w"] * origin_size[0] #y1 = y1 / config["img_h"] * origin_size[1] #y2 = y2 / config["img_h"] * origin_size[1] #w = x2 - x1 #h = y2 - y1 h = ((y2 - y1) / unpad_h) * origin_size[1] w = ((x2 - x1) / unpad_w) * origin_size[0] y1 = ((y1 - pad_y // 2) / unpad_h) * origin_size[1] x1 = ((x1 - pad_x // 2) / unpad_w) * origin_size[0] coco_results.append({ "image_id": image_id, "category_id": index2category[str(int(cls_pred.item()))], "bbox": (float(x1), float(y1), float(w), float(h)), "score": float(conf), }) pred_bbox = torch.FloatTensor(pred_bbox).view(1, -1) # Compute iou with target boxes iou = bbox_iou(pred_bbox, target_boxes) # Extract index of largest overlap best_i = np.argmax(iou) # If overlap exceeds threshold and classification is correct mark as correct if iou[best_i] > config[ 'iou_thres'] and cls_pred == annotations[ best_i, 0] and best_i not in detected: correct.append(1) detected.append(best_i) else: correct.append(0) true_positives = np.array(correct) false_positives = 1 - true_positives # Compute cumulative false positives and true positives false_positives = np.cumsum(false_positives) true_positives = np.cumsum(true_positives) # Compute recall and precision at all ranks recall = true_positives / annotations.size(0) if annotations.size( 0) else true_positives precision = true_positives / np.maximum( true_positives + false_positives, np.finfo(np.float64).eps) # Compute average precision AP = compute_ap(recall, precision) APs.append(AP) print("+ Sample [%d/%d] AP: %.4f (%.4f)" % (len(APs), 5000, AP, np.mean(APs))) logging.info("Now {}/{}".format(step, len(dataloader))) print("Mean Average Precision: %.4f" % np.mean(APs)) save_results_path = "coco_results.json" with open(save_results_path, "w") as f: json.dump(coco_results, f, sort_keys=True, indent=4, separators=(',', ':')) logging.info("Save coco format results to {}".format(save_results_path)) # COCO api logging.info("Using coco-evaluate tools to evaluate.") cocoGt = COCO(config["annotation_path"]) cocoDt = cocoGt.loadRes(save_results_path) cocoEval = COCOeval(cocoGt, cocoDt, "bbox") cocoEval.params.imgIds = list(coco_img_ids) # real imgIds cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize()
def train(config): config["global_step"] = config.get("start_step", 0) is_training = False if config.get("export_onnx") else True anchors = [int(x) for x in config["yolo"]["anchors"].split(",")] anchors = [[[anchors[i], anchors[i + 1]], [anchors[i + 2], anchors[i + 3]], [anchors[i + 4], anchors[i + 5]]] for i in range(0, len(anchors), 6)] anchors.reverse() config["yolo"]["anchors"] = [] for i in range(3): config["yolo"]["anchors"].append(anchors[i]) # Load and initialize network net = ModelMain(config, is_training=is_training) net.train(is_training) # Optimizer and learning rate optimizer = _get_optimizer(config, net) t_max = 50 # lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=t_max,eta_min=1e-05) lr_scheduler = optim.lr_scheduler.StepLR( optimizer, step_size=config["lr"]["decay_step"], gamma=config["lr"]["decay_gamma"]) # Set data parallel net = nn.DataParallel(net) net = net.cuda() # Restore pretrain model if config["pretrain_snapshot"]: logging.info("Load pretrained weights from {}".format( config["pretrain_snapshot"])) state_dict = torch.load(config["pretrain_snapshot"]) net.load_state_dict(state_dict) # Only export onnx # if config.get("export_onnx"): # real_model = net.module # real_model.eval() # dummy_input = torch.randn(8, 3, config["img_h"], config["img_w"]).cuda() # save_path = os.path.join(config["sub_working_dir"], "pytorch.onnx") # logging.info("Exporting onnx to {}".format(save_path)) # torch.onnx.export(real_model, dummy_input, save_path, verbose=False) # logging.info("Done. Exiting now.") # sys.exit() # Evaluate interface # if config["evaluate_type"]: # logging.info("Using {} to evaluate model.".format(config["evaluate_type"])) # evaluate_func = importlib.import_module(config["evaluate_type"]).run_eval # config["online_net"] = net # YOLO loss with 3 scales # DataLoader dataloader = torch.utils.data.DataLoader( COCODataset(config["train_path"], (config["img_w"], config["img_h"]), is_training=True, is_scene=True), batch_size=config["batch_size"] * config["parallels"], shuffle=True, drop_last=True, num_workers=0, pin_memory=True) # Start the training loop logging.info("Start training.") dataload_len = len(dataloader) best_acc = 0.2 last_recall = 0.6 for epoch in range(config["epochs"]): recall = 0 mini_step = 0 for step, samples in enumerate(dataloader): start = time.time() images, labels = samples["image"], samples["label"] config["global_step"] += 1 # Forward and backward optimizer.zero_grad() losses = net(images.cuda(), labels.cuda()) # current_recall = mAP(detections, labels, config["img_w"]) # current_recall = np.mean(current_recall) if config["parallels"] > 1: losses = losses.view(config["parallels"], 8)[0] + losses.view( config["parallels"], 8)[1] loss = losses[0] if epoch > 0: loss = loss * 20 current_recall = float(losses[7] / 3 / config["parallels"]) if last_recall < 0.65: loss = loss + 20 * (1 - current_recall) # * 0.8 else: loss = loss + 20 * (1 - current_recall) loss.backward() optimizer.step() _loss = loss.item() # example_per_second = config["batch_size"] / duration lr = optimizer.param_groups[0]['lr'] # strftime = datetime.datetime.now().strftime("%H:%M:%S") # # if (losses[7] / 3 >= recall / (step + 1)):#mini_batch为0走这里 recall += current_recall print( '%s [Epoch %d/%d,batch %03d/%d loss:x %.5f,y %.5f,w %.5f,h %.5f,conf %.5f,cls %.5f,total %.5f,rec %.3f,avrec %.3f %.3f]' % (strftime, epoch, config["epochs"], step, dataload_len, losses[1], losses[2], losses[3], losses[4], losses[5], losses[6], _loss, current_recall, recall / (step + 1), lr)) last_recall = recall / len(dataloader) if recall / len(dataloader) > best_acc: best_acc = recall / len(dataloader) torch.save( net.state_dict(), '%s/%.4f_%04d.weights' % (checkpoint_dir, recall / len(dataloader), epoch)) lr_scheduler.step() # if epoch % (lr_scheduler.T_max + next_need) == (lr_scheduler.T_max + next_need - 1): # next_need += float(lr_scheduler.T_max) # lr_scheduler.T_max += 2 # lr_scheduler.last_epoch = 0 # lr_scheduler.base_lrs*=0.98 # lr_scheduler.base_lrs[0] *= 0.95 # lr_scheduler.base_lrs[1] *= 0.95 # net.train(is_training) # torch.cuda.empty_cache() # net.train(True) logging.info("Bye bye")