コード例 #1
0
ファイル: LODA_demo.py プロジェクト: WenweiGu/HUST-GWW-FYP
subdataset = "machine-1-1"
n_bins = 10
n_random_cuts = 100
point_adjustment = True
iterate_threshold = True

if __name__ == "__main__":
    logging.basicConfig(
        level=logging.INFO,
        format="%(asctime)s P%(process)d %(levelname)s %(message)s",
    )

    # load dataset
    data_dict = load_dataset(
        dataset,
        subdataset,
        "all",
    )

    x_train = data_dict["train"]
    x_test = data_dict["test"]
    x_test_labels = data_dict["test_labels"]

    # data preprocessing for MSCRED
    od = LODA(n_bins=n_bins, n_random_cuts=n_random_cuts)
    od.fit(x_train)

    # get outlier scores
    anomaly_score = od.decision_function(x_test)

    anomaly_label = x_test_labels
コード例 #2
0
if __name__ == "__main__":
    config = ExpConfig()
    config.x_dim = get_data_dim(dataset)

    # print_with_title("Configurations", pformat(config.to_dict()), after="\n")
    # open the result object and prepare for result directories if specified
    results = MLResults(config.result_dir)
    results.save_config(config)  # save experiment settings for review
    results.make_dirs(config.save_dir, exist_ok=True)

    logging.basicConfig(
        level="INFO",
        format="%(asctime)s [%(levelname)s] %(name)s: %(message)s")

    data_dict = load_dataset(dataset, subdataset)

    # preprocessing
    pp = preprocessor()
    data_dict = pp.normalize(data_dict)

    # generate sliding windows
    window_dict = generate_windows(data_dict,
                                   window_size=config.window_length,
                                   stride=5)

    # batch data
    x_train = DataGenerator(window_dict["train_windows"])
    x_test = DataGenerator(window_dict["test_windows"])
    test_labels = DataGenerator(window_dict["test_labels"])