def learn(env, policy_func, dataset, pretrained, optim_batch_size=128, max_iters=1e4, adam_epsilon=1e-5, optim_stepsize=3e-4, ckpt_dir=None, log_dir=None, task_name=None): val_per_iter = int(max_iters / 10) ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", ob_space, ac_space) # Construct network for new policy # placeholder ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) stochastic = U.get_placeholder_cached(name="stochastic") loss = tf.reduce_mean(tf.square(ac - pi.ac)) var_list = pi.get_trainable_variables() adam = MpiAdam(var_list, epsilon=adam_epsilon) lossandgrad = U.function([ob, ac, stochastic], [loss] + [U.flatgrad(loss, var_list)]) if not pretrained: writer = U.FileWriter(log_dir) ep_stats = stats(["Loss"]) U.initialize() adam.sync() logger.log("Pretraining with Behavior Cloning...") for iter_so_far in tqdm(range(int(max_iters))): ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size, 'train') loss, g = lossandgrad(ob_expert, ac_expert, True) adam.update(g, optim_stepsize) if not pretrained: ep_stats.add_all_summary(writer, [loss], iter_so_far) if iter_so_far % val_per_iter == 0: ob_expert, ac_expert = dataset.get_next_batch(-1, 'val') loss, g = lossandgrad(ob_expert, ac_expert, False) logger.log("Validation:") logger.log("Loss: %f" % loss) if not pretrained: U.save_state(os.path.join(ckpt_dir, task_name), counter=iter_so_far) if pretrained: savedir_fname = tempfile.TemporaryDirectory().name U.save_state(savedir_fname, var_list=pi.get_variables()) return savedir_fname
def learn( env, model_path, data_path, policy_fn, *, horizon=150, # timesteps per actor per update rolloutSize=50, clip_param=0.2, entcoeff=0.02, # clipping parameter epsilon, entropy coeff optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=32, # optimization hypers gamma=0.99, lam=0.95, # advantage estimation max_iters=0, # time constraint adam_epsilon=1e-4, schedule='constant', # annealing for stepsize parameters (epsilon and adam) retrain=False): # Setup losses and policy ob_space = env.observation_space ac_space = env.action_space pi = policy_fn("pi", ob_space, ac_space) # Construct network for new policy oldpi = policy_fn("oldpi", ob_space, ac_space) # Network for old policy atarg = tf.placeholder( dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return lrmult = tf.placeholder( name='lrmult', dtype=tf.float32, shape=[]) # learning rate multiplier, updated with schedule ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) kloldnew = oldpi.pd.kl(pi.pd) ent = pi.pd.entropy() meankl = tf.reduce_mean(kloldnew) meanent = tf.reduce_mean(ent) pol_entpen = (-entcoeff) * meanent ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # pnew / pold surr1 = ratio * atarg # surrogate from conservative policy iteration surr2 = tf.clip_by_value(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg # pol_surr = -tf.reduce_mean(tf.minimum( surr1, surr2)) # PPO's pessimistic surrogate (L^CLIP) vf_loss = tf.reduce_mean(tf.square(pi.vpred - ret)) total_loss = pol_surr + pol_entpen + vf_loss losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent] loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"] var_list = pi.get_trainable_variables() lossandgrad = U.function([ob, ac, atarg, ret, lrmult], losses + [U.flatgrad(total_loss, var_list)]) adam = MpiAdam(var_list, epsilon=adam_epsilon) assign_old_eq_new = U.function( [], [], updates=[ tf.assign(oldv, newv) for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables()) ]) compute_losses = U.function([ob, ac, atarg, ret, lrmult], losses) U.initialize() adam.sync() # Prepare for rollouts episodes_so_far = 0 timesteps_so_far = 0 iters_so_far = 0 tstart = time.time() lenbuffer = deque(maxlen=5) # rolling buffer for episode lengths rewbuffer = deque(maxlen=5) # rolling buffer for episode rewards p = [] # for saving the rollouts if retrain == True: print("Retraining the policy from saved path") time.sleep(2) U.load_state(model_path) max_timesteps = int(horizon * rolloutSize * max_iters) while True: if max_iters and iters_so_far >= max_iters: break if schedule == 'constant': cur_lrmult = 1.0 elif schedule == 'linear': cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0) else: raise NotImplementedError logger.log("********** Iteration %i ************" % iters_so_far) print("Collecting samples for policy optimization !! ") if iters_so_far > 70: render = True else: render = False rollouts = sample_trajectory(pi, env, horizon=horizon, rolloutSize=rolloutSize, stochastic=True, render=render) # Save rollouts data = {'rollouts': rollouts} p.append(data) del data data_file_name = data_path + 'rollout_data.pkl' pickle.dump(p, open(data_file_name, "wb")) add_vtarg_and_adv(rollouts, gamma, lam) ob, ac, atarg, tdlamret = rollouts["ob"], rollouts["ac"], rollouts[ "adv"], rollouts["tdlamret"] atarg = (atarg - atarg.mean() ) / atarg.std() # standardized advantage function estimate d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vtarg=tdlamret), deterministic=pi.recurrent) optim_batchsize = optim_batchsize or ob.shape[0] if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy assign_old_eq_new() # set old parameter values to new parameter values logger.log("Optimizing...") # Here we do a bunch of optimization epochs over the data for _ in range(optim_epochs): losses = [ ] # list of tuples, each of which gives the loss for a minibatch for batch in d.iterate_once(optim_batchsize): *newlosses, g = lossandgrad(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult) adam.update(g, optim_stepsize * cur_lrmult) losses.append(newlosses) lrlocal = (rollouts["ep_lens"], rollouts["ep_rets"]) # local values listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples lens, rews = map(flatten_lists, zip(*listoflrpairs)) lenbuffer.extend(lens) rewbuffer.extend(rews) logger.record_tabular("Success", rollouts["success"]) logger.record_tabular("EpLenMean", np.mean(lenbuffer)) logger.record_tabular("EpRewMean", np.mean(rewbuffer)) logger.record_tabular("EpThisIter", len(lens)) episodes_so_far += len(lens) timesteps_so_far += sum(lens) iters_so_far += 1 logger.record_tabular("EpisodesSoFar", episodes_so_far) logger.record_tabular("TimestepsSoFar", timesteps_so_far) logger.record_tabular("TimeElapsed", time.time() - tstart) if MPI.COMM_WORLD.Get_rank() == 0: logger.dump_tabular() return pi
def learn(env, model_path, data_path, policy_fn, *, rolloutSize, num_options=4, horizon=80, clip_param=0.025, ent_coeff=0.01, # clipping parameter epsilon, entropy coeff optim_epochs=10, mainlr=3.25e-4, intlr=1e-4, piolr=1e-4, termlr=5e-7, optim_batchsize=100, # optimization hypers gamma=0.99, lam=0.95, # advantage estimation max_iters=20, # time constraint adam_epsilon=1e-5, schedule='constant', # annealing for stepsize parameters (epsilon and adam) retrain=False, ): """ Core learning function """ ob_space = env.observation_space ac_space = env.action_space pi = policy_fn("pi", ob_space, ac_space, num_options=num_options) # Construct network for new policy oldpi = policy_fn("oldpi", ob_space, ac_space, num_options=num_options) # Network for old policy atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return lrmult = tf.placeholder(name='lrmult', dtype=tf.float32, shape=[]) # learning rate multiplier, updated with schedule clip_param = clip_param * lrmult # Annealed cliping parameter epislon ob = U.get_placeholder_cached(name="ob") option = U.get_placeholder_cached(name="option") term_adv = U.get_placeholder(name='term_adv', dtype=tf.float32, shape=[None]) op_adv = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) betas = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return ac = pi.pdtype.sample_placeholder([None]) # Setup losses and stuff kloldnew = oldpi.pd.kl(pi.pd) ent = pi.pd.entropy() meankl = tf.reduce_mean(kloldnew) meanent = tf.reduce_mean(ent) pol_entpen = (-ent_coeff) * meanent ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # pnew / pold surr1 = ratio * atarg # surrogate from conservative policy iteration surr2 = tf.clip_by_value(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg # pol_surr = - tf.reduce_mean(tf.minimum(surr1, surr2)) # PPO's pessimistic surrogate (L^CLIP) vf_loss = tf.reduce_mean(tf.square(pi.vpred - ret)) total_loss = pol_surr + pol_entpen + vf_loss losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent] loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"] term_loss = pi.tpred * term_adv activated_options = tf.placeholder(dtype=tf.float32, shape=[None, num_options]) pi_w = tf.placeholder(dtype=tf.float32, shape=[None, num_options]) option_hot = tf.one_hot(option, depth=num_options) pi_I = (pi.intfc * activated_options) * pi_w / tf.expand_dims( tf.reduce_sum((pi.intfc * activated_options) * pi_w, axis=1), 1) pi_I = tf.clip_by_value(pi_I, 1e-6, 1 - 1e-6) int_loss = - tf.reduce_sum(betas * tf.reduce_sum(pi_I * option_hot, axis=1) * op_adv) intfc = tf.placeholder(dtype=tf.float32, shape=[None, num_options]) pi_I = (intfc * activated_options) * pi.op_pi / tf.expand_dims( tf.reduce_sum((intfc * activated_options) * pi.op_pi, axis=1), 1) pi_I = tf.clip_by_value(pi_I, 1e-6, 1 - 1e-6) op_loss = - tf.reduce_sum(betas * tf.reduce_sum(pi_I * option_hot, axis=1) * op_adv) log_pi = tf.log(tf.clip_by_value(pi.op_pi, 1e-20, 1.0)) op_entropy = -tf.reduce_mean(pi.op_pi * log_pi, reduction_indices=1) op_loss -= 0.01 * tf.reduce_sum(op_entropy) var_list = pi.get_trainable_variables() lossandgrad = U.function([ob, ac, atarg, ret, lrmult, option], losses + [U.flatgrad(total_loss, var_list)]) termgrad = U.function([ob, option, term_adv], [U.flatgrad(term_loss, var_list)]) # Since we will use a different step size. opgrad = U.function([ob, option, betas, op_adv, intfc, activated_options], [U.flatgrad(op_loss, var_list)]) # Since we will use a different step size. intgrad = U.function([ob, option, betas, op_adv, pi_w, activated_options], [U.flatgrad(int_loss, var_list)]) # Since we will use a different step size. adam = MpiAdam(var_list, epsilon=adam_epsilon) assign_old_eq_new = U.function([], [], updates=[tf.assign(oldv, newv) for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())]) compute_losses = U.function([ob, ac, atarg, ret, lrmult, option], losses) U.initialize() adam.sync() episodes_so_far = 0 timesteps_so_far = 0 global iters_so_far iters_so_far = 0 tstart = time.time() lenbuffer = deque(maxlen=5) # rolling buffer for episode lengths rewbuffer = deque(maxlen=5) # rolling buffer for episode rewards datas = [0 for _ in range(num_options)] if retrain: print("Retraining to New Task !! ") time.sleep(2) U.load_state(model_path+'/') p = [] max_timesteps = int(horizon * rolloutSize * max_iters) while True: if max_iters and iters_so_far >= max_iters: break if schedule == 'constant': cur_lrmult = 1.0 elif schedule == 'linear': cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0) else: raise NotImplementedError logger.log("********** Iteration %i ************" % iters_so_far) render = False rollouts = sample_trajectory(pi, env, horizon=horizon, rolloutSize=rolloutSize, render=render) # Save rollouts data = {'rollouts': rollouts} p.append(data) del data data_file_name = data_path + 'rollout_data.pkl' pickle.dump(p, open(data_file_name, "wb")) add_vtarg_and_adv(rollouts, gamma, lam, num_options) opt_d = [] for i in range(num_options): dur = np.mean(rollouts['opt_dur'][i]) if len(rollouts['opt_dur'][i]) > 0 else 0. opt_d.append(dur) ob, ac, opts, atarg, tdlamret = rollouts["ob"], rollouts["ac"], rollouts["opts"], rollouts["adv"], rollouts["tdlamret"] atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy assign_old_eq_new() # set old parameter values to new parameter values # Optimizing the policy for opt in range(num_options): indices = np.where(opts == opt)[0] print("Option- ", opt, " Batch Size: ", indices.size) opt_d[opt] = indices.size if not indices.size: continue datas[opt] = d = Dataset(dict(ob=ob[indices], ac=ac[indices], atarg=atarg[indices], vtarg=tdlamret[indices]), shuffle=not pi.recurrent) if indices.size < optim_batchsize: print("Too few samples for opt - ", opt) continue optim_batchsize_corrected = optim_batchsize optim_epochs_corrected = np.clip(np.int(indices.size / optim_batchsize_corrected), 1, optim_epochs) print("Optim Epochs:", optim_epochs_corrected) logger.log("Optimizing...") # Here we do a bunch of optimization epochs over the data for _ in range(optim_epochs_corrected): losses = [] # list of tuples, each of which gives the loss for a minibatch for batch in d.iterate_once(optim_batchsize_corrected): *newlosses, grads = lossandgrad(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult, [opt]) adam.update(grads, mainlr * cur_lrmult) losses.append(newlosses) # Optimize termination functions termg = termgrad(rollouts["ob"], rollouts['opts'], rollouts["op_adv"])[0] adam.update(termg, termlr) # Optimize interest functions intgrads = intgrad(rollouts['ob'], rollouts['opts'], rollouts["last_betas"], rollouts["op_adv"], rollouts["op_probs"], rollouts["activated_options"])[0] adam.update(intgrads, intlr) # Optimize policy over options opgrads = opgrad(rollouts['ob'], rollouts['opts'], rollouts["last_betas"], rollouts["op_adv"], rollouts["intfc"], rollouts["activated_options"])[0] adam.update(opgrads, piolr) lrlocal = (rollouts["ep_lens"], rollouts["ep_rets"]) # local values listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples lens, rews = map(flatten_lists, zip(*listoflrpairs)) lenbuffer.extend(lens) rewbuffer.extend(rews) logger.record_tabular("Success", rollouts["success"]) logger.record_tabular("EpLenMean", np.mean(lenbuffer)) logger.record_tabular("EpRewMean", np.mean(rewbuffer)) logger.record_tabular("EpThisIter", len(lens)) episodes_so_far += len(lens) timesteps_so_far += sum(lens) iters_so_far += 1 logger.record_tabular("EpisodesSoFar", episodes_so_far) logger.record_tabular("TimestepsSoFar", timesteps_so_far) logger.record_tabular("TimeElapsed", time.time() - tstart) if MPI.COMM_WORLD.Get_rank() == 0: logger.dump_tabular() return pi
class DDPG(object): def __init__(self, actor, critic, memory, observation_shape, action_shape, param_noise=None, action_noise=None, gamma=0.99, tau=0.001, normalize_returns=False, enable_popart=False, normalize_observations=True, batch_size=128, observation_range=(-500., 500.), action_range=(-1., 1.), return_range=(-np.inf, np.inf), adaptive_param_noise=True, adaptive_param_noise_policy_threshold=.1, critic_l2_reg=0., actor_lr=1e-4, critic_lr=1e-3, clip_norm=None, reward_scale=1.): # Inputs. self.obs0 = tf.placeholder(tf.float32, shape=(None,) + observation_shape, name='obs0') self.obs1 = tf.placeholder(tf.float32, shape=(None,) + observation_shape, name='obs1') self.terminals1 = tf.placeholder(tf.float32, shape=(None, 1), name='terminals1') self.rewards = tf.placeholder(tf.float32, shape=(None, 1), name='rewards') self.actions = tf.placeholder(tf.float32, shape=(None,) + action_shape, name='actions') self.critic_target = tf.placeholder(tf.float32, shape=(None, 1), name='critic_target') self.param_noise_stddev = tf.placeholder(tf.float32, shape=(), name='param_noise_stddev') # Parameters. self.gamma = gamma self.tau = tau self.memory = memory self.normalize_observations = normalize_observations self.normalize_returns = normalize_returns self.action_noise = action_noise self.param_noise = param_noise self.action_range = action_range self.return_range = return_range self.observation_range = observation_range self.critic = critic self.actor = actor self.actor_lr = actor_lr self.critic_lr = critic_lr self.clip_norm = clip_norm self.enable_popart = enable_popart self.reward_scale = reward_scale self.batch_size = batch_size self.stats_sample = None self.critic_l2_reg = critic_l2_reg # Observation normalization. if self.normalize_observations: with tf.variable_scope('obs_rms'): self.obs_rms = RunningMeanStd(shape=observation_shape) else: self.obs_rms = None normalized_obs0 = tf.clip_by_value(normalize(self.obs0, self.obs_rms), self.observation_range[0], self.observation_range[1]) normalized_obs1 = tf.clip_by_value(normalize(self.obs1, self.obs_rms), self.observation_range[0], self.observation_range[1]) # Return normalization. if self.normalize_returns: with tf.variable_scope('ret_rms'): self.ret_rms = RunningMeanStd() else: self.ret_rms = None # Create target networks. target_actor = copy(actor) target_actor.name = 'target_actor' self.target_actor = target_actor target_critic = copy(critic) target_critic.name = 'target_critic' self.target_critic = target_critic # Create networks and core TF parts that are shared across setup parts. self.actor_tf = actor(normalized_obs0) self.normalized_critic_tf = critic(normalized_obs0, self.actions) self.critic_tf = denormalize(tf.clip_by_value(self.normalized_critic_tf, self.return_range[0], self.return_range[1]), self.ret_rms) self.normalized_critic_with_actor_tf = critic(normalized_obs0, self.actor_tf, reuse=True) self.critic_with_actor_tf = denormalize(tf.clip_by_value(self.normalized_critic_with_actor_tf, self.return_range[0], self.return_range[1]), self.ret_rms) Q_obs1 = denormalize(target_critic(normalized_obs1, target_actor(normalized_obs1)), self.ret_rms) self.target_Q = self.rewards + (1. - self.terminals1) * gamma * Q_obs1 # Set up parts. if self.param_noise is not None: self.setup_param_noise(normalized_obs0) self.setup_actor_optimizer() self.setup_critic_optimizer() if self.normalize_returns and self.enable_popart: self.setup_popart() self.setup_stats() self.setup_target_network_updates() self.initial_state = None # recurrent architectures not supported yet def setup_target_network_updates(self): actor_init_updates, actor_soft_updates = get_target_updates(self.actor.vars, self.target_actor.vars, self.tau) critic_init_updates, critic_soft_updates = get_target_updates(self.critic.vars, self.target_critic.vars, self.tau) self.target_init_updates = [actor_init_updates, critic_init_updates] self.target_soft_updates = [actor_soft_updates, critic_soft_updates] def setup_param_noise(self, normalized_obs0): assert self.param_noise is not None # Configure perturbed actor. param_noise_actor = copy(self.actor) param_noise_actor.name = 'param_noise_actor' self.perturbed_actor_tf = param_noise_actor(normalized_obs0) logger.info('setting up param noise') self.perturb_policy_ops = get_perturbed_actor_updates(self.actor, param_noise_actor, self.param_noise_stddev) # Configure separate copy for stddev adoption. adaptive_param_noise_actor = copy(self.actor) adaptive_param_noise_actor.name = 'adaptive_param_noise_actor' adaptive_actor_tf = adaptive_param_noise_actor(normalized_obs0) self.perturb_adaptive_policy_ops = get_perturbed_actor_updates(self.actor, adaptive_param_noise_actor, self.param_noise_stddev) self.adaptive_policy_distance = tf.sqrt(tf.reduce_mean(tf.square(self.actor_tf - adaptive_actor_tf))) def setup_actor_optimizer(self): logger.info('setting up actor optimizer') self.actor_loss = -tf.reduce_mean(self.critic_with_actor_tf) actor_shapes = [var.get_shape().as_list() for var in self.actor.trainable_vars] actor_nb_params = sum([reduce(lambda x, y: x * y, shape) for shape in actor_shapes]) logger.info(' actor shapes: {}'.format(actor_shapes)) logger.info(' actor params: {}'.format(actor_nb_params)) self.actor_grads = U.flatgrad(self.actor_loss, self.actor.trainable_vars, clip_norm=self.clip_norm) self.actor_optimizer = MpiAdam(var_list=self.actor.trainable_vars, beta1=0.9, beta2=0.999, epsilon=1e-08) def setup_critic_optimizer(self): logger.info('setting up critic optimizer') normalized_critic_target_tf = tf.clip_by_value(normalize(self.critic_target, self.ret_rms), self.return_range[0], self.return_range[1]) self.critic_loss = tf.reduce_mean(tf.square(self.normalized_critic_tf - normalized_critic_target_tf)) if self.critic_l2_reg > 0.: critic_reg_vars = [var for var in self.critic.trainable_vars if 'kernel' in var.name and 'output' not in var.name] for var in critic_reg_vars: logger.info(' regularizing: {}'.format(var.name)) logger.info(' applying l2 regularization with {}'.format(self.critic_l2_reg)) critic_reg = tc.layers.apply_regularization( tc.layers.l2_regularizer(self.critic_l2_reg), weights_list=critic_reg_vars ) self.critic_loss += critic_reg critic_shapes = [var.get_shape().as_list() for var in self.critic.trainable_vars] critic_nb_params = sum([reduce(lambda x, y: x * y, shape) for shape in critic_shapes]) logger.info(' critic shapes: {}'.format(critic_shapes)) logger.info(' critic params: {}'.format(critic_nb_params)) self.critic_grads = U.flatgrad(self.critic_loss, self.critic.trainable_vars, clip_norm=self.clip_norm) self.critic_optimizer = MpiAdam(var_list=self.critic.trainable_vars, beta1=0.9, beta2=0.999, epsilon=1e-08) def setup_popart(self): # See https://arxiv.org/pdf/1602.07714.pdf for details. self.old_std = tf.placeholder(tf.float32, shape=[1], name='old_std') new_std = self.ret_rms.std self.old_mean = tf.placeholder(tf.float32, shape=[1], name='old_mean') new_mean = self.ret_rms.mean self.renormalize_Q_outputs_op = [] for vs in [self.critic.output_vars, self.target_critic.output_vars]: assert len(vs) == 2 M, b = vs assert 'kernel' in M.name assert 'bias' in b.name assert M.get_shape()[-1] == 1 assert b.get_shape()[-1] == 1 self.renormalize_Q_outputs_op += [M.assign(M * self.old_std / new_std)] self.renormalize_Q_outputs_op += [b.assign((b * self.old_std + self.old_mean - new_mean) / new_std)] def setup_stats(self): ops = [] names = [] if self.normalize_returns: ops += [self.ret_rms.mean, self.ret_rms.std] names += ['ret_rms_mean', 'ret_rms_std'] if self.normalize_observations: ops += [tf.reduce_mean(self.obs_rms.mean), tf.reduce_mean(self.obs_rms.std)] names += ['obs_rms_mean', 'obs_rms_std'] ops += [tf.reduce_mean(self.critic_tf)] names += ['reference_Q_mean'] ops += [reduce_std(self.critic_tf)] names += ['reference_Q_std'] ops += [tf.reduce_mean(self.critic_with_actor_tf)] names += ['reference_actor_Q_mean'] ops += [reduce_std(self.critic_with_actor_tf)] names += ['reference_actor_Q_std'] ops += [tf.reduce_mean(self.actor_tf)] names += ['reference_action_mean'] ops += [reduce_std(self.actor_tf)] names += ['reference_action_std'] if self.param_noise: ops += [tf.reduce_mean(self.perturbed_actor_tf)] names += ['reference_perturbed_action_mean'] ops += [reduce_std(self.perturbed_actor_tf)] names += ['reference_perturbed_action_std'] self.stats_ops = ops self.stats_names = names def step(self, obs, apply_noise=True, compute_Q=True): if self.param_noise is not None and apply_noise: actor_tf = self.perturbed_actor_tf else: actor_tf = self.actor_tf feed_dict = {self.obs0: U.adjust_shape(self.obs0, [obs])} if compute_Q: action, q = self.sess.run([actor_tf, self.critic_with_actor_tf], feed_dict=feed_dict) else: action = self.sess.run(actor_tf, feed_dict=feed_dict) q = None # print(action) if self.action_noise is not None and apply_noise: noise = self.action_noise() # assert noise.shape == action.shape # print('ac: ', action, noise) action += noise #no need for clip here # action = np.clip(action, self.action_range[0], self.action_range[1]) # print(action) '''added''' action_set=[] print('action_before_binarization: ', action[0]) #discrete the action to be 0, 1 (binarization) for i in range (int(len(action[0]))): # '''tanh as output''' # # if action[0][i]>0: # # action_set.append(1) # # else: # # action_set.append(0) # '''sigmoid as output''' if action[0][i]>0.5: action_set.append(1) else: action_set.append(0) # print('action: ', action) ''' #DDPG doesnt use argmax to determine action like DQN!!! for i in range (int(len(action[0])/2)): # print(action[0][2*i:2*i+2]) action_set.append(np.argmax(action[0][2*i:2*i+2])) ''' # print('action_set: ', action_set) # action = np.argmax(action[0]) return action_set, q, None, None def store_transition(self, obs0, action, reward, obs1, terminal1): # print('rs: ', self.reward_scale*np.array([-1])) # reward *= self.reward_scale B = obs0.shape[0] for b in range(B): self.memory.append(obs0[b], action[b], reward[b], obs1[b], terminal1[b]) if self.normalize_observations: self.obs_rms.update(np.array([obs0[b]])) def train(self): # Get a batch. batch = self.memory.sample(batch_size=self.batch_size) if self.normalize_returns and self.enable_popart: old_mean, old_std, target_Q = self.sess.run([self.ret_rms.mean, self.ret_rms.std, self.target_Q], feed_dict={ self.obs1: batch['obs1'], self.rewards: batch['rewards'], self.terminals1: batch['terminals1'].astype('float32'), }) self.ret_rms.update(target_Q.flatten()) self.sess.run(self.renormalize_Q_outputs_op, feed_dict={ self.old_std : np.array([old_std]), self.old_mean : np.array([old_mean]), }) # Run sanity check. Disabled by default since it slows down things considerably. # print('running sanity check') # target_Q_new, new_mean, new_std = self.sess.run([self.target_Q, self.ret_rms.mean, self.ret_rms.std], feed_dict={ # self.obs1: batch['obs1'], # self.rewards: batch['rewards'], # self.terminals1: batch['terminals1'].astype('float32'), # }) # print(target_Q_new, target_Q, new_mean, new_std) # assert (np.abs(target_Q - target_Q_new) < 1e-3).all() else: target_Q = self.sess.run(self.target_Q, feed_dict={ self.obs1: batch['obs1'], self.rewards: batch['rewards'], self.terminals1: batch['terminals1'].astype('float32'), }) # Get all gradients and perform a synced update. ops = [self.actor_grads, self.actor_loss, self.critic_grads, self.critic_loss] actor_grads, actor_loss, critic_grads, critic_loss = self.sess.run(ops, feed_dict={ self.obs0: batch['obs0'], self.actions: batch['actions'], self.critic_target: target_Q, }) self.actor_optimizer.update(actor_grads, stepsize=self.actor_lr) self.critic_optimizer.update(critic_grads, stepsize=self.critic_lr) return critic_loss, actor_loss def initialize(self, sess): self.sess = sess self.sess.run(tf.global_variables_initializer()) self.actor_optimizer.sync() self.critic_optimizer.sync() self.sess.run(self.target_init_updates) def update_target_net(self): self.sess.run(self.target_soft_updates) def get_stats(self): if self.stats_sample is None: # Get a sample and keep that fixed for all further computations. # This allows us to estimate the change in value for the same set of inputs. self.stats_sample = self.memory.sample(batch_size=self.batch_size) values = self.sess.run(self.stats_ops, feed_dict={ self.obs0: self.stats_sample['obs0'], self.actions: self.stats_sample['actions'], }) names = self.stats_names[:] assert len(names) == len(values) stats = dict(zip(names, values)) if self.param_noise is not None: stats = {**stats, **self.param_noise.get_stats()} return stats def adapt_param_noise(self): if self.param_noise is None: return 0. # Perturb a separate copy of the policy to adjust the scale for the next "real" perturbation. batch = self.memory.sample(batch_size=self.batch_size) self.sess.run(self.perturb_adaptive_policy_ops, feed_dict={ self.param_noise_stddev: self.param_noise.current_stddev, }) distance = self.sess.run(self.adaptive_policy_distance, feed_dict={ self.obs0: batch['obs0'], self.param_noise_stddev: self.param_noise.current_stddev, }) mean_distance = MPI.COMM_WORLD.allreduce(distance, op=MPI.SUM) / MPI.COMM_WORLD.Get_size() self.param_noise.adapt(mean_distance) return mean_distance def reset(self): # Reset internal state after an episode is complete. if self.action_noise is not None: self.action_noise.reset() if self.param_noise is not None: self.sess.run(self.perturb_policy_ops, feed_dict={ self.param_noise_stddev: self.param_noise.current_stddev, }) #added def save(self, save_path): """ Save the model """ saver = tf.train.Saver() saver.save(self.sess, save_path) def load(self,sess, load_path): """ Load the model """ saver = tf.train.Saver() print('Loading ' + load_path) saver.restore(sess, load_path) self.sess = sess
def learn( env, policy_func, discriminator, expert_dataset, embedding_z, pretrained, pretrained_weight, *, g_step, d_step, timesteps_per_batch, # what to train on max_kl, cg_iters, gamma, lam, # advantage estimation entcoeff=0.0, cg_damping=1e-2, vf_stepsize=3e-4, d_stepsize=3e-4, vf_iters=3, max_timesteps=0, max_episodes=0, max_iters=0, # time constraint callback=None, save_per_iter=100, ckpt_dir=None, log_dir=None, load_model_path=None, task_name=None): nworkers = MPI.COMM_WORLD.Get_size() rank = MPI.COMM_WORLD.Get_rank() np.set_printoptions(precision=3) # Setup losses and stuff # ---------------------------------------- ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", ob_space, ac_space, reuse=(pretrained_weight != None)) oldpi = policy_func("oldpi", ob_space, ac_space) atarg = tf.placeholder( dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) kloldnew = oldpi.pd.kl(pi.pd) ent = pi.pd.entropy() meankl = U.mean(kloldnew) meanent = U.mean(ent) entbonus = entcoeff * meanent vferr = U.mean(tf.square(pi.vpred - ret)) ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold surrgain = U.mean(ratio * atarg) optimgain = surrgain + entbonus losses = [optimgain, meankl, entbonus, surrgain, meanent] loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"] dist = meankl all_var_list = pi.get_trainable_variables() var_list = [ v for v in all_var_list if v.name.split("/")[1].startswith("pol") ] vf_var_list = [ v for v in all_var_list if v.name.split("/")[1].startswith("vf") ] d_adam = MpiAdam(discriminator.get_trainable_variables()) vfadam = MpiAdam(vf_var_list) get_flat = U.GetFlat(var_list) set_from_flat = U.SetFromFlat(var_list) klgrads = tf.gradients(dist, var_list) flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan") shapes = [var.get_shape().as_list() for var in var_list] start = 0 tangents = [] for shape in shapes: sz = U.intprod(shape) tangents.append(tf.reshape(flat_tangent[start:start + sz], shape)) start += sz gvp = tf.add_n( [U.sum(g * tangent) for (g, tangent) in zipsame(klgrads, tangents)]) # pylint: disable=E1111 fvp = U.flatgrad(gvp, var_list) assign_old_eq_new = U.function( [], [], updates=[ tf.assign(oldv, newv) for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables()) ]) compute_losses = U.function([ob, ac, atarg], losses) compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)]) compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp) compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list)) @contextmanager def timed(msg): if rank == 0: print(colorize(msg, color='magenta')) tstart = time.time() yield print( colorize("done in %.3f seconds" % (time.time() - tstart), color='magenta')) else: yield def allmean(x): assert isinstance(x, np.ndarray) out = np.empty_like(x) MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM) out /= nworkers return out writer = U.FileWriter(log_dir) U.initialize() th_init = get_flat() MPI.COMM_WORLD.Bcast(th_init, root=0) set_from_flat(th_init) d_adam.sync() vfadam.sync() print("Init param sum", th_init.sum(), flush=True) # Prepare for rollouts # ---------------------------------------- seg_gen = traj_segment_generator(pi, env, discriminator, embedding=embedding_z, timesteps_per_batch=timesteps_per_batch, stochastic=True) episodes_so_far = 0 timesteps_so_far = 0 iters_so_far = 0 tstart = time.time() lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards true_rewbuffer = deque(maxlen=40) assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1 g_loss_stats = stats(loss_names) d_loss_stats = stats(discriminator.loss_name) ep_stats = stats(["True_rewards", "Rewards", "Episode_length"]) # if provide pretrained weight if pretrained_weight is not None: U.load_state(pretrained_weight, var_list=pi.get_variables()) # if provieded model path if load_model_path is not None: U.load_state(load_model_path) while True: if callback: callback(locals(), globals()) if max_timesteps and timesteps_so_far >= max_timesteps: break elif max_episodes and episodes_so_far >= max_episodes: break elif max_iters and iters_so_far >= max_iters: break # Save model if iters_so_far % save_per_iter == 0 and ckpt_dir is not None: U.save_state(os.path.join(ckpt_dir, task_name), counter=iters_so_far) logger.log("********** Iteration %i ************" % iters_so_far) def fisher_vector_product(p): return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p # ------------------ Update G ------------------ logger.log("Optimizing Policy...") for _ in range(g_step): with timed("sampling"): seg = seg_gen.__next__() add_vtarg_and_adv(seg, gamma, lam) # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets)) ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[ "tdlamret"] vpredbefore = seg[ "vpred"] # predicted value function before udpate atarg = (atarg - atarg.mean()) / atarg.std( ) # standardized advantage function estimate if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy args = seg["ob"], seg["ac"], atarg fvpargs = [arr[::5] for arr in args] assign_old_eq_new( ) # set old parameter values to new parameter values with timed("computegrad"): *lossbefore, g = compute_lossandgrad(*args) lossbefore = allmean(np.array(lossbefore)) g = allmean(g) if np.allclose(g, 0): logger.log("Got zero gradient. not updating") else: with timed("cg"): stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank == 0) assert np.isfinite(stepdir).all() shs = .5 * stepdir.dot(fisher_vector_product(stepdir)) lm = np.sqrt(shs / max_kl) # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g)) fullstep = stepdir / lm expectedimprove = g.dot(fullstep) surrbefore = lossbefore[0] stepsize = 1.0 thbefore = get_flat() for _ in range(10): thnew = thbefore + fullstep * stepsize set_from_flat(thnew) meanlosses = surr, kl, *_ = allmean( np.array(compute_losses(*args))) improve = surr - surrbefore logger.log("Expected: %.3f Actual: %.3f" % (expectedimprove, improve)) if not np.isfinite(meanlosses).all(): logger.log("Got non-finite value of losses -- bad!") elif kl > max_kl * 1.5: logger.log("violated KL constraint. shrinking step.") elif improve < 0: logger.log("surrogate didn't improve. shrinking step.") else: logger.log("Stepsize OK!") break stepsize *= .5 else: logger.log("couldn't compute a good step") set_from_flat(thbefore) if nworkers > 1 and iters_so_far % 20 == 0: paramsums = MPI.COMM_WORLD.allgather( (thnew.sum(), vfadam.getflat().sum())) # list of tuples assert all( np.allclose(ps, paramsums[0]) for ps in paramsums[1:]) with timed("vf"): for _ in range(vf_iters): for (mbob, mbret) in dataset.iterbatches( (seg["ob"], seg["tdlamret"]), include_final_partial_batch=False, batch_size=128): if hasattr(pi, "ob_rms"): pi.ob_rms.update( mbob) # update running mean/std for policy g = allmean(compute_vflossandgrad(mbob, mbret)) vfadam.update(g, vf_stepsize) g_losses = meanlosses for (lossname, lossval) in zip(loss_names, meanlosses): logger.record_tabular(lossname, lossval) logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret)) # ------------------ Update D ------------------ logger.log("Optimizing Discriminator...") logger.log(fmt_row(13, discriminator.loss_name)) ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob)) batch_size = len(ob) // d_step d_losses = [ ] # list of tuples, each of which gives the loss for a minibatch for ob_batch, ac_batch in dataset.iterbatches( (ob, ac), include_final_partial_batch=False, batch_size=batch_size): ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob_batch)) # update running mean/std for discriminator if hasattr(discriminator, "obs_rms"): discriminator.obs_rms.update( np.concatenate((ob_batch, ob_expert), 0)) *newlosses, g = discriminator.lossandgrad(ob_batch, ac_batch, ob_expert, ac_expert) d_adam.update(allmean(g), d_stepsize) d_losses.append(newlosses) logger.log(fmt_row(13, np.mean(d_losses, axis=0))) lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"] ) # local values listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples lens, rews, true_rets = map(flatten_lists, zip(*listoflrpairs)) true_rewbuffer.extend(true_rets) lenbuffer.extend(lens) rewbuffer.extend(rews) logger.record_tabular("EpLenMean", np.mean(lenbuffer)) logger.record_tabular("EpRewMean", np.mean(rewbuffer)) logger.record_tabular("EpTrueRewMean", np.mean(true_rewbuffer)) logger.record_tabular("EpThisIter", len(lens)) episodes_so_far += len(lens) timesteps_so_far += sum(lens) iters_so_far += 1 logger.record_tabular("EpisodesSoFar", episodes_so_far) logger.record_tabular("TimestepsSoFar", timesteps_so_far) logger.record_tabular("TimeElapsed", time.time() - tstart) if rank == 0: logger.dump_tabular() g_loss_stats.add_all_summary(writer, g_losses, iters_so_far) d_loss_stats.add_all_summary(writer, np.mean(d_losses, axis=0), iters_so_far) ep_stats.add_all_summary(writer, [ np.mean(true_rewbuffer), np.mean(rewbuffer), np.mean(lenbuffer) ], iters_so_far)
class DDPG(object): def __init__(self, actor, critic, memory, demon_buffer, observation_shape, action_shape, param_noise=None, action_noise=None, gamma=0.99, tau=0.001, normalize_returns=False, enable_popart=False, normalize_observations=True, batch_size=128, observation_range=(-1000., 1000.), action_range=(-50., 50.), return_range=(-np.inf, np.inf), adaptive_param_noise=True, adaptive_param_noise_policy_threshold=.1, critic_l2_reg=0., actor_lr=1e-4, critic_lr=1e-3, clip_norm=None, reward_scale=1.): # Inputs. self.obs0 = tf.placeholder(tf.float32, shape=(None, ) + observation_shape, name='obs0') self.obs1 = tf.placeholder(tf.float32, shape=(None, ) + observation_shape, name='obs1') self.terminals1 = tf.placeholder(tf.float32, shape=(None, 1), name='terminals1') self.rewards = tf.placeholder(tf.float32, shape=(None, 1), name='rewards') self.actions = tf.placeholder(tf.float32, shape=(None, ) + action_shape, name='actions') self.critic_target = tf.placeholder(tf.float32, shape=(None, 1), name='critic_target') self.param_noise_stddev = tf.placeholder(tf.float32, shape=(), name='param_noise_stddev') # Parameters. self.gamma = gamma self.tau = tau self.memory = memory '''have to use 2 memory here, simply demon_memory = memory will cause a common instantiated memory shared by two variables''' self.demon_memory = demon_buffer self.normalize_observations = normalize_observations self.normalize_returns = normalize_returns self.action_noise = action_noise self.param_noise = param_noise self.action_range = action_range self.return_range = return_range self.observation_range = observation_range self.critic = critic self.actor = actor self.actor_lr = actor_lr self.critic_lr = critic_lr self.clip_norm = clip_norm self.enable_popart = enable_popart self.reward_scale = reward_scale self.batch_size = batch_size self.stats_sample = None self.critic_l2_reg = critic_l2_reg # Observation normalization. if self.normalize_observations: with tf.variable_scope('obs_rms'): self.obs_rms = RunningMeanStd(shape=observation_shape) else: self.obs_rms = None normalized_obs0 = tf.clip_by_value(normalize(self.obs0, self.obs_rms), self.observation_range[0], self.observation_range[1]) normalized_obs1 = tf.clip_by_value(normalize(self.obs1, self.obs_rms), self.observation_range[0], self.observation_range[1]) # Return normalization. if self.normalize_returns: with tf.variable_scope('ret_rms'): self.ret_rms = RunningMeanStd() else: self.ret_rms = None # Create target networks. target_actor = copy(actor) target_actor.name = 'target_actor' self.target_actor = target_actor target_critic = copy(critic) target_critic.name = 'target_critic' self.target_critic = target_critic # Create networks and core TF parts that are shared across setup parts. self.actor_tf = actor(normalized_obs0) self.normalized_critic_tf = critic(normalized_obs0, self.actions) self.critic_tf = denormalize( tf.clip_by_value(self.normalized_critic_tf, self.return_range[0], self.return_range[1]), self.ret_rms) self.normalized_critic_with_actor_tf = critic(normalized_obs0, self.actor_tf, reuse=True) self.critic_with_actor_tf = denormalize( tf.clip_by_value(self.normalized_critic_with_actor_tf, self.return_range[0], self.return_range[1]), self.ret_rms) Q_obs1 = denormalize( target_critic(normalized_obs1, target_actor(normalized_obs1)), self.ret_rms) self.target_Q = self.rewards + (1. - self.terminals1) * gamma * Q_obs1 # Set up parts. if self.param_noise is not None: self.setup_param_noise(normalized_obs0) self.setup_actor_optimizer() self.setup_critic_optimizer() if self.normalize_returns and self.enable_popart: self.setup_popart() self.setup_stats() self.setup_target_network_updates() self.initial_state = None # recurrent architectures not supported yet def setup_target_network_updates(self): actor_init_updates, actor_soft_updates = get_target_updates( self.actor.vars, self.target_actor.vars, self.tau) critic_init_updates, critic_soft_updates = get_target_updates( self.critic.vars, self.target_critic.vars, self.tau) self.target_init_updates = [actor_init_updates, critic_init_updates] self.target_soft_updates = [actor_soft_updates, critic_soft_updates] def setup_param_noise(self, normalized_obs0): assert self.param_noise is not None # Configure perturbed actor. param_noise_actor = copy(self.actor) param_noise_actor.name = 'param_noise_actor' self.perturbed_actor_tf = param_noise_actor(normalized_obs0) logger.info('setting up param noise') self.perturb_policy_ops = get_perturbed_actor_updates( self.actor, param_noise_actor, self.param_noise_stddev) # Configure separate copy for stddev adoption. adaptive_param_noise_actor = copy(self.actor) adaptive_param_noise_actor.name = 'adaptive_param_noise_actor' adaptive_actor_tf = adaptive_param_noise_actor(normalized_obs0) self.perturb_adaptive_policy_ops = get_perturbed_actor_updates( self.actor, adaptive_param_noise_actor, self.param_noise_stddev) self.adaptive_policy_distance = tf.sqrt( tf.reduce_mean(tf.square(self.actor_tf - adaptive_actor_tf))) def setup_actor_optimizer(self): logger.info('setting up actor optimizer') self.actor_loss = -tf.reduce_mean(self.critic_with_actor_tf) actor_shapes = [ var.get_shape().as_list() for var in self.actor.trainable_vars ] actor_nb_params = sum( [reduce(lambda x, y: x * y, shape) for shape in actor_shapes]) logger.info(' actor shapes: {}'.format(actor_shapes)) logger.info(' actor params: {}'.format(actor_nb_params)) self.actor_grads = U.flatgrad(self.actor_loss, self.actor.trainable_vars, clip_norm=self.clip_norm) self.actor_optimizer = MpiAdam(var_list=self.actor.trainable_vars, beta1=0.9, beta2=0.999, epsilon=1e-08) def setup_critic_optimizer(self): logger.info('setting up critic optimizer') normalized_critic_target_tf = tf.clip_by_value( normalize(self.critic_target, self.ret_rms), self.return_range[0], self.return_range[1]) self.critic_loss = tf.reduce_mean( tf.square(self.normalized_critic_tf - normalized_critic_target_tf)) if self.critic_l2_reg > 0.: critic_reg_vars = [ var for var in self.critic.trainable_vars if 'kernel' in var.name and 'output' not in var.name ] for var in critic_reg_vars: logger.info(' regularizing: {}'.format(var.name)) logger.info(' applying l2 regularization with {}'.format( self.critic_l2_reg)) critic_reg = tc.layers.apply_regularization( tc.layers.l2_regularizer(self.critic_l2_reg), weights_list=critic_reg_vars) self.critic_loss += critic_reg critic_shapes = [ var.get_shape().as_list() for var in self.critic.trainable_vars ] critic_nb_params = sum( [reduce(lambda x, y: x * y, shape) for shape in critic_shapes]) logger.info(' critic shapes: {}'.format(critic_shapes)) logger.info(' critic params: {}'.format(critic_nb_params)) self.critic_grads = U.flatgrad(self.critic_loss, self.critic.trainable_vars, clip_norm=self.clip_norm) self.critic_optimizer = MpiAdam(var_list=self.critic.trainable_vars, beta1=0.9, beta2=0.999, epsilon=1e-08) def setup_popart(self): # See https://arxiv.org/pdf/1602.07714.pdf for details. self.old_std = tf.placeholder(tf.float32, shape=[1], name='old_std') new_std = self.ret_rms.std self.old_mean = tf.placeholder(tf.float32, shape=[1], name='old_mean') new_mean = self.ret_rms.mean self.renormalize_Q_outputs_op = [] for vs in [self.critic.output_vars, self.target_critic.output_vars]: assert len(vs) == 2 M, b = vs assert 'kernel' in M.name assert 'bias' in b.name assert M.get_shape()[-1] == 1 assert b.get_shape()[-1] == 1 self.renormalize_Q_outputs_op += [ M.assign(M * self.old_std / new_std) ] self.renormalize_Q_outputs_op += [ b.assign( (b * self.old_std + self.old_mean - new_mean) / new_std) ] def setup_stats(self): ops = [] names = [] if self.normalize_returns: ops += [self.ret_rms.mean, self.ret_rms.std] names += ['ret_rms_mean', 'ret_rms_std'] if self.normalize_observations: ops += [ tf.reduce_mean(self.obs_rms.mean), tf.reduce_mean(self.obs_rms.std) ] names += ['obs_rms_mean', 'obs_rms_std'] ops += [tf.reduce_mean(self.critic_tf)] names += ['reference_Q_mean'] ops += [reduce_std(self.critic_tf)] names += ['reference_Q_std'] ops += [tf.reduce_mean(self.critic_with_actor_tf)] names += ['reference_actor_Q_mean'] ops += [reduce_std(self.critic_with_actor_tf)] names += ['reference_actor_Q_std'] ops += [tf.reduce_mean(self.actor_tf)] names += ['reference_action_mean'] ops += [reduce_std(self.actor_tf)] names += ['reference_action_std'] if self.param_noise: ops += [tf.reduce_mean(self.perturbed_actor_tf)] names += ['reference_perturbed_action_mean'] ops += [reduce_std(self.perturbed_actor_tf)] names += ['reference_perturbed_action_std'] self.stats_ops = ops self.stats_names = names def step(self, obs, apply_noise=True, compute_Q=True): if self.param_noise is not None and apply_noise: actor_tf = self.perturbed_actor_tf else: actor_tf = self.actor_tf feed_dict = {self.obs0: U.adjust_shape(self.obs0, [obs])} if compute_Q: action, q = self.sess.run([actor_tf, self.critic_with_actor_tf], feed_dict=feed_dict) else: action = self.sess.run(actor_tf, feed_dict=feed_dict) q = None if self.action_noise is not None and apply_noise: noise = self.action_noise() # print('noise: ', noise.shape, action.shape) # assert noise.shape == action.shape #(1,3), (3,) correct addition, no need to assert # print(action, noise) action += noise # print(action) action = np.clip(action, self.action_range[0], self.action_range[1]) return action, q, None, None def store_transition(self, obs0, action, reward, obs1, terminal1): B = obs0.shape[0] for b in range(B): self.memory.append(obs0[b], action[b], reward[b], obs1[b], terminal1[b]) if self.normalize_observations: self.obs_rms.update(np.array([obs0[b]])) def train(self): demons_memory_ratio = 0.5 # the ratio of demonstrations over all batches sampled # Get a batch from memory batch = self.memory.sample(batch_size=int(2 * self.batch_size * (1 - demons_memory_ratio))) # Get a batch from demonstration buffer demon_batch = self.demon_memory.sample( batch_size=int(2 * self.batch_size * demons_memory_ratio)) # print('memory: ', batch['obs1'].shape, 'demons: ', demon_batch['obs1'].shape) # concatenate two sampled batches batch['obs0'] = np.concatenate((batch['obs0'], demon_batch['obs0'])) batch['rewards'] = np.concatenate( (batch['rewards'], demon_batch['rewards'])) batch['terminals1'] = np.concatenate( (batch['terminals1'], demon_batch['terminals1'])) batch['obs1'] = np.concatenate((batch['obs1'], demon_batch['obs1'])) batch['actions'] = np.concatenate( (batch['actions'], demon_batch['actions'])) # batch = demon_batch if self.normalize_returns and self.enable_popart: old_mean, old_std, target_Q = self.sess.run( [self.ret_rms.mean, self.ret_rms.std, self.target_Q], feed_dict={ self.obs1: batch['obs1'], self.rewards: batch['rewards'], self.terminals1: batch['terminals1'].astype('float32'), }) self.ret_rms.update(target_Q.flatten()) self.sess.run(self.renormalize_Q_outputs_op, feed_dict={ self.old_std: np.array([old_std]), self.old_mean: np.array([old_mean]), }) else: target_Q = self.sess.run(self.target_Q, feed_dict={ self.obs1: batch['obs1'], self.rewards: batch['rewards'], self.terminals1: batch['terminals1'].astype('float32'), }) # Get all gradients and perform a synced update. ops = [ self.actor_grads, self.actor_loss, self.critic_grads, self.critic_loss ] actor_grads, actor_loss, critic_grads, critic_loss = self.sess.run( ops, feed_dict={ self.obs0: batch['obs0'], self.actions: batch['actions'], self.critic_target: target_Q, }) self.actor_optimizer.update(actor_grads, stepsize=self.actor_lr) self.critic_optimizer.update(critic_grads, stepsize=self.critic_lr) # print('loss: ', actor_loss, critic_loss) return critic_loss, actor_loss def initialize(self, sess): self.sess = sess self.sess.run(tf.global_variables_initializer()) self.actor_optimizer.sync() self.critic_optimizer.sync() self.sess.run(self.target_init_updates) def update_target_net(self): self.sess.run(self.target_soft_updates) def get_stats(self): if self.stats_sample is None: # Get a sample and keep that fixed for all further computations. # This allows us to estimate the change in value for the same set of inputs. self.stats_sample = self.memory.sample(batch_size=self.batch_size) values = self.sess.run(self.stats_ops, feed_dict={ self.obs0: self.stats_sample['obs0'], self.actions: self.stats_sample['actions'], }) names = self.stats_names[:] assert len(names) == len(values) stats = dict(zip(names, values)) if self.param_noise is not None: stats = {**stats, **self.param_noise.get_stats()} return stats def adapt_param_noise(self): if self.param_noise is None: return 0. # Perturb a separate copy of the policy to adjust the scale for the next "real" perturbation. batch = self.memory.sample(batch_size=self.batch_size) self.sess.run(self.perturb_adaptive_policy_ops, feed_dict={ self.param_noise_stddev: self.param_noise.current_stddev, }) distance = self.sess.run(self.adaptive_policy_distance, feed_dict={ self.obs0: batch['obs0'], self.param_noise_stddev: self.param_noise.current_stddev, }) mean_distance = MPI.COMM_WORLD.allreduce( distance, op=MPI.SUM) / MPI.COMM_WORLD.Get_size() self.param_noise.adapt(mean_distance) return mean_distance def reset(self): # Reset internal state after an episode is complete. if self.action_noise is not None: self.action_noise.reset() if self.param_noise is not None: self.sess.run(self.perturb_policy_ops, feed_dict={ self.param_noise_stddev: self.param_noise.current_stddev, }) #added def save(self, save_path): """ Save the model """ saver = tf.train.Saver() saver.save(self.sess, save_path) def load(self, sess, load_path): """ Load the model """ saver = tf.train.Saver() print('Loading ' + load_path) saver.restore(sess, load_path) self.sess = sess # def feed_demon2memory(self): # """ # feed demonstrations from data file into memory # """ # with open('data_memory2_21steps.p', 'rb') as f: # data = pickle.load(f) # for _, episode in enumerate(data): # for _, step in enumerate(episode): # # state, action, reward, new_state, done # self.store_transition(np.array(step[0]), step[1], step[2], step[3], step[4]) def store_transition2demon(self, obs0, action, reward, obs1, terminal1): B = obs0.shape[0] for b in range(B): self.demon_memory.append(obs0[b], action[b], reward[b], obs1[b], terminal1[b]) if self.normalize_observations: self.obs_rms.update(np.array([obs0[b]])) def feed_demon_buffer(self): ''' sample from the demonstration data instead of feeding them into the memory ''' batch = {} with open('data_memory2_21steps.p', 'rb') as f: data = pickle.load(f) for _, episode in enumerate(data): for _, step in enumerate(episode): # state, action, reward, new_state, done self.store_transition2demon(np.array(step[0]), step[1], step[2], step[3], step[4])
def learn(encoder, action_decorder, state_decorder, embedding_shape, *, dataset, logdir, batch_size, time_steps, epsilon=0.001, lr_rate=1e-3): lstm_encoder = encoder("lstm_encoder") ac_decoder = action_decorder("ac_decoder") state_decoder = state_decorder("state_decoder") #换成了mlp obs = U.get_placeholder_cached(name="obs") ##for encoder ob = U.get_placeholder_cached(name="ob") embedding = U.get_placeholder_cached(name="embedding") # obss = U.get_placeholder_cached(name="obss") ## for action decoder, 这个state decoder是不是也可以用, 是不是应该改成obs # ## for action decoder, 这个state decoder应该也是可以用的 # embeddingss = U.get_placeholder_cached(name="embeddingss") ac = ac_decoder.pdtype.sample_placeholder([None]) obs_out = state_decoder.pdtype.sample_placeholder([None]) # p(z) 标准正太分布, state先验分布???是不是应该换成demonstration的标准正态分布???? 可以考虑一下这个问题 from common.distributions import make_pdtype p_z_pdtype = make_pdtype(embedding_shape) p_z_params = U.concatenate([ tf.zeros(shape=[embedding_shape], name="mean"), tf.zeros(shape=[embedding_shape], name="logstd") ], axis=-1) p_z = p_z_pdtype.pdfromflat(p_z_params) recon_loss = -tf.reduce_mean( tf.reduce_sum(ac_decoder.pd.logp(ac) + state_decoder.pd.logp(obs_out), axis=0)) ##这个地方还要再改 kl_loss = lstm_encoder.pd.kl(p_z) ##p(z):标准正太分布, 这个看起来是不是也不太对!!!! vae_loss = recon_loss + kl_loss ###vae_loss 应该是一个batch的 ep_stats = stats(["recon_loss", "kl_loss", "vae_loss"]) losses = [recon_loss, kl_loss, vae_loss] ## var_list var_list = [] en_var_list = lstm_encoder.get_trainable_variables() var_list.extend(en_var_list) # ac_de_var_list = ac_decoder.get_trainable_variables() # var_list.extend(ac_de_var_list) state_de_var_list = state_decoder.get_trainable_variables() var_list.extend(state_de_var_list) # compute_recon_loss = U.function([ob, obs, embedding, obss, embeddingss, ac, obs_out], recon_loss) compute_losses = U.function([obs, ob, embedding, ac, obs_out], losses) compute_grad = U.function([obs, ob, embedding, ac, obs_out], U.flatgrad(vae_loss, var_list)) ###这里没有想好!!!,可能是不对的!! adam = MpiAdam(var_list, epsilon=epsilon) U.initialize() adam.sync() writer = U.FileWriter(logdir) writer.add_graph(tf.get_default_graph()) # =========================== TRAINING ===================== # iters_so_far = 0 saver = tf.train.Saver(var_list=tf.trainable_variables(), max_to_keep=100) saver_encoder = tf.train.Saver(var_list=en_var_list, max_to_keep=100) # saver_pol = tf.train.Saver(var_list=ac_de_var_list, max_to_keep=100) ##保留一下policy的参数,但是这个好像用不到哎 while True: logger.log("********** Iteration %i ************" % iters_so_far) recon_loss_buffer = deque(maxlen=100) kl_loss_buffer = deque(maxlen=100) vae_loss_buffer = deque(maxlen=100) for observations in dataset.get_next_batch(batch_size=time_steps): observations = observations.transpose((1, 0)) embedding_now = lstm_encoder.get_laten_vector(observations) embeddings = np.array([embedding_now for _ in range(time_steps)]) embeddings_reshape = embeddings.reshape((time_steps, -1)) actions = ac_decoder.act(stochastic=True, ob=observations, embedding=embeddings_reshape) state_outputs = state_decoder.get_outputs( observations.reshape(time_steps, -1, 1), embeddings) ##还没有加混合高斯......乱加了一通,已经加完了 recon_loss, kl_loss, vae_loss = compute_losses( observations, observations.reshape(batch_size, time_steps, -1), embeddings_reshape, observations.reshape(time_steps, -1, 1), embeddings, actions, state_outputs) g = compute_grad(observations, observations.reshape(batch_size, time_steps, -1), embeddings_reshape, observations.reshape(time_steps, -1, 1), embeddings, actions, state_outputs) adam.update(g, lr_rate) recon_loss_buffer.append(recon_loss) kl_loss_buffer.append(kl_loss) vae_loss_buffer.append(vae_loss) ep_stats.add_all_summary(writer, [ np.mean(recon_loss_buffer), np.mean(kl_loss_buffer), np.mean(vae_loss_buffer) ], iters_so_far) logger.record_tabular("recon_loss", recon_loss) logger.record_tabular("kl_loss", kl_loss) logger.record_tabular("vae_loss", vae_loss) logger.dump_tabular() if (iters_so_far % 10 == 0 and iters_so_far != 0): save(saver=saver, sess=tf.get_default_session(), logdir=logdir, step=iters_so_far) save(saver=saver_encoder, sess=tf.get_default_session(), logdir="./vae_saver", step=iters_so_far) # save(saver=saver_pol, sess=tf.get_default_session(), logdir="pol_saver", step=iters_so_far) iters_so_far += 1
def learn(env, model_path, data_path, policy_fn, model_learning_params, svm_grid_params, svm_params_interest, svm_params_guard, *, modes, rolloutSize, num_options=2, horizon, # timesteps per actor per update clip_param, ent_coeff=0.02, # clipping parameter epsilon, entropy coeff optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=160, # optimization hypers gamma=0.99, lam=0.95, # advantage estimation max_iters=0, # time constraint adam_epsilon=1.2e-4, schedule='linear', # annealing for stepsize parameters (epsilon and adam) retrain=False ): """ Core learning function """ ob_space = env.observation_space ac_space = env.action_space if retrain: model = pickle.load(open(model_path + '/hybrid_model.pkl', 'rb')) print("Model graph:", model.transitionGraph.nodes) print("Model options:", model.transitionGraph.edges) else: model = partialHybridModel(env, model_learning_params, svm_grid_params, svm_params_interest, svm_params_guard, horizon, modes, num_options, rolloutSize) pi = policy_fn("pi", ob_space, ac_space, model, num_options) # Construct network for new policy oldpi = policy_fn("oldpi", ob_space, ac_space, model, num_options) # Network for old policy atarg = tf1.placeholder(dtype=tf1.float32, shape=[None]) # Target advantage function (if applicable) ret = tf1.placeholder(dtype=tf1.float32, shape=[None]) # Empirical return lrmult = tf1.placeholder(name='lrmult', dtype=tf1.float32, shape=[]) # learning rate multiplier, updated with schedule clip_param = clip_param * lrmult # Annealed cliping parameter epislon # Define placeholders for computing the advantage ob = U.get_placeholder_cached(name="ob") option = U.get_placeholder_cached(name="option") ac = pi.pdtype.sample_placeholder([None]) # Defining losses for optimization kloldnew = oldpi.pd.kl(pi.pd) ent = pi.pd.entropy() meankl = tf1.reduce_mean(kloldnew) meanent = tf1.reduce_mean(ent) pol_entpen = (-ent_coeff) * meanent ratio = tf1.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # pnew / pold surr1 = ratio * atarg # surrogate from conservative policy iteration surr2 = tf1.clip_by_value(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg # pol_surr = - tf1.reduce_mean(tf1.minimum(surr1, surr2)) # PPO's pessimistic surrogate (L^CLIP), negative to convert from a maximization to minimization problem vf_loss = tf1.reduce_mean(tf1.square(pi.vpred - ret)) total_loss = pol_surr + pol_entpen + vf_loss losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent] loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"] var_list = pi.get_trainable_variables() lossandgrad = U.function([ob, ac, atarg, ret, lrmult, option], losses + [U.flatgrad(total_loss, var_list)]) adam = MpiAdam(var_list, epsilon=adam_epsilon) assign_old_eq_new = U.function([], [], updates=[tf1.assign(oldv, newv) for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())]) compute_losses = U.function([ob, ac, atarg, ret, lrmult, option], losses) U.initialize() adam.sync() # Prepare for rollouts episodes_so_far = 0 timesteps_so_far = 0 global iters_so_far iters_so_far = 0 tstart = time.time() lenbuffer = deque(maxlen=10) # rolling buffer for episode lengths rewbuffer = deque(maxlen=10) # rolling buffer for episode rewards p = [] # for saving the rollouts if retrain: print("Retraining to New Task !!") time.sleep(2) U.load_state(model_path+'/') print(pi.eps) max_timesteps = int(horizon * rolloutSize * max_iters) while True: if max_iters and iters_so_far >= max_iters: break if schedule == 'constant': cur_lrmult = 1.0 elif schedule == 'linear': cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0) else: raise NotImplementedError logger.log("************* Iteration %i *************" % iters_so_far) print("Collecting samples for policy optimization !! ") render = False rollouts = sample_trajectory(pi, model, env, horizon=horizon, rolloutSize=rolloutSize, render=render) # Save rollouts data = {'rollouts': rollouts} p.append(data) del data data_file_name = data_path + '/rollout_data.pkl' pickle.dump(p, open(data_file_name, "wb")) # Model update print("Updating model !!\n") model.updateModel(rollouts, pi) print("Model graph:", model.transitionGraph.nodes) print("Model options:", model.transitionGraph.edges) edges = list(model.transitionGraph.edges) for i in range(0, len(edges)): print(edges[i][0], " -> ", edges[i][1], " : ", model.transitionGraph[edges[i][0]][edges[i][1]]['weight']) datas = [0 for _ in range(num_options)] add_vtarg_and_adv(rollouts, pi, gamma, lam, num_options) ob, ac, opts, atarg, tdlamret = rollouts["seg_obs"], rollouts["seg_acs"], rollouts["des_opts"], rollouts["adv"], rollouts["tdlamret"] old_opts = rollouts["seg_opts"] similarity = 0 for i in range(0, len(old_opts)): if old_opts[i] == opts[i]: similarity += 1 print("Percentage similarity of options: ", similarity/len(old_opts) * 100) vpredbefore = rollouts["vpreds"] # predicted value function before udpate atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy assign_old_eq_new() pi.eps = pi.eps * gamma #reduce exploration # Optimizing the policy print("\nOptimizing policy !! \n") for opt in range(num_options): indices = np.where(opts == opt)[0] print("Option- ", opt, " Batch Size: ", indices.size) if not indices.size: continue datas[opt] = d = Dataset(dict(ob=ob[indices], ac=ac[indices], atarg=atarg[indices], vtarg=tdlamret[indices]), shuffle=not pi.recurrent) if indices.size < optim_batchsize: print("Too few samples for opt - ", opt) continue optim_batchsize_corrected = optim_batchsize optim_epochs_corrected = np.clip(np.int(indices.size / optim_batchsize_corrected), 1, optim_epochs) print("Optim Epochs:", optim_epochs_corrected) logger.log("Optimizing...") # Here we do a bunch of optimization epochs over the data for _ in range(optim_epochs_corrected): losses = [] # list of tuples, each of which gives the loss for a minibatch for batch in d.iterate_once(optim_batchsize_corrected): *newlosses, grads = lossandgrad(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult, [opt]) if np.isnan(newlosses).any(): continue adam.update(grads, optim_stepsize * cur_lrmult) losses.append(newlosses) if len(losses) > 0: meanlosses, _, _ = mpi_moments(losses, axis=0) print("Mean loss ", meanlosses) for (lossval, name) in zipsame(meanlosses, loss_names): logger.record_tabular("loss_" + name, lossval) lrlocal = (rollouts["ep_lens"], rollouts["ep_rets"]) # local values listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples lens, rews = map(flatten_lists, zip(*listoflrpairs)) lenbuffer.extend(lens) rewbuffer.extend(rews) logger.record_tabular("Success", rollouts["success"]) logger.record_tabular("EpLenMean", np.mean(lenbuffer)) logger.record_tabular("EpRewMean", np.mean(rewbuffer)) logger.record_tabular("EpThisIter", len(lens)) episodes_so_far += len(lens) timesteps_so_far += sum(lens) iters_so_far += 1 logger.record_tabular("EpisodesSoFar", episodes_so_far) logger.record_tabular("TimestepsSoFar", timesteps_so_far) logger.record_tabular("TimeElapsed", time.time() - tstart) if MPI.COMM_WORLD.Get_rank() == 0: logger.dump_tabular() ''' if model_path and not retrain: U.save_state(model_path + '/') model_file_name = model_path + '/hybrid_model.pkl' pickle.dump(model, open(model_file_name, "wb"), pickle.HIGHEST_PROTOCOL) print("Policy and Model saved in - ", model_path) ''' return pi, model
def learn(env, encoder, action_decorder, state_decorder, embedding_shape,*, dataset, optimizer, logdir, batch_size, time_steps, adam_epsilon = 0.001, lr_rate = 1e-4, vae_beta = 8): lstm_encoder = encoder("lstm_encoder") ac_decoder = action_decorder("ac_decoder") state_decoder = state_decorder("state_decoder") #这个地方有问题 ac_de_ob = U.get_placeholder_cached(name="ac_de_ob") en_ob = U.get_placeholder_cached(name="en_ob") ##for encoder state_de_ob = U.get_placeholder_cached(name="state_de_ob") ## for action decoder, 这个state decoder是不是也可以用, 是不是应该改成obs ac_de_embedding = U.get_placeholder_cached(name="ac_de_embedding") ## for action decoder, 这个state decoder应该也是可以用的 state_de_embedding = U.get_placeholder_cached(name="state_de_embedding") # ac = ac_decoder.pdtype.sample_placeholder([None]) ob_next = tf.placeholder(name="ob_next", shape=[None, ob_shape], dtype=tf.float32) # ob_next_ac = tf.placeholder(name="ob_next_ac", shape=[ob_shape], dtype=tf.float32) # obs_out = state_decoder.pdtype.sample_placeholder([None]) # p(z) 标准正太分布 from common.distributions import make_pdtype p_z_pdtype = make_pdtype(embedding_shape) p_z_params = U.concatenate([tf.zeros(shape=[embedding_shape], name="mean"), tf.zeros(shape=[embedding_shape], name="logstd")], axis=-1) p_z = p_z_pdtype.pdfromflat(p_z_params) # recon_loss 里再加一个,对于action的 recon_loss = -tf.reduce_sum(state_decoder.pd.logp(ob_next)) # kl_loss = lstm_encoder.pd.kl(p_z)[0] ##p(z):标准正太分布, 这个看起来是不是也不太对!!!! # kl_loss = tf.maximum(lstm_encoder.pd.kl(p_z)[0], tf.constant(5.00)) ##p(z):标准正太分布, 这个看起来是不是也不太对!!!! kl_loss = lstm_encoder.pd.kl(p_z)[0] vae_loss = tf.reduce_mean(recon_loss + vae_beta * kl_loss) ###vae_loss 应该是一个batch的 ep_stats = stats(["recon_loss", "kl_loss", "vae_loss"]) losses = [recon_loss, kl_loss, vae_loss] # 均方误差去训练 action,把得到的action step 一下,得到x(t+1),然后用均方误差loss,或者可以试试交叉熵 ## var_list var_list = [] en_var_list = lstm_encoder.get_trainable_variables() var_list.extend(en_var_list) # ac_de_var_list = ac_decoder.get_trainable_variables() # var_list.extend(ac_de_var_list) state_de_var_list = state_decoder.get_trainable_variables() var_list.extend(state_de_var_list) # compute_recon_loss = U.function([ob, obs, embedding, obss, embeddingss, ac, obs_out], recon_loss) compute_losses = U.function([en_ob, ac_de_ob, state_de_ob, ac_de_embedding, state_de_embedding, ob_next], losses) compute_grad = U.function([en_ob, ac_de_ob, state_de_ob, ac_de_embedding, state_de_embedding, ob_next], U.flatgrad(vae_loss, var_list)) ###这里没有想好!!!,可能是不对的!! adam = MpiAdam(var_list, epsilon=adam_epsilon) U.initialize() adam.sync() writer = U.FileWriter(logdir) writer.add_graph(tf.get_default_graph()) # =========================== TRAINING ===================== # iters_so_far = 0 saver = tf.train.Saver(var_list=var_list, max_to_keep=100) saver_encoder = tf.train.Saver(var_list = en_var_list, max_to_keep=100) # saver_pol = tf.train.Saver(var_list=ac_de_var_list, max_to_keep=100) ##保留一下policy的参数,但是这个好像用不到哎 while iters_so_far < 50: ## 加多轮 logger.log("********** Iteration %i ************" % iters_so_far) ## 要不要每一轮调整一下batch_size recon_loss_buffer = deque(maxlen=100) # recon_loss2_buffer = deque(maxlen=100) kl_loss_buffer = deque(maxlen=100) vae_loss_buffer = deque(maxlen=100) # i = 0 for obs_and_next in dataset.get_next_batch(batch_size=time_steps): # print(i) # i += 1 observations = obs_and_next[0].transpose((1, 0))[:-1] ob_next = obs_and_next[0].transpose(1, 0)[state_decoder.receptive_field:, :] embedding_now = lstm_encoder.get_laten_vector(obs_and_next[0].transpose((1, 0))) embeddings = np.array([embedding_now for _ in range(time_steps - 1)]) embeddings_reshape = embeddings.reshape((time_steps-1, -1)) actions = ac_decoder.act(stochastic=True, ob=observations, embedding=embeddings_reshape) ob_next_ac = get_ob_next_ac(env, observations[-1], actions[0]) ##这个还需要再修改 #########################################3 # state_outputs = state_decoder.get_outputs(observations.reshape(1, time_steps, -1), embedding_now.reshape((1, 1, -1))) ##还没有加混合高斯......乱加了一通,已经加完了 # recon_loss = state_decoder.recon_loss(observations.reshape(1, time_steps, -1), embedding_now.reshape((1, 1, -1))) recon_loss, kl_loss, vae_loss = compute_losses(obs_and_next[0].transpose((1, 0)).reshape(1, time_steps, -1), observations.reshape(time_steps-1,-1), observations.reshape(1, time_steps-1, -1), embeddings_reshape, embedding_now.reshape((1,1, -1)), ob_next) g = compute_grad(obs_and_next[0].transpose((1, 0)).reshape(1, time_steps, -1), observations.reshape(time_steps-1,-1), observations.reshape(1, time_steps-1, -1), embeddings_reshape, embedding_now.reshape((1,1, -1)), ob_next) # logger.record_tabular("recon_loss", recon_loss) # logger.record_tabular("recon_loss2", recon_loss2) # logger.record_tabular("kl_loss", kl_loss) # logger.record_tabular("vae_loss", vae_loss) # logger.dump_tabular() adam.update(g, lr_rate) recon_loss_buffer.append(recon_loss) # recon_loss2_buffer.append(recon_loss2) kl_loss_buffer.append(kl_loss) vae_loss_buffer.append(vae_loss) ep_stats.add_all_summary(writer, [np.mean(recon_loss_buffer), np.mean(kl_loss_buffer), np.mean(vae_loss_buffer)], iters_so_far) logger.record_tabular("recon_loss", recon_loss) # logger.record_tabular("recon_loss2", recon_loss2) logger.record_tabular("kl_loss", kl_loss) logger.record_tabular("vae_loss", vae_loss) logger.dump_tabular() if(iters_so_far % 10 == 0 and iters_so_far != 0): save(saver=saver, sess=tf.get_default_session(), logdir=logdir, step=iters_so_far) save(saver=saver_encoder, sess=tf.get_default_session(),logdir="./vae_saver", step=iters_so_far) # save(saver=saver_pol, sess=tf.get_default_session(), logdir="pol_saver", step=iters_so_far) iters_so_far += 1 if iters_so_far < 6: lr_rate /= 2
class Planner(object): @store_args def __init__(self, inp_dim, hid_size, seq_len, out_dim, buffer_size, batch_size=64, optim_stepsize=1e-3, sample_func=None, norm_eps=1e-2, norm_clip=5, scope='planner', layerNorm=False, **kwargs): ''' Implemention of LSTM Planner that produces given number of subgoals between src and dest. Args: inp_dim : dimension for the LSTM hid_size : cell_state_size seq_len : max_timesteps out_dim : dimension for LSTM output ''' # self.main = lstm(hid_size, layerNorm) self.adamepsilon = 1e-6 self.mode = tf.contrib.learn.ModeKeys.TRAIN # TRAIN for training, INFER for prediction, EVAL for evaluation self.infer_outputs = None with tf.variable_scope(self.scope): self._create_network() buffer_shape = [ seq_len + 2, out_dim ] # plus 2: the [0] is 'src', [1] is 'dest', [2:] are 'labels', if self.sample_func is None: from sampler import make_sample_plans self.sample_func = make_sample_plans() self.buffer = PlanReplayBuffer(buffer_shape, buffer_size, self.sample_func) def _create_network(self): self.sess = U.get_session() self.inp_src = tf.placeholder(shape=[None, 1, self.inp_dim], dtype=tf.float32, name='input_src') self.inp_dest = tf.placeholder(shape=[None, 1, self.out_dim], dtype=tf.float32, name='input_dest') self.labels = tf.placeholder(shape=[None, self.seq_len, self.out_dim], dtype=tf.float32, name='label') self.src_seq_len = tf.placeholder(tf.int32, (None, ), name='source_sequence_length') self.tar_seq_len = tf.placeholder(tf.int32, (None, ), name='target_sequence_length') # running averages # with tf.variable_scope('goal_stats_src'): # self.goal_stats_src = Normalizer(self.inp_dim, self.norm_eps, self.norm_clip, sess=self.sess) with tf.variable_scope('goal_stats_dest'): self.goal_stats_dest = Normalizer(self.out_dim, self.norm_eps, self.norm_clip, sess=self.sess, PLN=True) # normalize inp_src, and goals labels inp_src = self.goal_stats_dest.normalize(self.inp_src) inp_dest = self.goal_stats_dest.normalize(self.inp_dest) goal_labels = self.goal_stats_dest.normalize(self.labels) with tf.variable_scope('goal_gen'): encoder_cell = tf.nn.rnn_cell.LSTMCell(self.hid_size) encoder_outputs, encoder_state = tf.nn.dynamic_rnn( encoder_cell, inp_src, sequence_length=self.src_seq_len, dtype=tf.float32) decoder_cell = tf.nn.rnn_cell.LSTMCell(self.hid_size) project_layer = tf.layers.Dense(self.out_dim) with tf.variable_scope("decode"): train_inp = tf.concat([inp_dest, goal_labels[:, :-1, :]], axis=-2) train_helper = tf.contrib.seq2seq.TrainingHelper( train_inp, sequence_length=self.tar_seq_len) train_decoder = tf.contrib.seq2seq.BasicDecoder( decoder_cell, train_helper, encoder_state, output_layer=project_layer) train_outputs, _, final_seq_len = tf.contrib.seq2seq.dynamic_decode( train_decoder, maximum_iterations=self.seq_len) self.train_outputs = train_outputs.rnn_output with tf.variable_scope("decode", reuse=True): infer_helper = ContinousInferHelper(inp_dest[:, 0, :], self.tar_seq_len) infer_decoder = tf.contrib.seq2seq.BasicDecoder( decoder_cell, infer_helper, encoder_state, output_layer=project_layer) infer_outputs, _, final_seq_len = tf.contrib.seq2seq.dynamic_decode( infer_decoder, maximum_iterations=self.seq_len) self.infer_outputs = self.goal_stats_dest.denormalize( infer_outputs.rnn_output) log_sigma = tf.get_variable(name="logstd", shape=[1, self.out_dim], initializer=U.normc_initializer(0.1)) goals = train_outputs.rnn_output loss = 0.5 * tf.reduce_sum(tf.square((goal_labels - goals)/tf.exp(log_sigma)), axis=-1) \ + 0.5 * np.log(2*np.pi) * tf.to_float(tf.shape(self.labels)[-1]) \ + tf.reduce_sum(log_sigma, axis=-1) self.loss = tf.reduce_mean(loss) self.tr_outputs = self.goal_stats_dest.denormalize( self.train_outputs ) # just for inspect the correctness of training var_list = self._vars('') self.grads = U.flatgrad(self.loss, var_list) self.adam = MpiAdam(var_list, epsilon=self.adamepsilon) tf.variables_initializer(self._global_vars('')).run() self.adam.sync() def train(self, use_buffer=False, justEval=False, **kwargs): self.mode = tf.contrib.learn.ModeKeys.TRAIN if not use_buffer: src = np.reshape(kwargs['src'], [-1, 1, self.inp_dim]) dest = np.reshape(kwargs['dest'], [-1, 1, self.out_dim]) lbl = kwargs['lbl'] else: episode_batch = self.buffer.sample(self.batch_size) src = np.reshape(episode_batch[:, 0, :], [-1, 1, self.inp_dim]) lbl = episode_batch[:, 2:, :] dest = np.reshape(episode_batch[:, 1, :], [-1, 1, self.out_dim]) src_seq_len = [1] * src.shape[0] tar_seq_len = [self.seq_len] * dest.shape[0] # compute grads loss, g, tr_sub_goals, te_sub_goals = self.sess.run( [self.loss, self.grads, self.tr_outputs, self.infer_outputs], feed_dict={ self.inp_src: src, self.inp_dest: dest, self.labels: lbl, self.src_seq_len: src_seq_len, self.tar_seq_len: tar_seq_len }) if not justEval: self.adam.update(g, stepsize=self.optim_stepsize) return loss, tr_sub_goals[-1], te_sub_goals[-1] def plan(self, src, dest): src = np.reshape(src, [-1, 1, self.inp_dim]) dest = np.reshape(dest, [-1, 1, self.out_dim]) src_seq_len = [1] * src.shape[0] tar_seq_len = [self.seq_len] * dest.shape[0] plan_goals = self.sess.run(self.infer_outputs, feed_dict={ self.inp_src: src, self.inp_dest: dest, self.src_seq_len: src_seq_len, self.tar_seq_len: tar_seq_len }) assert plan_goals.shape[0] == src.shape[0] and plan_goals.shape[ 1] == self.seq_len plan_goals = np.flip(plan_goals, axis=-2) plan_goals = np.concatenate([plan_goals, dest], axis=-2) # append the ultimate goal return plan_goals def store_episode(self, episode_batch, update_stats=True): """ episode_batch : [batch_size * (subgoal_num+1) * subgoal_dim] """ isNull = episode_batch.shape[0] < 1 if not isNull: self.buffer.store_episode(episode_batch) # logger.info("buffer store_episode done. updating statistics.") if update_stats: subgoals = episode_batch[:, 1:, :] self.goal_stats_dest.update(subgoals, isNull=isNull) # logger.info("ready to recomput_stats") # print(subgoals) self.goal_stats_dest.recompute_stats(inc=episode_batch.shape[0]) def update_normalizer_stats(self, batch): # self.goal_stats_src.update(batch['src']) self.goal_stats_dest.update(batch['dest']) # self.goal_stats_src.recompute_stats() self.goal_stats_dest.recompute_stats() def _vars(self, scope): res = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.scope + '/' + scope) assert len(res) > 0 return res def _global_vars(self, scope): res = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.scope + '/' + scope) return res def save(self, save_path): assert self.infer_outputs is not None var_list = self._global_vars('') U.save_variables(save_path, variables=var_list, sess=self.sess) def load(self, load_path): if self.infer_outputs is None: self._create_network() var_list = self._global_vars('') U.load_variables(load_path, variables=var_list) def logs(self, prefix=''): logs = [] logs += [('subgoals/buff_size', self.buffer.get_current_episode_size()) ] logs += [('goals/mean', np.mean(self.sess.run([self.goal_stats_dest.mean])))] logs += [('goals/std', np.mean(self.sess.run([self.goal_stats_dest.std])))] if prefix != '': prefix = prefix.strip('/') return [(prefix + '/' + key, val) for key, val in logs] else: return logs
class DDPG(object): def __init__(self, observation_shape, action_shape, nb_demo_kine, nb_key_states, batch_size=128, noise_type='', actor=None, critic=None, layer_norm=True, observation_range=(-5., 5.), action_range=(-1., 1.), return_range=(-np.inf, np.inf), normalize_returns=False, normalize_observations=True, reward_scale=1., clip_norm=None, demo_l2_reg=0., critic_l2_reg=0., actor_lr=1e-4, critic_lr=1e-3, demo_lr=5e-3, gamma=0.99, tau=0.001, enable_popart=False, save_ckpt=True): # Noise nb_actions = action_shape[-1] param_noise, action_noise = process_noise_type(noise_type, nb_actions) logger.info('param_noise', param_noise) logger.info('action_noise', action_noise) # States recording self.memory = Memory(limit=int(2e5), action_shape=action_shape, observation_shape=observation_shape) # Models self.nb_demo_kine = nb_demo_kine self.actor = actor or Actor( nb_actions, nb_demo_kine, layer_norm=layer_norm) self.nb_key_states = nb_key_states self.critic = critic or Critic(nb_key_states, layer_norm=layer_norm) self.nb_obs_org = nb_key_states # Inputs. self.obs0 = tf.placeholder(tf.float32, shape=(None, ) + observation_shape, name='obs0') self.obs1 = tf.placeholder(tf.float32, shape=(None, ) + observation_shape, name='obs1') self.terminals1 = tf.placeholder(tf.float32, shape=(None, 1), name='terminals1') self.rewards = tf.placeholder(tf.float32, shape=(None, 1), name='rewards') self.actions = tf.placeholder(tf.float32, shape=(None, ) + action_shape, name='actions') # self.critic_target_Q: value assigned by self.target_Q_obs0 self.critic_target_Q = tf.placeholder(tf.float32, shape=(None, 1), name='critic_target_Q') self.param_noise_stddev = tf.placeholder(tf.float32, shape=(), name='param_noise_stddev') # change in observations self.obs_delta_kine = (self.obs1 - self.obs0)[:, :self.nb_demo_kine] self.obs_delta_kstates = (self.obs1 - self.obs0)[:, :self.nb_key_states] # Parameters. self.gamma = gamma self.tau = tau self.normalize_observations = normalize_observations self.normalize_returns = normalize_returns self.action_noise = action_noise self.param_noise = param_noise self.action_range = action_range self.return_range = return_range self.observation_range = observation_range self.actor_lr = actor_lr self.critic_lr = critic_lr self.demo_lr = demo_lr self.clip_norm = clip_norm self.enable_popart = enable_popart self.reward_scale = reward_scale self.batch_size = batch_size self.stats_sample = None self.critic_l2_reg = critic_l2_reg self.demo_l2_reg = demo_l2_reg # Observation normalization. if self.normalize_observations: with tf.variable_scope('obs_rms'): self.obs_rms = RunningMeanStd(shape=observation_shape) else: self.obs_rms = None self.normalized_obs0 = tf.clip_by_value( obs_norm_partial(self.obs0, self.obs_rms, self.nb_obs_org), self.observation_range[0], self.observation_range[1]) normalized_obs1 = tf.clip_by_value( obs_norm_partial(self.obs1, self.obs_rms, self.nb_obs_org), self.observation_range[0], self.observation_range[1]) # Return normalization. if self.normalize_returns: with tf.variable_scope('ret_rms'): self.ret_rms = RunningMeanStd() else: self.ret_rms = None # Create target networks. target_actor = copy(self.actor) target_actor.name = 'target_actor' self.target_actor = target_actor target_critic = copy(self.critic) target_critic.name = 'target_critic' self.target_critic = target_critic # Create networks and core TF parts that are shared across set-up parts. # the actor output is [0,1], need to normalised to [-1,1] before feeding into critic self.actor_tf, self.demo_aprx = self.actor(self.normalized_obs0) # critic loss # normalized_critic_tf, pred_rwd, pred_obs_delta: critic_loss self.normalized_critic_tf, self.pred_rwd, self.pred_obs_delta = self.critic( self.normalized_obs0, act_norm(self.actions)) # self.critic_tf: only in logging [reference_Q_mean/std] self.critic_tf = ret_denormalize( tf.clip_by_value(self.normalized_critic_tf, self.return_range[0], self.return_range[1]), self.ret_rms) # actor loss normalized_critic_with_actor_tf = self.critic(self.normalized_obs0, act_norm(self.actor_tf), reuse=True)[0] # self.critic_with_actor_tf: actor loss, and logging [reference_Q_tf_mean/std] self.critic_with_actor_tf = ret_denormalize( tf.clip_by_value(normalized_critic_with_actor_tf, self.return_range[0], self.return_range[1]), self.ret_rms) # target Q self.target_action = tf.clip_by_value( target_actor(normalized_obs1)[0], self.action_range[0], self.action_range[1]) self.target_Q_obs1 = ret_denormalize( target_critic(normalized_obs1, act_norm(self.target_action))[0], self.ret_rms) self.target_Q_obs0 = self.rewards + ( 1. - self.terminals1) * gamma * self.target_Q_obs1 # Set up parts. if self.param_noise is not None: self.setup_param_noise(self.normalized_obs0) self.setup_actor_optimizer() self.setup_critic_optimizer() if self.normalize_returns and self.enable_popart: self.setup_popart() self.setup_stats() self.setup_target_network_updates() self.dbg_vars = self.actor.dbg_vars + self.critic.dbg_vars self.sess = None # Set up checkpoint saver self.save_ckpt = save_ckpt if save_ckpt: self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=20) else: # saver for loading ckpt self.saver = tf.train.Saver() self.main_summaries = tf.summary.merge_all() logdir = logger.get_dir() if logdir: self.train_writer = tf.summary.FileWriter( os.path.join(logdir, 'tb'), tf.get_default_graph()) else: self.train_writer = None def setup_target_network_updates(self): actor_init_updates, actor_soft_updates = get_target_updates( self.actor.vars, self.target_actor.vars, self.tau) critic_init_updates, critic_soft_updates = get_target_updates( self.critic.vars, self.target_critic.vars, self.tau) self.target_init_updates = [actor_init_updates, critic_init_updates] self.target_soft_updates = [actor_soft_updates, critic_soft_updates] def setup_param_noise(self, normalized_obs0): assert self.param_noise is not None # Configure perturbed actor. param_noise_actor = copy(self.actor) param_noise_actor.name = 'param_noise_actor' self.perturbed_actor_tf = param_noise_actor(normalized_obs0)[0] logger.debug('setting up param noise') self.perturb_policy_ops = get_perturbed_actor_updates( self.actor, param_noise_actor, self.param_noise_stddev) # Configure separate copy for stddev adoption. adaptive_param_noise_actor = copy(self.actor) adaptive_param_noise_actor.name = 'adaptive_param_noise_actor' adaptive_actor_tf = adaptive_param_noise_actor(normalized_obs0)[0] self.perturb_adaptive_policy_ops = get_perturbed_actor_updates( self.actor, adaptive_param_noise_actor, self.param_noise_stddev) self.adaptive_policy_distance = tf.sqrt( tf.reduce_mean(tf.square(self.actor_tf - adaptive_actor_tf))) def setup_actor_optimizer(self): logger.info('setting up actor optimizer') # loss_normed = -tf.reduce_mean(self.normalized_critic_with_actor_tf) self.actor_Q = tf.reduce_mean(self.critic_with_actor_tf) self.actor_loss = -self.actor_Q tf.summary.scalar('actor/Q', self.actor_Q) # setting up actor vars/grads/optimizer self.actor_vars = self.actor.active_vars self.actor_grads = tf_util.flatgrad(self.actor_loss, self.actor_vars, clip_norm=self.clip_norm) self.actor_optimizer = MpiAdam(var_list=self.actor_vars, beta1=0.9, beta2=0.999, epsilon=1e-08) actor_shapes = [ var.get_shape().as_list() for var in self.actor.trainable_vars ] self.actor_params = actor_params = [0] * ( len(self.actor.trainable_vars) + 1) for i, shape in enumerate(actor_shapes): actor_params[i + 1] = actor_params[i] + np.prod(shape) n_inact = len(actor_shapes) - len(self.actor_vars) active_params = actor_params[n_inact:] - actor_params[n_inact] logger.info(' actor shapes: {}'.format(actor_shapes)) logger.info(' actor params: {}'.format(actor_params)) logger.info(' actor total: {}'.format(actor_params[-1])) logger.info(' actor active: {}'.format(active_params)) grad = self.actor_grads[active_params[0]:active_params[1]] tf.summary.scalar( 'grads/actor_layer%d_%d' % (n_inact // 2, active_params[1] - active_params[0]), tf.reduce_mean(grad)) grad = self.actor_grads[active_params[-3]:active_params[-2]] tf.summary.scalar( 'grads/actor_layer%d_%d' % (-1, active_params[-2] - active_params[-3]), tf.reduce_mean(grad)) # for train_demo() self.demo_loss = tf.reduce_mean( tf.square(self.obs_delta_kine - self.demo_aprx)) self.demo_max_loss = tf.reduce_max( tf.square(self.obs_delta_kine - self.demo_aprx)) if self.demo_l2_reg > 0.: demo_reg_vars = self.actor.demo_reg_vars for var in demo_reg_vars: logger.info(' regularizing: {}'.format(var.name)) logger.info( ' applying l2 regularization for demo_aprx with {}'.format( self.demo_l2_reg)) self.demo_reg = tc.layers.apply_regularization( tc.layers.l2_regularizer(self.demo_l2_reg), weights_list=demo_reg_vars) self.demo_loss += self.demo_reg else: self.demo_reg = None self.demo_grads = tf_util.flatgrad(self.demo_loss, self.actor.trainable_vars, clip_norm=self.clip_norm) self.demo_optimizer = MpiAdam(var_list=self.actor.trainable_vars, beta1=0.9, beta2=0.999, epsilon=1e-08) # mimic rwd self.mimic_rwd = -self.demo_loss tf.summary.scalar('actor/mimic_rwd', self.mimic_rwd) def setup_critic_optimizer(self): logger.info('setting up critic optimizer') self.normalized_critic_target_tf = tf.clip_by_value( ret_normalize(self.critic_target_Q, self.ret_rms), self.return_range[0], self.return_range[1]) self.critic_loss = tf.reduce_mean( tf.square(self.normalized_critic_tf - self.normalized_critic_target_tf)) tf.summary.scalar('critic_loss/Q_diff', self.critic_loss) if self.normalize_returns: tf.summary.scalar('critic_loss/Q_normed_critic', tf.reduce_mean(self.normalized_critic_tf)) tf.summary.scalar('critic_loss/Q_normed_target', tf.reduce_mean(self.normalized_critic_target_tf)) self.critic_loss_step = 0 diff_rwd = tf.reduce_mean(tf.square(self.pred_rwd - self.rewards)) self.critic_loss_step += diff_rwd tf.summary.scalar('critic_loss/step_rwd', self.critic_loss_step) critic_kine_factor = 100 diff_obs = tf.reduce_mean(tf.square(self.pred_obs_delta - self.obs_delta_kstates), axis=0) diff_obs_kine = tf.reduce_mean( diff_obs[:self.nb_demo_kine]) * critic_kine_factor diff_obs_rest = tf.reduce_mean(diff_obs[self.nb_demo_kine:]) self.critic_loss_step += (diff_obs_kine + diff_obs_rest) tf.summary.scalar( 'critic_loss/step_kstates_kine_x%d' % critic_kine_factor, diff_obs_kine) tf.summary.scalar('critic_loss/step_kstates_rest', diff_obs_rest) tf.summary.scalar('critic_loss/step_total', self.critic_loss_step) self.critic_loss += self.critic_loss_step if self.critic_l2_reg > 0.: critic_reg_vars = self.critic.reg_vars for var in critic_reg_vars: logger.debug(' regularizing: {}'.format(var.name)) logger.info(' applying l2 regularization with {}'.format( self.critic_l2_reg)) critic_reg = tc.layers.apply_regularization( tc.layers.l2_regularizer(self.critic_l2_reg), weights_list=critic_reg_vars) self.critic_loss += critic_reg tf.summary.scalar('critic_loss/reg', critic_reg) critic_shapes = [ var.get_shape().as_list() for var in self.critic.trainable_vars ] critic_params = [0] * (len(self.critic.trainable_vars) + 1) for i, shape in enumerate(critic_shapes): critic_params[i + 1] = critic_params[i] + np.prod(shape) logger.info(' critic shapes: {}'.format(critic_shapes)) logger.info(' critic params: {}'.format(critic_params)) logger.info(' critic total: {}'.format(critic_params[-1])) self.critic_grads = tf_util.flatgrad(self.critic_loss, self.critic.trainable_vars, clip_norm=self.clip_norm) self.critic_optimizer = MpiAdam(var_list=self.critic.trainable_vars, beta1=0.9, beta2=0.999, epsilon=1e-08) # todo: make the following general grad = self.critic_grads[critic_params[0]:critic_params[1]] tf.summary.scalar( 'grads/critic_layer%d_%d' % (0, critic_params[1] - critic_params[0]), tf.reduce_mean(grad)) grad = self.critic_grads[critic_params[-3]:critic_params[-2]] tf.summary.scalar( 'grads/critic_layer%d_rwd_%d' % (-1, critic_params[-2] - critic_params[-3]), tf.reduce_mean(grad)) grad = self.critic_grads[critic_params[-7]:critic_params[-6]] tf.summary.scalar( 'grads/critic_layer%d_q_%d' % (-1, critic_params[-6] - critic_params[-7]), tf.reduce_mean(grad)) def setup_popart(self): # See https://arxiv.org/pdf/1602.07714.pdf for details. self.old_std = tf.placeholder(tf.float32, shape=[1], name='old_std') new_std = self.ret_rms.std self.old_mean = tf.placeholder(tf.float32, shape=[1], name='old_mean') new_mean = self.ret_rms.mean self.renormalize_Q_outputs_op = [] for vs in [self.critic.output_vars, self.target_critic.output_vars]: assert len(vs) == 2 M, b = vs assert 'kernel' in M.name assert 'bias' in b.name assert M.get_shape()[-1] == 1 assert b.get_shape()[-1] == 1 self.renormalize_Q_outputs_op += [ M.assign(M * self.old_std / new_std) ] self.renormalize_Q_outputs_op += [ b.assign( (b * self.old_std + self.old_mean - new_mean) / new_std) ] def setup_stats(self): ops = [] names = [] if self.normalize_returns: ops += [self.ret_rms.mean, self.ret_rms.std] names += ['zrms/ret_mean', 'zrms/ret_std'] if self.normalize_observations: ops += [ tf.reduce_mean(self.obs_rms.mean[:self.nb_demo_kine]), tf.reduce_mean(self.obs_rms.std[:self.nb_demo_kine]) ] names += ['zrms/obs_kine_mean', 'zrms/obs_kine_std'] ops += [ tf.reduce_mean(self.obs_rms.mean[:self.nb_key_states]), tf.reduce_mean(self.obs_rms.std[:self.nb_key_states]) ] names += ['zrms/obs_kstates_mean', 'zrms/obs_kstates_std'] ops += [ tf.reduce_mean(self.obs_rms.mean), tf.reduce_mean(self.obs_rms.std) ] names += ['zrms/obs_mean', 'zrms/obs_std'] # for debugging partial normalisation for o_i in [self.nb_obs_org - 1, self.nb_obs_org]: ops += [self.obs0[0, o_i], self.normalized_obs0[0, o_i]] names += ['zobs_dbg_%d' % o_i, 'zobs_dbg_%d_normalized' % o_i] ops += [tf.reduce_mean(self.critic_tf)] names += ['zref/Q_mean'] ops += [reduce_std(self.critic_tf)] names += ['zref/Q_std'] ops += [tf.reduce_mean(self.critic_with_actor_tf)] names += ['zref/Q_tf_mean'] ops += [reduce_std(self.critic_with_actor_tf)] names += ['zref/Q_tf_std'] ops += [tf.reduce_mean(self.actor_tf)] names += ['zref/action_mean'] ops += [reduce_std(self.actor_tf)] names += ['zref/action_std'] ops += [tf.reduce_mean(self.mimic_rwd)] names += ['zref/mimic_rwd'] if self.param_noise: ops += [tf.reduce_mean(self.perturbed_actor_tf)] names += ['zref/action_ptb_mean'] ops += [reduce_std(self.perturbed_actor_tf)] names += ['zref/action_ptb_std'] self.stats_ops = ops self.stats_names = names def pi(self, obs, step, apply_param_noise=True, apply_action_noise=True, compute_Q=True, rollout_log=False): if self.param_noise is not None and apply_param_noise: actor_tf = self.perturbed_actor_tf info = 'ptb' else: actor_tf = self.actor_tf info = 'org' feed_dict = {self.obs0: [obs]} if compute_Q: action, q = self.sess.run([actor_tf, self.critic_with_actor_tf], feed_dict=feed_dict) else: action = self.sess.run(actor_tf, feed_dict=feed_dict) q = None action = action.flatten() # actor output is [0,1], no need to denormalise. # action = act_denorm(action) if rollout_log: summary_list = [('the_action/%d_rollout_%s' % (i, info), a) for i, a in enumerate(action)] if self.action_noise is not None and apply_action_noise: noise = self.action_noise() assert noise.shape == action.shape action += noise else: noise = None action = np.clip(action, self.action_range[0], self.action_range[1]) if rollout_log: if noise is not None: summary_list += [('the_action/%d_rollout_noise' % i, a) for i, a in enumerate(noise)] self.add_list_summary(summary_list, step) return action, q def store_transition(self, storage, obs0, action, reward, obs1, terminal1): '''store one experience''' reward *= self.reward_scale storage.append(obs0, action, reward, obs1, terminal1) if self.normalize_observations: self.obs_rms.update(np.array([obs0])) def store_multrans(self, storage, obs0, action, reward, obs1, terminal1): '''store multiple experiences''' for i in range(len(reward)): storage.append(obs0[i], action[i], reward[i] * self.reward_scale, obs1[i], terminal1[i]) if self.normalize_observations: self.obs_rms.update(np.vstack(obs0)) def train_demo(self, obs0_pos, obs1_pos, obs0_neg, obs1_neg, step, neg_pct=1.0, lr_decay=1.0): # gradients calculated for pos and neg data separately, then combined for gradient update, # because only positive data are used in eval modes # the loss evaluated here are those before gradient update ops = [ self.demo_grads, self.demo_loss, self.demo_max_loss, self.actor_Q ] pos_grads, demo_loss, max_loss, actor_Q = self.sess.run(ops, feed_dict={ self.obs0: obs0_pos, self.obs1: obs1_pos, }) ops = [self.demo_grads, self.demo_loss] neg_grads, neg_loss = self.sess.run(ops, feed_dict={ self.obs0: obs0_neg, self.obs1: obs1_neg, }) comb_grads = pos_grads - neg_grads * neg_pct self.demo_optimizer.update(comb_grads, stepsize=self.demo_lr * lr_decay) if self.demo_reg is not None: demo_reg = self.sess.run(self.demo_reg) else: demo_reg = 0 # sanity check the training pos_g = pos_grads[self.actor_params[2]:self.actor_params[3]] neg_g = neg_grads[self.actor_params[2]:self.actor_params[3]] comb_g = comb_grads[self.actor_params[2]:self.actor_params[3]] summary_list = [ ('demo_loss/train_pos', demo_loss), ('demo_loss/train_max', max_loss), ('demo_loss/train_neg', neg_loss), ('grads/demo_pos_layer%d_%d' % (1, len(pos_g)), np.mean(pos_g)), ('grads/demo_neg_layer%d_%d' % (1, len(neg_g)), np.mean(neg_g)), ('grads/demo_comb_layer%d_%d' % (1, len(comb_g)), np.mean(comb_g)), ('actor/Q', actor_Q), ('demo_loss/reg', demo_reg) ] self.add_list_summary(summary_list, step) return demo_loss def test_demo(self, obs0, obs1): loss_mean, loss_max = self.sess.run( [self.demo_loss, self.demo_max_loss], feed_dict={ self.obs0: obs0, self.obs1: obs1, }) return loss_mean, loss_max def eval_demo(self, obs0): return self.sess.run(self.demo_aprx, feed_dict={self.obs0: obs0}) def get_mimic_rwd(self, obs0, obs1): mimic_rwd, demo_aprx = self.sess.run([self.mimic_rwd, self.demo_aprx], feed_dict={ self.obs0: obs0, self.obs1: obs1 }) return mimic_rwd, demo_aprx def train_main(self, step): batch = self.memory.sample(batch_size=self.batch_size) if self.normalize_returns and self.enable_popart: ops = [ self.ret_rms.mean, self.ret_rms.std, self.target_Q_obs0, self.target_Q_obs1 ] old_mean, old_std, target_Q_obs0, target_Q_obs1 = self.sess.run( ops, feed_dict={ self.obs1: batch['obs1'], self.rewards: batch['rewards'], self.terminals1: batch['terminals1'].astype('float32'), }) self.ret_rms.update(target_Q_obs0.flatten()) self.sess.run(self.renormalize_Q_outputs_op, feed_dict={ self.old_std: np.array([old_std]), self.old_mean: np.array([old_mean]), }) # Run sanity check. Disabled by default since it slows down things considerably. # print('running sanity check') # target_Q_new, new_mean, new_std = self.sess.run([self.target_Q_obs0, self.ret_rms.mean, self.ret_rms.std], # feed_dict={ # self.obs1: batch['obs1'], # self.rewards: batch['rewards'], # self.terminals1: batch['terminals1'].astype('float32'), # }) # print(target_Q_new, target_Q_obs0, new_mean, new_std) # assert (np.abs(target_Q_obs0 - target_Q_new) < 1e-3).all() else: ops = [self.target_Q_obs0, self.target_Q_obs1] target_Q_obs0, target_Q_obs1 = self.sess.run( ops, feed_dict={ self.obs1: batch['obs1'], self.rewards: batch['rewards'], self.terminals1: batch['terminals1'].astype('float32') }) summary_list = [ ('critic_loss/Q_target_obs1_mean', np.mean(target_Q_obs1)), ('critic_loss/Q_target_obs1_std', np.std(target_Q_obs1)), ('critic_loss/Q_target_obs0_mean', np.mean(target_Q_obs0)), ('critic_loss/Q_target_obs0_std', np.std(target_Q_obs0)) ] self.add_list_summary(summary_list, step) # Get all gradients and perform a synced update. ops = [ self.main_summaries, self.actor_grads, self.actor_loss, self.critic_grads, self.critic_loss ] main_summaries, actor_grads, actor_loss, critic_grads, critic_loss = self.sess.run( ops, feed_dict={ self.obs0: batch['obs0'], self.actions: batch['actions'], self.critic_target_Q: target_Q_obs0, self.rewards: batch['rewards'], self.obs1: batch['obs1'] }) self.actor_optimizer.update(actor_grads, stepsize=self.actor_lr) self.critic_optimizer.update(critic_grads, stepsize=self.critic_lr) if self.train_writer: self.train_writer.add_summary(main_summaries, step) return critic_loss, actor_loss def initialize(self, sess, start_ckpt=None): self.sess = sess if start_ckpt: self.saver.restore(sess, start_ckpt) else: self.sess.run(tf.global_variables_initializer()) self.actor_optimizer.sync() self.demo_optimizer.sync() self.critic_optimizer.sync() self.sess.run(self.target_init_updates) def store_ckpt(self, save_path, epoch): if self.save_ckpt: self.saver.save(self.sess, save_path, global_step=epoch) def update_target_net(self): self.sess.run(self.target_soft_updates) def get_stats(self, storage): if self.stats_sample is None: # Get a sample and keep that fixed for all further computations. # This allows us to estimate the change in value for the same set of inputs. self.stats_sample = storage.sample(batch_size=self.batch_size) values = self.sess.run(self.stats_ops, feed_dict={ self.obs0: self.stats_sample['obs0'], self.obs1: self.stats_sample['obs1'], self.actions: self.stats_sample['actions'], }) names = self.stats_names[:] assert len(names) == len(values) stats = dict(zip(names, values)) if self.param_noise is not None: stats = {**stats, **self.param_noise.get_stats()} return stats def adapt_param_noise(self, step): if self.param_noise is None: return 0. # Perturb a separate copy of the policy to adjust the scale for the next "real" perturbation. batch = self.memory.sample(batch_size=self.batch_size) self.sess.run(self.perturb_adaptive_policy_ops, feed_dict={ self.param_noise_stddev: self.param_noise.current_stddev, }) distance = self.sess.run(self.adaptive_policy_distance, feed_dict={ self.obs0: batch['obs0'], self.param_noise_stddev: self.param_noise.current_stddev, }) mean_distance = MPI.COMM_WORLD.allreduce( distance, op=MPI.SUM) / MPI.COMM_WORLD.Get_size() self.param_noise.adapt(mean_distance) self.add_list_summary([('param_noise/distance', mean_distance)], step) self.add_list_summary( [('param_noise/std', self.param_noise.current_stddev)], step) return mean_distance def reset(self): '''Reset internal state after an episode is complete.''' if self.action_noise is not None: self.action_noise.reset() if self.param_noise is not None: self.sess.run(self.perturb_policy_ops, feed_dict={ self.param_noise_stddev: self.param_noise.current_stddev, }) def add_list_summary(self, summary_raw, step): def summary_val(k, v): kwargs = {'tag': k, 'simple_value': v} return tf.Summary.Value(**kwargs) if self.train_writer: summary_list = [summary_val(tag, val) for tag, val in summary_raw] self.train_writer.add_summary(tf.Summary(value=summary_list), step)
def learn( env, policy_func, discriminator, expert_dataset, timesteps_per_batch, *, g_step, d_step, # timesteps per actor per update clip_param, entcoeff, # clipping parameter epsilon, entropy coeff optim_epochs, optim_stepsize, optim_batchsize, # optimization hypers gamma, lam, # advantage estimation max_timesteps=0, max_episodes=0, max_iters=0, max_seconds=0, # time constraint callback=None, # you can do anything in the callback, since it takes locals(), globals() adam_epsilon=1e-5, d_stepsize=3e-4, schedule='constant', # annealing for stepsize parameters (epsilon and adam) save_per_iter=100, ckpt_dir=None, task="train", sample_stochastic=True, load_model_path=None, task_name=None, max_sample_traj=1500): nworkers = MPI.COMM_WORLD.Get_size() rank = MPI.COMM_WORLD.Get_rank() # Setup losses and stuff # ---------------------------------------- ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", ob_space, ac_space) # Construct network for new policy oldpi = policy_func("oldpi", ob_space, ac_space) # Network for old policy atarg = tf.placeholder( dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return lrmult = tf.placeholder( name='lrmult', dtype=tf.float32, shape=[]) # learning rate multiplier, updated with schedule clip_param = clip_param * lrmult # Annealed cliping parameter epislon ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) kloldnew = oldpi.pd.kl(pi.pd) ent = pi.pd.entropy() meankl = U.mean(kloldnew) meanent = U.mean(ent) pol_entpen = (-entcoeff) * meanent ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # pnew / pold surr1 = ratio * atarg # surrogate from conservative policy iteration surr2 = U.clip(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg # pol_surr = -U.mean(tf.minimum( surr1, surr2)) # PPO's pessimistic surrogate (L^CLIP) vf_loss = U.mean(tf.square(pi.vpred - ret)) total_loss = pol_surr + pol_entpen + vf_loss losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent] loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"] var_list = pi.get_trainable_variables() lossandgrad = U.function([ob, ac, atarg, ret, lrmult], losses + [U.flatgrad(total_loss, var_list)]) d_adam = MpiAdam(discriminator.get_trainable_variables()) adam = MpiAdam(var_list, epsilon=adam_epsilon) get_flat = U.GetFlat(var_list) set_from_flat = U.SetFromFlat(var_list) assign_old_eq_new = U.function( [], [], updates=[ tf.assign(oldv, newv) for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables()) ]) compute_losses = U.function([ob, ac, atarg, ret, lrmult], losses) U.initialize() th_init = get_flat() MPI.COMM_WORLD.Bcast(th_init, root=0) set_from_flat(th_init) d_adam.sync() adam.sync() def allmean(x): assert isinstance(x, np.ndarray) out = np.empty_like(x) MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM) out /= nworkers return out # Prepare for rollouts # ---------------------------------------- seg_gen = traj_segment_generator(pi, env, discriminator, timesteps_per_batch, stochastic=True) traj_gen = traj_episode_generator(pi, env, timesteps_per_batch, stochastic=sample_stochastic) episodes_so_far = 0 timesteps_so_far = 0 iters_so_far = 0 tstart = time.time() lenbuffer = deque(maxlen=100) # rolling buffer for episode lengths rewbuffer = deque(maxlen=100) # rolling buffer for episode rewards true_rewbuffer = deque(maxlen=100) assert sum( [max_iters > 0, max_timesteps > 0, max_episodes > 0, max_seconds > 0]) == 1, "Only one time constraint permitted" if task == 'sample_trajectory': # not elegant, i know :( sample_trajectory(load_model_path, max_sample_traj, traj_gen, task_name, sample_stochastic) sys.exit() while True: if callback: callback(locals(), globals()) if max_timesteps and timesteps_so_far >= max_timesteps: break elif max_episodes and episodes_so_far >= max_episodes: break elif max_iters and iters_so_far >= max_iters: break elif max_seconds and time.time() - tstart >= max_seconds: break if schedule == 'constant': cur_lrmult = 1.0 elif schedule == 'linear': cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0) else: raise NotImplementedError # Save model if iters_so_far % save_per_iter == 0 and ckpt_dir is not None: U.save_state(os.path.join(ckpt_dir, task_name), counter=iters_so_far) logger.log("********** Iteration %i ************" % iters_so_far) for _ in range(g_step): seg = seg_gen.__next__() add_vtarg_and_adv(seg, gamma, lam) # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets)) ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[ "tdlamret"] vpredbefore = seg[ "vpred"] # predicted value function before udpate atarg = (atarg - atarg.mean()) / atarg.std( ) # standardized advantage function estimate d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vtarg=tdlamret), shuffle=not pi.recurrent) optim_batchsize = optim_batchsize or ob.shape[0] if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy assign_old_eq_new( ) # set old parameter values to new parameter values logger.log("Optimizing...") logger.log(fmt_row(13, loss_names)) # Here we do a bunch of optimization epochs over the data for _ in range(optim_epochs): losses = [ ] # list of tuples, each of which gives the loss for a minibatch for batch in d.iterate_once(optim_batchsize): *newlosses, g = lossandgrad(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult) adam.update(g, optim_stepsize * cur_lrmult) losses.append(newlosses) logger.log(fmt_row(13, np.mean(losses, axis=0))) logger.log("Evaluating losses...") losses = [] for batch in d.iterate_once(optim_batchsize): newlosses = compute_losses(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult) losses.append(newlosses) meanlosses, _, _ = mpi_moments(losses, axis=0) # ------------------ Update D ------------------ logger.log("Optimizing Discriminator...") logger.log(fmt_row(13, discriminator.loss_name)) ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob)) batch_size = len(ob) // d_step d_losses = [ ] # list of tuples, each of which gives the loss for a minibatch ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob)) batch_size = len(ob) // d_step d_losses = [ ] # list of tuples, each of which gives the loss for a minibatch for ob_batch, ac_batch in dataset.iterbatches( (ob, ac), include_final_partial_batch=False, batch_size=batch_size): ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob_batch)) # update running mean/std for discriminator if hasattr(discriminator, "obs_rms"): discriminator.obs_rms.update( np.concatenate((ob_batch, ob_expert), 0)) *newlosses, g = discriminator.lossandgrad(ob_batch, ac_batch, ob_expert, ac_expert) d_adam.update(allmean(g), d_stepsize) d_losses.append(newlosses) logger.log(fmt_row(13, np.mean(d_losses, axis=0))) # ----------------- logger -------------------- logger.log(fmt_row(13, meanlosses)) for (lossval, name) in zipsame(meanlosses, loss_names): logger.record_tabular("loss_" + name, lossval) logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret)) lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"] ) # local values listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples lens, rews, true_rews = map(flatten_lists, zip(*listoflrpairs)) lenbuffer.extend(lens) rewbuffer.extend(rews) true_rewbuffer.extend(true_rews) logger.record_tabular("EpLenMean", np.mean(lenbuffer)) logger.record_tabular("EpRewMean", np.mean(rewbuffer)) logger.record_tabular("EpTrueRewMean", np.mean(true_rewbuffer)) logger.record_tabular("EpThisIter", len(lens)) episodes_so_far += len(lens) timesteps_so_far += sum(lens) iters_so_far += 1 logger.record_tabular("EpisodesSoFar", episodes_so_far) logger.record_tabular("TimestepsSoFar", timesteps_so_far) logger.record_tabular("TimeElapsed", time.time() - tstart) if MPI.COMM_WORLD.Get_rank() == 0: logger.dump_tabular()
class DDPG(object): def __init__(self, actor, critic, memory, observation_shape, action_shape, param_noise=None, action_noise=None, gamma=0.99, tau=0.001, normalize_returns=False, enable_popart=False, normalize_observations=True, batch_size=128, observation_range=(-1000., 1000.), action_range=(-360., 360.), return_range=(-np.inf, np.inf), adaptive_param_noise=True, adaptive_param_noise_policy_threshold=.1, critic_l2_reg=0., actor_lr=1e-4, critic_lr=1e-3, clip_norm=None, reward_scale=1.): # Inputs. self.obs0 = tf.placeholder(tf.float32, shape=(None, ) + observation_shape, name='obs0') self.obs1 = tf.placeholder(tf.float32, shape=(None, ) + observation_shape, name='obs1') self.terminals1 = tf.placeholder(tf.float32, shape=(None, 1), name='terminals1') self.rewards = tf.placeholder(tf.float32, shape=(None, 1), name='rewards') self.actions = tf.placeholder(tf.float32, shape=(None, ) + action_shape, name='actions') self.critic_target = tf.placeholder(tf.float32, shape=(None, 1), name='critic_target') self.param_noise_stddev = tf.placeholder(tf.float32, shape=(), name='param_noise_stddev') # Parameters. self.gamma = gamma self.tau = tau self.memory = memory self.normalize_observations = normalize_observations self.normalize_returns = normalize_returns self.action_noise = action_noise self.param_noise = param_noise self.action_range = action_range self.return_range = return_range self.observation_range = observation_range self.critic = critic self.actor = actor self.actor_lr = actor_lr self.critic_lr = critic_lr self.clip_norm = clip_norm self.enable_popart = enable_popart self.reward_scale = reward_scale self.batch_size = batch_size self.stats_sample = None self.critic_l2_reg = critic_l2_reg # Observation normalization. if self.normalize_observations: with tf.variable_scope('obs_rms', reuse=tf.AUTO_REUSE): self.obs_rms = RunningMeanStd(shape=observation_shape) else: self.obs_rms = None normalized_obs0 = tf.clip_by_value(normalize(self.obs0, self.obs_rms), self.observation_range[0], self.observation_range[1]) normalized_obs1 = tf.clip_by_value(normalize(self.obs1, self.obs_rms), self.observation_range[0], self.observation_range[1]) # Return normalization. if self.normalize_returns: with tf.variable_scope('ret_rms', reuse=tf.AUTO_REUSE): self.ret_rms = RunningMeanStd() else: self.ret_rms = None # Create target networks. target_actor = copy(actor) target_actor.name = 'target_actor' self.target_actor = target_actor target_critic = copy(critic) target_critic.name = 'target_critic' self.target_critic = target_critic # Create networks and core TF parts that are shared across setup parts. '''the normalization affect intialized policy to be effective, therefore remove it''' # self.actor_tf = actor(normalized_obs0) self.actor_tf, self.res_actor_tf = actor(self.obs0) self.normalized_critic_tf = critic(normalized_obs0, self.actions) self.critic_tf = denormalize( tf.clip_by_value(self.normalized_critic_tf, self.return_range[0], self.return_range[1]), self.ret_rms) self.normalized_critic_with_actor_tf = critic(normalized_obs0, self.res_actor_tf, reuse=True) self.critic_with_actor_tf = denormalize( tf.clip_by_value(self.normalized_critic_with_actor_tf, self.return_range[0], self.return_range[1]), self.ret_rms) _, res_target_actor_action = target_actor(normalized_obs1) Q_obs1 = denormalize( target_critic(normalized_obs1, res_target_actor_action), self.ret_rms) self.target_Q = self.rewards + (1. - self.terminals1) * gamma * Q_obs1 # Set up parts. if self.param_noise is not None: self.setup_param_noise(normalized_obs0) self.setup_actor_optimizer() self.setup_critic_optimizer() if self.normalize_returns and self.enable_popart: self.setup_popart() self.setup_stats() self.setup_target_network_updates() self.initial_state = None # recurrent architectures not supported yet def setup_target_network_updates(self): actor_init_updates, actor_soft_updates = get_target_updates( self.actor.vars, self.target_actor.vars, self.tau) critic_init_updates, critic_soft_updates = get_target_updates( self.critic.vars, self.target_critic.vars, self.tau) self.target_init_updates = [actor_init_updates, critic_init_updates] self.target_soft_updates = [actor_soft_updates, critic_soft_updates] def setup_param_noise(self, normalized_obs0): assert self.param_noise is not None # Configure perturbed actor. param_noise_actor = copy(self.actor) param_noise_actor.name = 'param_noise_actor' self.perturbed_actor_tf, self.perturbed_res_actor_tf = param_noise_actor( normalized_obs0) logger.info('setting up param noise') self.perturb_policy_ops = get_perturbed_actor_updates( self.actor, param_noise_actor, self.param_noise_stddev) # Configure separate copy for stddev adoption. adaptive_param_noise_actor = copy(self.actor) adaptive_param_noise_actor.name = 'adaptive_param_noise_actor' adaptive_actor_tf, adaptive_res_actor_tf = adaptive_param_noise_actor( normalized_obs0) self.perturb_adaptive_policy_ops = get_perturbed_actor_updates( self.actor, adaptive_param_noise_actor, self.param_noise_stddev) self.adaptive_policy_distance = tf.sqrt( tf.reduce_mean(tf.square(self.res_actor_tf - adaptive_res_actor_tf))) def setup_actor_optimizer(self): logger.info('setting up actor optimizer') self.actor_loss = -tf.reduce_mean(self.critic_with_actor_tf) actor_shapes = [ var.get_shape().as_list() for var in self.actor.trainable_vars ] actor_nb_params = sum( [reduce(lambda x, y: x * y, shape) for shape in actor_shapes]) logger.info(' actor shapes: {}'.format(actor_shapes)) logger.info(' actor params: {}'.format(actor_nb_params)) self.actor_grads = U.flatgrad(self.actor_loss, self.actor.trainable_vars, clip_norm=self.clip_norm) # print('var:', self.actor.trainable_vars) self.actor_optimizer = MpiAdam(var_list=self.actor.trainable_vars, beta1=0.9, beta2=0.999, epsilon=1e-08) def setup_critic_optimizer(self): logger.info('setting up critic optimizer') normalized_critic_target_tf = tf.clip_by_value( normalize(self.critic_target, self.ret_rms), self.return_range[0], self.return_range[1]) self.critic_loss = tf.reduce_mean( tf.square(self.normalized_critic_tf - normalized_critic_target_tf)) if self.critic_l2_reg > 0.: critic_reg_vars = [ var for var in self.critic.trainable_vars if 'kernel' in var.name and 'output' not in var.name ] for var in critic_reg_vars: logger.info(' regularizing: {}'.format(var.name)) logger.info(' applying l2 regularization with {}'.format( self.critic_l2_reg)) critic_reg = tc.layers.apply_regularization( tc.layers.l2_regularizer(self.critic_l2_reg), weights_list=critic_reg_vars) self.critic_loss += critic_reg critic_shapes = [ var.get_shape().as_list() for var in self.critic.trainable_vars ] critic_nb_params = sum( [reduce(lambda x, y: x * y, shape) for shape in critic_shapes]) logger.info(' critic shapes: {}'.format(critic_shapes)) logger.info(' critic params: {}'.format(critic_nb_params)) self.critic_grads = U.flatgrad(self.critic_loss, self.critic.trainable_vars, clip_norm=self.clip_norm) self.critic_optimizer = MpiAdam(var_list=self.critic.trainable_vars, beta1=0.9, beta2=0.999, epsilon=1e-08) def setup_popart(self): # See https://arxiv.org/pdf/1602.07714.pdf for details. self.old_std = tf.placeholder(tf.float32, shape=[1], name='old_std') new_std = self.ret_rms.std self.old_mean = tf.placeholder(tf.float32, shape=[1], name='old_mean') new_mean = self.ret_rms.mean self.renormalize_Q_outputs_op = [] for vs in [self.critic.output_vars, self.target_critic.output_vars]: assert len(vs) == 2 M, b = vs assert 'kernel' in M.name assert 'bias' in b.name assert M.get_shape()[-1] == 1 assert b.get_shape()[-1] == 1 self.renormalize_Q_outputs_op += [ M.assign(M * self.old_std / new_std) ] self.renormalize_Q_outputs_op += [ b.assign( (b * self.old_std + self.old_mean - new_mean) / new_std) ] def setup_stats(self): ops = [] names = [] if self.normalize_returns: ops += [self.ret_rms.mean, self.ret_rms.std] names += ['ret_rms_mean', 'ret_rms_std'] if self.normalize_observations: ops += [ tf.reduce_mean(self.obs_rms.mean), tf.reduce_mean(self.obs_rms.std) ] names += ['obs_rms_mean', 'obs_rms_std'] ops += [tf.reduce_mean(self.critic_tf)] names += ['reference_Q_mean'] ops += [reduce_std(self.critic_tf)] names += ['reference_Q_std'] ops += [tf.reduce_mean(self.critic_with_actor_tf)] names += ['reference_actor_Q_mean'] ops += [reduce_std(self.critic_with_actor_tf)] names += ['reference_actor_Q_std'] ops += [tf.reduce_mean(self.res_actor_tf)] names += ['reference_action_mean'] ops += [reduce_std(self.res_actor_tf)] names += ['reference_action_std'] if self.param_noise: ops += [tf.reduce_mean(self.perturbed_res_actor_tf)] names += ['reference_perturbed_action_mean'] ops += [reduce_std(self.perturbed_res_actor_tf)] names += ['reference_perturbed_action_std'] self.stats_ops = ops self.stats_names = names def step(self, obs, noise_factor=1., apply_noise=True, compute_Q=True): if self.param_noise is not None and apply_noise: res_actor_tf = self.perturbed_res_actor_tf else: res_actor_tf = self.res_actor_tf feed_dict = {self.obs0: U.adjust_shape(self.obs0, [obs])} if compute_Q: action, action_res, q = self.sess.run( [self.actor_tf, res_actor_tf, self.critic_with_actor_tf], feed_dict=feed_dict) else: action, action_res = self.sess.run([self.actor_tf, res_actor_tf], feed_dict=feed_dict) q = None print('action res: ', action_res) if self.action_noise is not None and apply_noise: noise = self.action_noise() # print('noise: ', noise.shape, action.shape) # assert noise.shape == action.shape #(1,3), (3,) correct addition, no need to assert # print('action, noise: ',action_res, noise) action_res += noise_factor * noise # print(action) # print(action, action_res) action_res = np.clip(action_res, self.action_range[0], self.action_range[1]) action = np.clip(action, self.action_range[0], self.action_range[1]) return action, action_res, q, None, None def store_transition(self, obs0, action, reward, obs1, terminal1): # print('rs: ', self.reward_scale*np.array([-1])) # reward *= self.reward_scale B = obs0.shape[0] for b in range(B): self.memory.append(obs0[b], action[b], reward[b], obs1[b], terminal1[b]) if self.normalize_observations: self.obs_rms.update(np.array([obs0[b]])) def train(self): # Get a batch. batch = self.memory.sample(batch_size=self.batch_size) if self.normalize_returns and self.enable_popart: old_mean, old_std, target_Q = self.sess.run( [self.ret_rms.mean, self.ret_rms.std, self.target_Q], feed_dict={ self.obs1: batch['obs1'], self.rewards: batch['rewards'], self.terminals1: batch['terminals1'].astype('float32'), }) self.ret_rms.update(target_Q.flatten()) self.sess.run(self.renormalize_Q_outputs_op, feed_dict={ self.old_std: np.array([old_std]), self.old_mean: np.array([old_mean]), }) # Run sanity check. Disabled by default since it slows down things considerably. # print('running sanity check') # target_Q_new, new_mean, new_std = self.sess.run([self.target_Q, self.ret_rms.mean, self.ret_rms.std], feed_dict={ # self.obs1: batch['obs1'], # self.rewards: batch['rewards'], # self.terminals1: batch['terminals1'].astype('float32'), # }) # print(target_Q_new, target_Q, new_mean, new_std) # assert (np.abs(target_Q - target_Q_new) < 1e-3).all() else: target_Q = self.sess.run(self.target_Q, feed_dict={ self.obs1: batch['obs1'], self.rewards: batch['rewards'], self.terminals1: batch['terminals1'].astype('float32'), }) # print('batch actions: ', batch['actions']) # Get all gradients and perform a synced update. ops = [ self.actor_grads, self.actor_loss, self.critic_grads, self.critic_loss ] actor_grads, actor_loss, critic_grads, critic_loss = self.sess.run( ops, feed_dict={ self.obs0: batch['obs0'], self.actions: batch['actions'], self.critic_target: target_Q, }) print('grads:', actor_grads[0:3]) self.actor_optimizer.update(actor_grads, stepsize=self.actor_lr) self.critic_optimizer.update(critic_grads, stepsize=self.critic_lr) ac = tf.get_default_graph().get_tensor_by_name('actor/dense/kernel:0') ini_ac = tf.get_default_graph().get_tensor_by_name( 'ini_actor/dense/kernel:0') print('weights: ', self.sess.run(ac)[0][0:3], self.sess.run(ini_ac)[0][0:3]) print('loss: ', actor_loss, critic_loss) return critic_loss, actor_loss def update_critic(self): # Get a batch. batch = self.memory.sample(batch_size=self.batch_size) if self.normalize_returns and self.enable_popart: old_mean, old_std, target_Q = self.sess.run( [self.ret_rms.mean, self.ret_rms.std, self.target_Q], feed_dict={ self.obs1: batch['obs1'], self.rewards: batch['rewards'], self.terminals1: batch['terminals1'].astype('float32'), }) self.ret_rms.update(target_Q.flatten()) self.sess.run(self.renormalize_Q_outputs_op, feed_dict={ self.old_std: np.array([old_std]), self.old_mean: np.array([old_mean]), }) # Run sanity check. Disabled by default since it slows down things considerably. # print('running sanity check') # target_Q_new, new_mean, new_std = self.sess.run([self.target_Q, self.ret_rms.mean, self.ret_rms.std], feed_dict={ # self.obs1: batch['obs1'], # self.rewards: batch['rewards'], # self.terminals1: batch['terminals1'].astype('float32'), # }) # print(target_Q_new, target_Q, new_mean, new_std) # assert (np.abs(target_Q - target_Q_new) < 1e-3).all() else: target_Q = self.sess.run(self.target_Q, feed_dict={ self.obs1: batch['obs1'], self.rewards: batch['rewards'], self.terminals1: batch['terminals1'].astype('float32'), }) # Get all gradients and perform a synced update. ops = [self.critic_grads, self.critic_loss] critic_grads, critic_loss = self.sess.run(ops, feed_dict={ self.obs0: batch['obs0'], self.actions: batch['actions'], self.critic_target: target_Q, }) # 1. update the eval critic self.critic_optimizer.update(critic_grads, stepsize=self.critic_lr) # 2. update the target critic critic_init_updates, critic_soft_updates = get_target_updates( self.critic.vars, self.target_critic.vars, self.tau) self.sess.run(critic_soft_updates) return critic_loss def initialize(self, sess): self.sess = sess self.sess.run(tf.global_variables_initializer()) self.actor_optimizer.sync() self.critic_optimizer.sync() self.sess.run(self.target_init_updates) def update_target_net(self): self.sess.run(self.target_soft_updates) def get_stats(self): if self.stats_sample is None: # Get a sample and keep that fixed for all further computations. # This allows us to estimate the change in value for the same set of inputs. self.stats_sample = self.memory.sample(batch_size=self.batch_size) values = self.sess.run(self.stats_ops, feed_dict={ self.obs0: self.stats_sample['obs0'], self.actions: self.stats_sample['actions'], }) names = self.stats_names[:] assert len(names) == len(values) stats = dict(zip(names, values)) if self.param_noise is not None: stats = {**stats, **self.param_noise.get_stats()} return stats def adapt_param_noise(self): if self.param_noise is None: return 0. # Perturb a separate copy of the policy to adjust the scale for the next "real" perturbation. batch = self.memory.sample(batch_size=self.batch_size) self.sess.run(self.perturb_adaptive_policy_ops, feed_dict={ self.param_noise_stddev: self.param_noise.current_stddev, }) distance = self.sess.run(self.adaptive_policy_distance, feed_dict={ self.obs0: batch['obs0'], self.param_noise_stddev: self.param_noise.current_stddev, }) mean_distance = MPI.COMM_WORLD.allreduce( distance, op=MPI.SUM) / MPI.COMM_WORLD.Get_size() self.param_noise.adapt(mean_distance) return mean_distance def reset(self): # Reset internal state after an episode is complete. if self.action_noise is not None: self.action_noise.reset() if self.param_noise is not None: self.sess.run(self.perturb_policy_ops, feed_dict={ self.param_noise_stddev: self.param_noise.current_stddev, }) #added def save(self, save_path): """ Save the model """ saver = tf.train.Saver() saver.save(self.sess, save_path) def load(self, sess, load_path): self.sess = sess saver = tf.train.Saver() saver.restore(self.sess, load_path) # self.sess=sess def load_ini(self, sess, load_path): """ Load the model """ # variables = tf.contrib.framework.get_variables_to_restore() # non_actor = [v for v in variables if v.name.split('/')[0]!='actor'] # saver = tf.train.Saver(non_actor) # print('Loading ' + load_path) # saver.restore(sess, load_path) self.sess = sess # for v in tf.get_default_graph().as_graph_def().node: # print(v.name) '''Initialize actor policy with supervised policy!''' try: # from the ddpg tensor graph: actor, critic, target_actor, target_critic actor_var_list = tf.contrib.framework.get_variables('ini_actor') except: print('Cannot get variables list!') # print('actor_var:',actor_var_list) try: actor_saver = tf.train.Saver(actor_var_list) actor_saver.restore(self.sess, './model/small/ini') print('Actor Load Succeed!') except: print('Actor Load Failed!') #check if the actor initialization policy has been loaded correctly, i.e. equal to \ # directly ouput values in checkpoint files # loaded_weights=tf.get_default_graph().get_tensor_by_name('actor/mlp_fc0/w:0') # print('loaded_weights:', self.sess.run(loaded_weights)) #init-update once the target_actor network(init_update is fully copy, soft-update accords to tau) self.sess.run(self.target_init_updates)
class DDPG(object): def __init__(self, actor, critic, memory, observation_shape, action_shape, param_noise=None, action_noise=None, gamma=0.99, tau=0.001, normalize_returns=False, enable_popart=False, normalize_observations=True, batch_size=128, observation_range=(-5., 5.), action_range=(-1., 1.), return_range=(-np.inf, np.inf), critic_l2_reg=0., actor_lr=1e-4, critic_lr=1e-3, clip_norm=None, reward_scale=1.): # Inputs. self.obs0 = tf.placeholder(tf.float32, shape=(None,) + observation_shape, name='obs0') self.obs1 = tf.placeholder(tf.float32, shape=(None,) + observation_shape, name='obs1') self.terminals1 = tf.placeholder(tf.float32, shape=(None, 1), name='terminals1') self.rewards = tf.placeholder(tf.float32, shape=(None, 1), name='rewards') self.actions = tf.placeholder(tf.float32, shape=(None,) + action_shape, name='actions') self.critic_target = tf.placeholder(tf.float32, shape=(None, 1), name='critic_target') self.param_noise_stddev = tf.placeholder(tf.float32, shape=(), name='param_noise_stddev') # Parameters. self.gamma = gamma self.tau = tau self.memory = memory self.normalize_observations = normalize_observations self.normalize_returns = normalize_returns self.action_noise = action_noise self.param_noise = param_noise self.action_range = action_range self.return_range = return_range self.observation_range = observation_range self.critic = critic self.actor = actor self.actor_lr = actor_lr self.critic_lr = critic_lr self.clip_norm = clip_norm self.enable_popart = enable_popart self.reward_scale = reward_scale self.batch_size = batch_size self.stats_sample = None self.critic_l2_reg = critic_l2_reg # Observation normalization. if self.normalize_observations: with tf.variable_scope('obs_rms'): self.obs_rms = RunningMeanStd(shape=observation_shape) else: self.obs_rms = None normalized_obs0 = tf.clip_by_value(normalize(self.obs0, self.obs_rms), self.observation_range[0], self.observation_range[1]) normalized_obs1 = tf.clip_by_value(normalize(self.obs1, self.obs_rms), self.observation_range[0], self.observation_range[1]) # Return normalization. if self.normalize_returns: with tf.variable_scope('ret_rms'): self.ret_rms = RunningMeanStd() else: self.ret_rms = None # Create target networks. target_actor = copy(actor) target_actor.name = 'target_actor' self.target_actor = target_actor target_critic = copy(critic) target_critic.name = 'target_critic' self.target_critic = target_critic # Create networks and core TF parts that are shared across setup parts. self.actor_tf = actor(normalized_obs0) self.normalized_critic_tf = critic(normalized_obs0, self.actions) self.critic_tf = denormalize( tf.clip_by_value(self.normalized_critic_tf, self.return_range[0], self.return_range[1]), self.ret_rms) self.normalized_critic_with_actor_tf = critic(normalized_obs0, self.actor_tf, reuse=True) self.critic_with_actor_tf = denormalize( tf.clip_by_value(self.normalized_critic_with_actor_tf, self.return_range[0], self.return_range[1]), self.ret_rms) Q_obs1 = denormalize(target_critic(normalized_obs1, target_actor(normalized_obs1)), self.ret_rms) self.target_Q = self.rewards + (1. - self.terminals1) * gamma * Q_obs1 # Set up parts. if self.param_noise is not None: self.setup_param_noise(normalized_obs0) self.setup_actor_optimizer() self.setup_critic_optimizer() if self.normalize_returns and self.enable_popart: self.setup_popart() self.setup_stats() self.setup_target_network_updates() def setup_target_network_updates(self): actor_init_updates, actor_soft_updates = get_target_updates(self.actor.vars, self.target_actor.vars, self.tau) critic_init_updates, critic_soft_updates = get_target_updates(self.critic.vars, self.target_critic.vars, self.tau) self.target_init_updates = [actor_init_updates, critic_init_updates] self.target_soft_updates = [actor_soft_updates, critic_soft_updates] def setup_param_noise(self, normalized_obs0): assert self.param_noise is not None # Configure perturbed actor. param_noise_actor = copy(self.actor) param_noise_actor.name = 'param_noise_actor' self.perturbed_actor_tf = param_noise_actor(normalized_obs0) logger.info('setting up param noise') self.perturb_policy_ops = get_perturbed_actor_updates(self.actor, param_noise_actor, self.param_noise_stddev) # Configure separate copy for stddev adoption. adaptive_param_noise_actor = copy(self.actor) adaptive_param_noise_actor.name = 'adaptive_param_noise_actor' adaptive_actor_tf = adaptive_param_noise_actor(normalized_obs0) self.perturb_adaptive_policy_ops = get_perturbed_actor_updates(self.actor, adaptive_param_noise_actor, self.param_noise_stddev) self.adaptive_policy_distance = tf.sqrt(tf.reduce_mean(tf.square(self.actor_tf - adaptive_actor_tf))) def setup_actor_optimizer(self): logger.info('setting up actor optimizer') self.actor_loss = -tf.reduce_mean(self.critic_with_actor_tf) actor_shapes = [var.get_shape().as_list() for var in self.actor.trainable_vars] actor_nb_params = sum([reduce(lambda x, y: x * y, shape) for shape in actor_shapes]) logger.info(' actor shapes: {}'.format(actor_shapes)) logger.info(' actor params: {}'.format(actor_nb_params)) self.actor_grads = U.flatgrad(self.actor_loss, self.actor.trainable_vars, clip_norm=self.clip_norm) self.actor_optimizer = MpiAdam(var_list=self.actor.trainable_vars, beta1=0.9, beta2=0.999, epsilon=1e-08) def setup_critic_optimizer(self): logger.info('setting up critic optimizer') normalized_critic_target_tf = tf.clip_by_value(normalize(self.critic_target, self.ret_rms), self.return_range[0], self.return_range[1]) self.critic_loss = tf.reduce_mean(tf.square(self.normalized_critic_tf - normalized_critic_target_tf)) if self.critic_l2_reg > 0.: critic_reg_vars = [var for var in self.critic.trainable_vars if 'kernel' in var.name and 'output' not in var.name] for var in critic_reg_vars: logger.info(' regularizing: {}'.format(var.name)) logger.info(' applying l2 regularization with {}'.format(self.critic_l2_reg)) critic_reg = tc.layers.apply_regularization( tc.layers.l2_regularizer(self.critic_l2_reg), weights_list=critic_reg_vars ) self.critic_loss += critic_reg critic_shapes = [var.get_shape().as_list() for var in self.critic.trainable_vars] critic_nb_params = sum([reduce(lambda x, y: x * y, shape) for shape in critic_shapes]) logger.info(' critic shapes: {}'.format(critic_shapes)) logger.info(' critic params: {}'.format(critic_nb_params)) self.critic_grads = U.flatgrad(self.critic_loss, self.critic.trainable_vars, clip_norm=self.clip_norm) self.critic_optimizer = MpiAdam(var_list=self.critic.trainable_vars, beta1=0.9, beta2=0.999, epsilon=1e-08) def setup_popart(self): # See https://arxiv.org/pdf/1602.07714.pdf for details. self.old_std = tf.placeholder(tf.float32, shape=[1], name='old_std') new_std = self.ret_rms.std self.old_mean = tf.placeholder(tf.float32, shape=[1], name='old_mean') new_mean = self.ret_rms.mean self.renormalize_Q_outputs_op = [] for vs in [self.critic.output_vars, self.target_critic.output_vars]: assert len(vs) == 2 M, b = vs assert 'kernel' in M.name assert 'bias' in b.name assert M.get_shape()[-1] == 1 assert b.get_shape()[-1] == 1 self.renormalize_Q_outputs_op += [M.assign(M * self.old_std / new_std)] self.renormalize_Q_outputs_op += [b.assign((b * self.old_std + self.old_mean - new_mean) / new_std)] def setup_stats(self): ops = [] names = [] if self.normalize_returns: ops += [self.ret_rms.mean, self.ret_rms.std] names += ['ret_rms_mean', 'ret_rms_std'] if self.normalize_observations: ops += [tf.reduce_mean(self.obs_rms.mean), tf.reduce_mean(self.obs_rms.std)] names += ['obs_rms_mean', 'obs_rms_std'] ops += [tf.reduce_mean(self.critic_tf)] names += ['reference_Q_mean'] ops += [reduce_std(self.critic_tf)] names += ['reference_Q_std'] ops += [tf.reduce_mean(self.critic_with_actor_tf)] names += ['reference_actor_Q_mean'] ops += [reduce_std(self.critic_with_actor_tf)] names += ['reference_actor_Q_std'] ops += [tf.reduce_mean(self.actor_tf)] names += ['reference_action_mean'] ops += [reduce_std(self.actor_tf)] names += ['reference_action_std'] if self.param_noise: ops += [tf.reduce_mean(self.perturbed_actor_tf)] names += ['reference_perturbed_action_mean'] ops += [reduce_std(self.perturbed_actor_tf)] names += ['reference_perturbed_action_std'] self.stats_ops = ops self.stats_names = names def pi(self, obs, apply_noise=True, compute_Q=True): if self.param_noise is not None and apply_noise: actor_tf = self.perturbed_actor_tf else: actor_tf = self.actor_tf feed_dict = {self.obs0: [obs]} if compute_Q: action, q = self.sess.run([actor_tf, self.critic_with_actor_tf], feed_dict=feed_dict) else: action = self.sess.run(actor_tf, feed_dict=feed_dict) q = None action = action.flatten() if self.action_noise is not None and apply_noise: noise = self.action_noise() assert noise.shape == action.shape action += noise action = np.clip(action, self.action_range[0], self.action_range[1]) return action, q def store_transition(self, obs0, action, reward, obs1, terminal1): reward *= self.reward_scale self.memory.append(obs0, action, reward, obs1, terminal1) if self.normalize_observations: self.obs_rms.update(np.array([obs0])) def train(self): # Get a batch. batch = self.memory.sample(batch_size=self.batch_size) if self.normalize_returns and self.enable_popart: old_mean, old_std, target_Q = self.sess.run([self.ret_rms.mean, self.ret_rms.std, self.target_Q], feed_dict={ self.obs1: batch['obs1'], self.rewards: batch['rewards'], self.terminals1: batch['terminals1'].astype('float32'), }) self.ret_rms.update(target_Q.flatten()) self.sess.run(self.renormalize_Q_outputs_op, feed_dict={ self.old_std: np.array([old_std]), self.old_mean: np.array([old_mean]), }) else: target_Q = self.sess.run(self.target_Q, feed_dict={ self.obs1: batch['obs1'], self.rewards: batch['rewards'], self.terminals1: batch['terminals1'].astype('float32'), }) # Get all gradients and perform a synced update. ops = [self.actor_grads, self.actor_loss, self.critic_grads, self.critic_loss] actor_grads, actor_loss, critic_grads, critic_loss = self.sess.run(ops, feed_dict={ self.obs0: batch['obs0'], self.actions: batch['actions'], self.critic_target: target_Q, }) self.actor_optimizer.update(actor_grads, stepsize=self.actor_lr) self.critic_optimizer.update(critic_grads, stepsize=self.critic_lr) return critic_loss, actor_loss def initialize(self, sess): self.sess = sess self.sess.run(tf.global_variables_initializer()) self.actor_optimizer.sync() self.critic_optimizer.sync() self.sess.run(self.target_init_updates) def update_target_net(self): self.sess.run(self.target_soft_updates) def get_stats(self): if self.stats_sample is None: # Get a sample and keep that fixed for all further computations. # This allows us to estimate the change in value for the same set of inputs. self.stats_sample = self.memory.sample(batch_size=self.batch_size) values = self.sess.run(self.stats_ops, feed_dict={ self.obs0: self.stats_sample['obs0'], self.actions: self.stats_sample['actions'], }) names = self.stats_names[:] assert len(names) == len(values) stats = dict(zip(names, values)) if self.param_noise is not None: stats = {**stats, **self.param_noise.get_stats()} return stats def adapt_param_noise(self): if self.param_noise is None: return 0. # Perturb a separate copy of the policy to adjust the scale for the next "real" perturbation. batch = self.memory.sample(batch_size=self.batch_size) self.sess.run(self.perturb_adaptive_policy_ops, feed_dict={ self.param_noise_stddev: self.param_noise.current_stddev, }) distance = self.sess.run(self.adaptive_policy_distance, feed_dict={ self.obs0: batch['obs0'], self.param_noise_stddev: self.param_noise.current_stddev, }) mean_distance = MPI.COMM_WORLD.allreduce(distance, op=MPI.SUM) / MPI.COMM_WORLD.Get_size() self.param_noise.adapt(mean_distance) return mean_distance def reset(self): # Reset internal state after an episode is complete. if self.action_noise is not None: self.action_noise.reset() if self.param_noise is not None: self.sess.run(self.perturb_policy_ops, feed_dict={ self.param_noise_stddev: self.param_noise.current_stddev, })
def learn( env, policy_func, *, timesteps=4, timesteps_per_batch, # timesteps per actor per update clip_param, entcoeff, # clipping parameter epsilon, entropy coeff optim_epochs, optim_stepsize, optim_batchsize, # optimization hypers gamma, lam, # advantage estimation max_timesteps=0, max_episodes=0, max_iters=0, max_seconds=0, # time constraint callback=None, # you can do anything in the callback, since it takes locals(), globals() adam_epsilon=1e-5, schedule='constant', # annealing for stepsize parameters (epsilon and adam) save_per_iter=100, ckpt_dir=None, task="train", sample_stochastic=True, load_model_path=None, task_name=None, max_sample_traj=1500): # Setup losses and stuff # ---------------------------------------- ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", timesteps, ob_space, ac_space) # Construct network for new policy oldpi = policy_func("oldpi", timesteps, ob_space, ac_space) # Network for old policy atarg = tf.placeholder( dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return pi_vpred = tf.placeholder(dtype=tf.float32, shape=[None]) lrmult = tf.placeholder( name='lrmult', dtype=tf.float32, shape=[]) # learning rate multiplier, updated with schedule clip_param = clip_param * lrmult # Annealed cliping parameter epislon ob = U.get_placeholder_cached(name="ob") # ob_now = tf.placeholder(dtype=tf.float32, shape=[optim_batchsize, list(ob_space.shape)[0]]) ac = pi.pdtype.sample_placeholder([None]) kloldnew = oldpi.pd.kl(pi.pd) ent = pi.pd.entropy() meankl = U.mean(kloldnew) meanent = U.mean(ent) pol_entpen = (-entcoeff) * meanent ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # pnew / pold surr1 = ratio * atarg # surrogate from conservative policy iteration surr2 = U.clip(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg # pol_surr = -U.mean(tf.minimum( surr1, surr2)) # PPO's pessimistic surrogate (L^CLIP) vf_loss = U.mean(tf.square(pi.vpred - ret)) # total_loss = pol_surr + pol_entpen + vf_loss total_loss = pol_surr + pol_entpen losses = [pol_surr, pol_entpen, meankl, meanent] loss_names = ["pol_surr", "pol_entpen", "kl", "ent"] var_list = pi.get_trainable_variables() vf_var_list = [ v for v in var_list if v.name.split("/")[1].startswith("vf") ] pol_var_list = [ v for v in var_list if not v.name.split("/")[1].startswith("vf") ] # lossandgrad = U.function([ob, ac, atarg ,ret, lrmult], losses + [U.flatgrad(total_loss, var_list)]) lossandgrad = U.function([ob, ac, atarg, ret, lrmult], losses + [U.flatgrad(total_loss, pol_var_list)]) vf_grad = U.function([ob, ac, atarg, ret, lrmult], U.flatgrad(vf_loss, vf_var_list)) # adam = MpiAdam(var_list, epsilon=adam_epsilon) pol_adam = MpiAdam(pol_var_list, epsilon=adam_epsilon) vf_adam = MpiAdam(vf_var_list, epsilon=adam_epsilon) assign_old_eq_new = U.function( [], [], updates=[ tf.assign(oldv, newv) for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables()) ]) compute_losses = U.function([ob, ac, atarg, ret, lrmult], losses) U.initialize() #adam.sync() pol_adam.sync() vf_adam.sync() # Prepare for rollouts # ---------------------------------------- seg_gen = traj_segment_generator(pi, timesteps, env, timesteps_per_batch, stochastic=True) traj_gen = traj_episode_generator(pi, env, timesteps_per_batch, stochastic=sample_stochastic) episodes_so_far = 0 timesteps_so_far = 0 iters_so_far = 0 tstart = time.time() lenbuffer = deque(maxlen=100) # rolling buffer for episode lengths rewbuffer = deque(maxlen=100) # rolling buffer for episode rewards EpRewMean_MAX = 2.5e3 assert sum( [max_iters > 0, max_timesteps > 0, max_episodes > 0, max_seconds > 0]) == 1, "Only one time constraint permitted" if task == 'sample_trajectory': # not elegant, i know :( sample_trajectory(load_model_path, max_sample_traj, traj_gen, task_name, sample_stochastic) sys.exit() while True: if callback: callback(locals(), globals()) if max_timesteps and timesteps_so_far >= max_timesteps: break elif max_episodes and episodes_so_far >= max_episodes: break elif max_iters and iters_so_far >= max_iters: break elif max_seconds and time.time() - tstart >= max_seconds: break if schedule == 'constant': cur_lrmult = 1.0 elif schedule == 'linear': cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0) else: raise NotImplementedError # Save model if iters_so_far % save_per_iter == 0 and ckpt_dir is not None: U.save_state(os.path.join(ckpt_dir, task_name), counter=iters_so_far) logger.log("********** Iteration %i ************" % iters_so_far) # if(iters_so_far == 1): # a = 1 seg = seg_gen.__next__() add_vtarg_and_adv(seg, gamma, lam) # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets)) ob, ac, atarg, vpred, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[ "vpred"], seg["tdlamret"] vpredbefore = seg["vpred"] # predicted value function before udpate atarg = (atarg - atarg.mean() ) / atarg.std() # standardized advantage function estimate d = Dataset( dict(ob=ob, ac=ac, atarg=atarg, vpred=vpred, vtarg=tdlamret), shuffle=False ) #d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vpred = vpred, vtarg=tdlamret), shuffle=not pi.recurrent) optim_batchsize = optim_batchsize or ob.shape[0] if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy assign_old_eq_new() # set old parameter values to new parameter values logger.log("Optimizing...") logger.log(fmt_row(13, loss_names)) # Here we do a bunch of optimization epochs over the data for _ in range(optim_epochs): losses = [ ] # list of tuples, each of which gives the loss for a minibatch pre_obs = [seg["ob_reset"] for jmj in range(timesteps - 1)] for batch in d.iterate_once(optim_batchsize): ##feed ob, 重新处理一下ob,在batch["ob"]的最前面插入timesteps-1个env.reset的ob,然后滑动串口划分一下batch['ob] ob_now = np.append(pre_obs, batch['ob']).reshape( optim_batchsize + timesteps - 1, list(ob_space.shape)[0]) pre_obs = ob_now[-(timesteps - 1):] ob_fin = [] for jmj in range(optim_batchsize): ob_fin.append(ob_now[jmj:jmj + timesteps]) *newlosses, g = lossandgrad(ob_fin, batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult) ###这里的g好像都是0 #adam.update(g, optim_stepsize * cur_lrmult) pol_adam.update(g, optim_stepsize * cur_lrmult) vf_g = vf_grad(ob_fin, batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult) vf_adam.update(vf_g, optim_stepsize * cur_lrmult) losses.append(newlosses) logger.log(fmt_row(13, np.mean(losses, axis=0))) pre_obs = [seg["ob_reset"] for jmj in range(timesteps - 1)] for batch in d.iterate_once(optim_batchsize): ##feed ob, 重新处理一下ob,在batch["ob"]的最前面插入timesteps-1个env.reset的ob,然后滑动串口划分一下batch['ob] ob_now = np.append(pre_obs, batch['ob']).reshape( optim_batchsize + timesteps - 1, list(ob_space.shape)[0]) pre_obs = ob_now[-(timesteps - 1):] ob_fin = [] for jmj in range(optim_batchsize): ob_fin.append(ob_now[jmj:jmj + timesteps]) *newlosses, g = lossandgrad(ob_fin, batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult) ###这里的g好像都是0 #adam.update(g, optim_stepsize * cur_lrmult) pol_adam.update(g, optim_stepsize * cur_lrmult) vf_g = vf_grad(ob_fin, batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult) vf_adam.update(vf_g, optim_stepsize * cur_lrmult) logger.log("Evaluating losses...") losses = [] loss_pre_obs = [seg["ob_reset"] for jmj in range(timesteps - 1)] for batch in d.iterate_once(optim_batchsize): ### feed ob ob_now = np.append(loss_pre_obs, batch['ob']).reshape( optim_batchsize + timesteps - 1, list(ob_space.shape)[0]) loss_pre_obs = ob_now[-(timesteps - 1):] ob_fin = [] for jmj in range(optim_batchsize): ob_fin.append(ob_now[jmj:jmj + timesteps]) newlosses = compute_losses(ob_fin, batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult) losses.append(newlosses) meanlosses, _, _ = mpi_moments(losses, axis=0) logger.log(fmt_row(13, meanlosses)) for (lossval, name) in zipsame(meanlosses, loss_names): logger.record_tabular("loss_" + name, lossval) logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret)) lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples lens, rews = map(flatten_lists, zip(*listoflrpairs)) lenbuffer.extend(lens) rewbuffer.extend(rews) logger.record_tabular("EpLenMean", np.mean(lenbuffer)) logger.record_tabular("EpRewMean", np.mean(rewbuffer)) if (np.mean(rewbuffer) > EpRewMean_MAX): EpRewMean_MAX = np.mean(rewbuffer) print(iters_so_far) print(np.mean(rewbuffer)) logger.record_tabular("EpThisIter", len(lens)) episodes_so_far += len(lens) timesteps_so_far += sum(lens) iters_so_far += 1 logger.record_tabular("EpisodesSoFar", episodes_so_far) logger.record_tabular("TimestepsSoFar", timesteps_so_far) logger.record_tabular("TimeElapsed", time.time() - tstart) if MPI.COMM_WORLD.Get_rank() == 0: logger.dump_tabular()