def item_snippet(kvg, key, items): buf = StringIO() imgurl = kvg.getk('G%d-BINFO' % key_id(key), 'imgurl') if not imgurl: return '' itemurl = "http://item.taobao.com/item.htm?id=%s" % kvg.getk('G%d-BINFO' % key_id(key), 'tbid') name = kvg.getk('G%d-BINFO' % key_id(key), 'name') buf.write('<div style="clear:both;border-style:dashed;border-color:grey;border-width:thin;"><a href="%s" target="_blank"><img title="%s" src="%s" style="width:300px"></a></div>\n' % (itemurl, name, imgurl)) for item in items: key, weight = item imgurl = kvg.getk('G%s-BINFO' % key, 'imgurl') name = kvg.getk('G%s-BINFO' % key, 'name') itemurl = "http://item.taobao.com/item.htm?id=%s" % kvg.getk('G%s-BINFO' % key, 'tbid') buf.write('<div style="float:left;border-style:dashed;border-color:grey;border-width:thin;"><a href="%s" target="_blank"><img title="%s" src="%s" style="width:150"></a></div>\n' % (itemurl, name, imgurl)) return buf.getvalue()
def item_snippet(kvg, key, items): buf = StringIO() imgurl = kvg.getk('G%d-BINFO' % key_id(key), 'imgurl') if not imgurl: return '' itemurl = "http://item.taobao.com/item.htm?id=%s" % kvg.getk( 'G%d-BINFO' % key_id(key), 'tbid') name = kvg.getk('G%d-BINFO' % key_id(key), 'name') buf.write( '<div style="clear:both;border-style:dashed;border-color:grey;border-width:thin;"><a href="%s" target="_blank"><img title="%s" src="%s" style="width:300px"></a></div>\n' % (itemurl, name, imgurl)) for item in items: key, weight = item imgurl = kvg.getk('G%s-BINFO' % key, 'imgurl') name = kvg.getk('G%s-BINFO' % key, 'name') itemurl = "http://item.taobao.com/item.htm?id=%s" % kvg.getk( 'G%s-BINFO' % key, 'tbid') buf.write( '<div style="float:left;border-style:dashed;border-color:grey;border-width:thin;"><a href="%s" target="_blank"><img title="%s" src="%s" style="width:150"></a></div>\n' % (itemurl, name, imgurl)) return buf.getvalue()
def compute_cfss(): ''' 计算shop-shop相似关系矩阵。 Input: shop_actu:用户对店铺做的动作 Process: 取用户动作表示的shop向量,计算向量点积。 Output: shop-shop 相似关系,cfss.kv ''' # shop_actu -> shop-shop关系矩阵,并保存cfss.kv,shop\tshop:weight; kvg = KVEngine() kvg.load([full_path('shop_actu.kv')]) # get normialized vectors shop_users = {} skeys = kvg.keymatch('S\d+_ACTU') for skey in skeys: sid = key_id(skey) vector = dict([(int(key), float(value)) for (key, value) in kvg.getd(skey).items() if key and value]) # tailor to top 20 items = vector.items() items.sort(key=lambda x: x[1], reverse=True) items = items[:20] vector = dict(items) normalize(vector) shop_users[sid] = vector # similarity calculation shop_similarity = {} sids = shop_users.keys() sids.sort() l = len(sids) print "Calculating shop-shop similarity matrix, total %d..." % l for i in range(l): if i % 1000 == 0: print "%d" % i sys.stdout.flush() for j in range(i + 1, l): sim = norm_dot_product(shop_users[sids[i]], shop_users[sids[j]]) if abs(sim) < 1e-5: continue shop_similarity.setdefault(sids[i], {})[sids[j]] = sim shop_similarity.setdefault(sids[j], {})[sids[i]] = sim # save as kvfile write_kv_dict(shop_similarity, 'S%s_CFSIMS', 'cfss.kv')
def compute_cfgg(): ''' 计算goods-goods相似关系矩阵。 Input: user_actg.kv -> goods_actu.kv:用户对店铺做的动作 Process: 取用户动作表示的goods向量,计算向量点积。 Output: goods-goods 相似关系,cfss.kv ''' kvg = KVEngine() kvg.load([full_path('goods_actu.kv')]) # get normialized vectors goods_users = {} gkeys = kvg.keymatch('G\d+_ACTU') for gkey in gkeys: gid = key_id(gkey) vector = dict([(int(key), float(value)) for (key, value) in kvg.getd(gkey).items() if key and value]) # tailor to top 20 items = vector.items() items.sort(key=lambda x: x[1], reverse=True) items = items[:20] vector = dict(items) normalize(vector) goods_users[gid] = vector # similarity calculation goods_similarity = {} gids = goods_users.keys() gids.sort() l = len(gids) print "Calculating goods-goods similarity matrix, total %d..." % l for i in range(l): if i % 100 == 0: print "%d" % i sys.stdout.flush() for j in range(i + 1, l): sim = norm_dot_product(goods_users[gids[i]], goods_users[gids[j]]) if abs(sim) < 1e-5: continue goods_similarity.setdefault(gids[i], {})[gids[j]] = sim goods_similarity.setdefault(gids[j], {})[gids[i]] = sim # save as kvfile write_kv_dict(goods_similarity, 'G%s_CFSIMG', 'cfgg.kv')
def compute_cfss(): ''' 计算shop-shop相似关系矩阵。 Input: shop_actu:用户对店铺做的动作 Process: 取用户动作表示的shop向量,计算向量点积。 Output: shop-shop 相似关系,cfss.kv ''' # shop_actu -> shop-shop关系矩阵,并保存cfss.kv,shop\tshop:weight; kvg = KVEngine() kvg.load([full_path('shop_actu.kv')]) # get normialized vectors shop_users = {} skeys = kvg.keymatch('S\d+_ACTU') for skey in skeys: sid = key_id(skey) vector = dict([(int(key), float(value)) for (key, value) in kvg.getd(skey).items() if key and value]) # tailor to top 20 items = vector.items() items.sort(key=lambda x:x[1], reverse=True) items = items[:20] vector = dict(items) normalize(vector) shop_users[sid] = vector # similarity calculation shop_similarity = {} sids = shop_users.keys() sids.sort() l = len(sids) print "Calculating shop-shop similarity matrix, total %d..." % l for i in range(l): if i % 1000 == 0: print "%d" % i sys.stdout.flush() for j in range(i+1, l): sim = norm_dot_product(shop_users[sids[i]], shop_users[sids[j]]) if abs(sim) < 1e-5: continue shop_similarity.setdefault(sids[i], {})[sids[j]] = sim shop_similarity.setdefault(sids[j], {})[sids[i]] = sim # save as kvfile write_kv_dict(shop_similarity, 'S%s_CFSIMS', 'cfss.kv')
def compute_cfgg(): ''' 计算goods-goods相似关系矩阵。 Input: user_actg.kv -> goods_actu.kv:用户对店铺做的动作 Process: 取用户动作表示的goods向量,计算向量点积。 Output: goods-goods 相似关系,cfss.kv ''' kvg = KVEngine() kvg.load([full_path('goods_actu.kv')]) # get normialized vectors goods_users = {} gkeys = kvg.keymatch('G\d+_ACTU') for gkey in gkeys: gid = key_id(gkey) vector = dict([(int(key), float(value)) for (key, value) in kvg.getd(gkey).items() if key and value]) # tailor to top 20 items = vector.items() items.sort(key=lambda x:x[1], reverse=True) items = items[:20] vector = dict(items) normalize(vector) goods_users[gid] = vector # similarity calculation goods_similarity = {} gids = goods_users.keys() gids.sort() l = len(gids) print "Calculating goods-goods similarity matrix, total %d..." % l for i in range(l): if i % 100 == 0: print "%d" % i sys.stdout.flush() for j in range(i+1, l): sim = norm_dot_product(goods_users[gids[i]], goods_users[gids[j]]) if abs(sim) < 1e-5: continue goods_similarity.setdefault(gids[i], {})[gids[j]] = sim goods_similarity.setdefault(gids[j], {})[gids[i]] = sim # save as kvfile write_kv_dict(goods_similarity, 'G%s_CFSIMG', 'cfgg.kv')
def compute_cfus(): ''' 计算给用户推荐的店铺列表。 Input: cfss: 店铺关系 user_favu: 用户关注店铺 user_actu: 用户有动作店铺 Process: 从用户直接相关店铺出发,找这些店铺的相关店铺,再过滤。 Output: 存储CF算法产生的给用户推荐的店铺列表。cfus.kv ''' kvg = KVEngine() kvg.load([full_path('cfss.kv')]) kvg.load([full_path('user_favs.kv')]) kvg.load([full_path('user_actu.kv')]) kvg.load([full_path('shop_binfo.kv')]) # get shop_similarity keys = kvg.keymatch('S\d+_CFSIMS') shop_similarity = dict([(int(key), dict([(int(k), float(v)) for (k, v) in kvg.getd(key).items()])) for key in keys]) # get user_fav_shops keys = kvg.keymatch('U\d+_FAVS') user_fav_shops = dict([(int(key), set([int(k) for k in kvg.getl(key)])) for key in keys]) # get blocked shop set keys = kvg.keymatch('S\d+_BINFO') blocked_shops = set() for key in keys: if kvg.getk(key, 'block') != '0': blocked_shops.add(key_id(key)) # get user tags by fav shops shop_tags # get user_shops # shop idf # weigting and normalizing user_shops # 给每个用户做推荐 print "Recommend for each user, total %d" % len(self.user_shops) sys.stdout.flush() for no, uid in enumerate(self.user_shops): shop_weight = {} # 给该用户推荐的店铺列表及权重 shops = self.user_shops[uid] # 用户有动作的店铺列表 fav_shops = self.user_fav_shops.get(uid, {}) # 用户关注的店铺 if no % 1000 == 0: print "%d" % no sys.stdout.flush() for sid in shops: if sid not in self.shop_similarity: continue simi_shops = self.shop_similarity[sid] for ssid in simi_shops: if ssid in shop_weight: shop_weight[ssid] += shops[sid] * simi_shops[ssid] else: shop_weight[ssid] = shops[sid] * simi_shops[ssid] # 过滤shop_weight shop_weight_new = {} for sid in shop_weight: # 店铺sid是否适合推荐给用户uid if sid in fav_shops: continue # 原本就关注 if sid in self.shop_info and self.shop_info[sid][2] != 0: continue # 店铺的block属性非0,被屏蔽,不使用 if sid in self.shop_tags and uid in self.user_tags and \ self._tag_conflict(self.user_tags[uid], self.shop_tags[sid]): continue # 用户关注店铺的类型与该店铺不符 shop_weight_new[sid] = shop_weight[sid] if not shop_weight_new: continue # 没有为此用户推荐一个店铺,都被过滤掉,不记录 # 排序,取TOP normalize(shop_weight_new) items = shop_weight_new.items() items.sort(reverse=True, key=lambda x: x[1]) # sort by weight desc self.user_recommend_list[uid] = items[:TOP_SHOP_NUM] # limit n