def plot(self): if self.startingpoint.description == None: location_text = "" else: location_text = self.startingpoint.description + " " # Gets the better CVM description if it exists. try: cvmdesc = UCVM_CVMS[self.cvm] except: cvmdesc = self.cvm if 'title' in self.meta: title = self.meta['title'] else: title = "%s%s Elevation Profile From %sm To %sm at (%.2f,%.2f)" % ( location_text, cvmdesc, self.startelevation, self.toelevation, self.startingpoint.longitude, self.startingpoint.latitude) # Call the plot object. p = Plot(title, "Units (see legend)", "Elevation (m)", None, 7, 10) # Add to plot. self.addtoplot(p) if self.filename == None: plt.show() else: plt.savefig(self.filename)
def plot(self, properties, filename=None): if self.startingpoint.description == None: location_text = "" else: location_text = self.startingpoint.description + " " # Gets the better CVM description if it exists. try: cvmdesc = UCVM_CVMS[self.cvm] except: cvmdesc = self.cvm # Call the plot object. p = Plot("%s%s Depth Profile From %sm To %sm" % (location_text, cvmdesc, self.startingpoint.depth, self.todepth), \ "Units (see legend)", "Depth (m)", None, 7, 10) # Add to plot. self.addtoplot(p, properties) if filename == None: plt.show() else: plt.savefig(filename)
def plot(self): self.installdir = None if 'installdir' in self.meta: self.installdir = self.meta['installdir'] self.configfile = None if 'configfile' in self.meta: self.configfile = self.meta['configfile'] if 'color' in self.meta: color_scale = self.meta['color'] if 'gate' in self.meta: scale_gate = int(self.meta['gate']) else: scale_gate = None if color_scale == "b" and scale_gate is None: scale_gate = 2.5 if self.startingpoint.description == None: location_text = "" else: location_text = self.startingpoint.description + " " if 'data_type' in self.meta: mproperty = self.meta['data_type'] else: mproperty = "vs" # Gets the better CVM description if it exists. try: cvmdesc = UCVM_CVMS[self.cvm] except: cvmdesc = self.cvm if 'title' in self.meta: title = self.meta['title'] else: title = "%s%s Cross Section from (%.2f, %.2f) to (%.2f, %.2f)" % (location_text, cvmdesc, self.startingpoint.longitude, \ self.startingpoint.latitude, self.endingpoint.longitude, self.endingpoint.latitude) self.meta['title'] = title self.getplotvals(mproperty) # Call the plot object. p = Plot(None, None, None, None, 10, 10) plt.axes([0.1, 0.7, 0.8, 0.25]) # Figure out which is upper-right and bottom-left. ur_lat = self.startingpoint.latitude if self.startingpoint.latitude > self.endingpoint.latitude else self.endingpoint.latitude ur_lon = self.startingpoint.longitude if self.startingpoint.longitude > self.endingpoint.longitude else self.endingpoint.longitude ll_lat = self.startingpoint.latitude if self.startingpoint.latitude < self.endingpoint.latitude else self.endingpoint.latitude ll_lon = self.startingpoint.longitude if self.startingpoint.longitude < self.endingpoint.longitude else self.endingpoint.longitude # Add 1% to each for good measure. ur_lat = ur_lat + 0.03 * ur_lat ur_lon = ur_lon - 0.015 * ur_lon ll_lat = ll_lat - 0.03 * ll_lat ll_lon = ll_lon + 0.015 * ll_lon # Plot map up top. m = basemap.Basemap(projection='cyl', llcrnrlat=ll_lat, urcrnrlat=ur_lat, \ llcrnrlon=ll_lon, urcrnrlon=ur_lon, \ resolution='f', anchor='C') lat_ticks = np.arange(ll_lat, ur_lat + 0.1, (ur_lat - ll_lat)) lon_ticks = np.arange(ll_lon, ur_lon + 0.1, (ur_lon - ll_lon)) m.drawparallels(lat_ticks, linewidth=1.0, labels=[1, 0, 0, 0]) m.drawmeridians(lon_ticks, linewidth=1.0, labels=[0, 0, 0, 1]) m.drawstates() m.drawcountries() m.drawcoastlines() m.drawmapboundary(fill_color='aqua') m.fillcontinents(color='brown', lake_color='aqua') m.plot([self.startingpoint.longitude, self.endingpoint.longitude], [self.startingpoint.latitude, self.endingpoint.latitude]) valign1 = "top" valign2 = "bottom" if self.endingpoint.latitude < self.startingpoint.latitude: valign1 = "bottom" valign2 = "top" plt.text(self.startingpoint.longitude, self.startingpoint.latitude, \ '[S] %.1f, %.1f' % (self.startingpoint.longitude, self.startingpoint.latitude), \ color='k', horizontalalignment="center", verticalalignment=valign1) plt.text(self.endingpoint.longitude, self.endingpoint.latitude, \ '[E] %.1f, %.1f' % (self.endingpoint.longitude, self.endingpoint.latitude), \ color='k', horizontalalignment="center", verticalalignment=valign2) plt.axes([0.05, 0.18, 0.9, 0.54]) datapoints = np.arange(self.num_x * self.num_y, dtype=np.float32).reshape( self.num_y, self.num_x) for y in xrange(0, self.num_y): for x in xrange(0, self.num_x): if self.datafile != None: datapoints[y][x] = self.materialproperties[y][ x].getProperty(mproperty) elif mproperty != "poisson": datapoints[y][x] = self.materialproperties[y][ x].getProperty(mproperty) else: if self.materialproperties[y][ x].vp == 0 or self.materialproperties[y][ x].vs == 0.0: datapoints[y][x] = 0.0 else: datapoints[y][x] = self.materialproperties[y][ x].getProperty("vp") / self.materialproperties[y][ x].getProperty("vs") u = UCVM(install_dir=self.installdir, config_file=self.configfile) myInt = 1000 newdatapoints = datapoints / myInt self.max_val = np.nanmax(newdatapoints) self.min_val = np.nanmin(newdatapoints) self.mean_val = np.mean(newdatapoints) BOUNDS = u.makebounds() TICKS = u.maketicks() if mproperty == "vp": BOUNDS = [bound * 1.7 for bound in BOUNDS] TICKS = [tick * 1.7 for tick in TICKS] # Set default colormap and range colormap = basemap.cm.GMT_seis norm = mcolors.BoundaryNorm(BOUNDS, colormap.N) umax = round(self.max_val) if (umax < 5): umax = 5 umin = round(self.min_val) if color_scale == "s": colormap = basemap.cm.GMT_seis norm = mcolors.Normalize(vmin=0, vmax=umax) elif color_scale == "s_r": colormap = basemap.cm.GMT_seis_r norm = mcolors.Normalize(vmin=0, vmax=umax) elif color_scale == "sd": BOUNDS = u.makebounds(self.min_val, self.max_val, 5, self.mean_val, substep=5) colormap = basemap.cm.GMT_seis TICKS = u.maketicks(self.min_val, self.max_val, 5) norm = mcolors.Normalize(vmin=self.min_val, vmax=self.max_val) elif color_scale == "b": C = [] for bound in BOUNDS: if bound < scale_gate: C.append("grey") else: C.append("red") colormap = mcolors.ListedColormap(C) norm = mcolors.BoundaryNorm(BOUNDS, colormap.N) elif color_scale == 'd': colormap = pycvm_cmapDiscretize(basemap.cm.GMT_seis, len(BOUNDS) - 1) norm = mcolors.BoundaryNorm(BOUNDS, colormap.N) elif color_scale == 'd_r': colormap = pycvm_cmapDiscretize(basemap.cm.GMT_seis_r, len(BOUNDS) - 1) norm = mcolors.BoundaryNorm(BOUNDS, colormap.N) elif color_scale == 'dd': BOUNDS = u.makebounds(self.min_val, self.max_val, 5, self.mean_val, substep=5) TICKS = u.maketicks(self.min_val, self.max_val, 5) colormap = pycvm_cmapDiscretize(basemap.cm.GMT_seis, len(BOUNDS) - 1) norm = mcolors.BoundaryNorm(BOUNDS, colormap.N) else: print "ERROR: unknown option for colorscale." ## MEI, TODO this is a temporary way to generate an output of a cross_section input file if (self.datafile == None): self.meta['num_x'] = self.num_x self.meta['num_y'] = self.num_y self.meta['datapoints'] = datapoints.size self.meta['max'] = np.asscalar(self.max_val) self.meta['min'] = np.asscalar(self.min_val) self.meta['mean'] = np.asscalar(self.mean_val) self.meta['lon_list'] = self.lon_list self.meta['lat_list'] = self.lat_list self.meta['depth_list'] = self.depth_list if self.filename: u.export_metadata(self.meta, self.filename) u.export_binary(datapoints, self.filename) else: #https://stackoverflow.com/questions/2257441/random-string-generation-with-upper-case-letters-and-digits-in-python rnd = ''.join( random.SystemRandom().choice(string.ascii_uppercase + string.digits) for _ in range(6)) f = "cross_section" + rnd u.export_metadata(self.meta, f) u.export_binary(datapoints, f) img = plt.imshow(newdatapoints, cmap=colormap, norm=norm) plt.xticks([0,self.num_x/2,self.num_x], ["[S] %.3f" % self.startingpoint.longitude, \ "%.3f" % ((float(self.endingpoint.longitude) + float(self.startingpoint.longitude)) / 2), \ "[E] %.3f" % self.endingpoint.longitude]) plt.yticks([0,self.num_y/2,self.num_y], ["%.2f" % (self.startingdepth/1000), \ "%.2f" % (self.startingdepth+ ((self.todepth-self.startingdepth)/2)/1000), \ "%.2f" % (self.todepth / 1000)]) plt.title(title) cax = plt.axes([0.1, 0.1, 0.8, 0.02]) cbar = plt.colorbar(img, cax=cax, orientation='horizontal', ticks=TICKS, spacing='regular') if mproperty != "poisson": cbar.set_label(mproperty.title() + " (km/s)") else: cbar.set_label("Vp/Vs") if self.filename: plt.savefig(self.filename) else: plt.show()
def plot(self, property, filename = None, title = None): if self.plot_type == "HorizontalSlice": if title == None: title = "Horizontal Slice Difference Plot" # Call the plot object. p = Plot(title, "", "", None, 10, 10) colormap = basemap.cm.GMT_seis m = basemap.Basemap(projection='cyl', llcrnrlat=self.plot_specs.bottomrightpoint.latitude, \ urcrnrlat=self.plot_specs.upperleftpoint.latitude, \ llcrnrlon=self.plot_specs.upperleftpoint.longitude, \ urcrnrlon=self.plot_specs.bottomrightpoint.longitude, \ resolution='f', anchor='C') lat_ticks = np.arange(self.plot_specs.bottomrightpoint.latitude, \ self.plot_specs.upperleftpoint.latitude + 0.1, \ self.plot_specs.plot_height / 2) lon_ticks = np.arange(self.plot_specs.upperleftpoint.longitude, \ self.plot_specs.bottomrightpoint.longitude + 0.1, \ self.plot_specs.plot_width / 2) m.drawparallels(lat_ticks, linewidth=1.0, labels=[1,0,0,0]) m.drawmeridians(lon_ticks, linewidth=1.0, labels=[0,0,0,1]) m.drawstates() m.drawcountries() lons = np.arange(self.plot_specs.upperleftpoint.longitude, \ self.plot_specs.bottomrightpoint.longitude, \ self.plot_specs.spacing) lats = np.arange(self.plot_specs.bottomrightpoint.latitude, \ self.plot_specs.upperleftpoint.latitude, \ self.plot_specs.spacing) # Get the properties. datapoints = np.arange(self.plot_specs.num_x * self.plot_specs.num_y, \ dtype=float).reshape(self.plot_specs.num_y, self.plot_specs.num_x) for i in xrange(0, self.plot_specs.num_y): for j in xrange(0, self.plot_specs.num_x): datapoints[i][j] = self.difference_values[i][j].getProperty(property) / 1000.0 t = m.transform_scalar(datapoints, lons, lats, len(lons), len(lats)) img = m.imshow(t, cmap=colormap) m.drawcoastlines() cax = plt.axes([0.125, 0.05, 0.775, 0.02]) cbar = plt.colorbar(img, cax=cax, orientation='horizontal') cbar.set_label(property.title() + " (km/s)") elif self.plot_type == "CrossSection": if title == None: title = "Horizontal Slice Difference Plot" # Call the plot object. p = Plot(None, None, None, None, 10, 10) colormap = basemap.cm.GMT_seis plt.axes([0.1,0.7,0.8,0.25]) # Figure out which is upper-right and bottom-left. ur_lat = self.plot_specs.startingpoint.latitude if self.plot_specs.startingpoint.latitude > self.plot_specs.endingpoint.latitude else self.plot_specs.endingpoint.latitude ur_lon = self.plot_specs.startingpoint.longitude if self.plot_specs.startingpoint.longitude > self.plot_specs.endingpoint.longitude else self.plot_specs.endingpoint.longitude ll_lat = self.plot_specs.startingpoint.latitude if self.plot_specs.startingpoint.latitude < self.plot_specs.endingpoint.latitude else self.plot_specs.endingpoint.latitude ll_lon = self.plot_specs.startingpoint.longitude if self.plot_specs.startingpoint.longitude < self.plot_specs.endingpoint.longitude else self.plot_specs.endingpoint.longitude # Add 1% to each for good measure. ur_lat = ur_lat + 0.03 * ur_lat ur_lon = ur_lon - 0.015 * ur_lon ll_lat = ll_lat - 0.03 * ll_lat ll_lon = ll_lon + 0.015 * ll_lon # Plot map up top. m = basemap.Basemap(projection='cyl', llcrnrlat=ll_lat, urcrnrlat=ur_lat, \ llcrnrlon=ll_lon, urcrnrlon=ur_lon, \ resolution='f', anchor='C') lat_ticks = np.arange(ll_lat, ur_lat + 0.1, (ur_lat - ll_lat)) lon_ticks = np.arange(ll_lon, ur_lon + 0.1, (ur_lon - ll_lon)) m.drawparallels(lat_ticks, linewidth=1.0, labels=[1,0,0,0]) m.drawmeridians(lon_ticks, linewidth=1.0, labels=[0,0,0,1]) m.drawstates() m.drawcountries() m.drawcoastlines() m.drawmapboundary(fill_color='aqua') m.fillcontinents(color='brown',lake_color='aqua') m.plot([self.plot_specs.startingpoint.longitude,self.plot_specs.endingpoint.longitude], [self.plot_specs.startingpoint.latitude,self.plot_specs.endingpoint.latitude]) m.plot([self.plot_specs_2.startingpoint.longitude,self.plot_specs_2.endingpoint.longitude], [self.plot_specs_2.startingpoint.latitude,self.plot_specs_2.endingpoint.latitude]) valign1 = "top" valign2 = "bottom" if self.plot_specs.endingpoint.latitude < self.plot_specs.startingpoint.latitude: valign1 = "bottom" valign2 = "top" plt.text(self.plot_specs.startingpoint.longitude, self.plot_specs.startingpoint.latitude, \ '[S] %.1f, %.1f' % (self.plot_specs.startingpoint.longitude, self.plot_specs.startingpoint.latitude), \ color='k', horizontalalignment="center", verticalalignment=valign1) plt.text(self.plot_specs.endingpoint.longitude, self.plot_specs.endingpoint.latitude, \ '[E] %.1f, %.1f' % (self.plot_specs.endingpoint.longitude, self.plot_specs.endingpoint.latitude), \ color='k', horizontalalignment="center", verticalalignment=valign2) plt.axes([0.05,0.18,0.9,0.54]) datapoints = np.arange(self.plot_specs.num_x * self.plot_specs.num_y,dtype=float).reshape(self.plot_specs.num_y, self.plot_specs.num_x) for i in xrange(0, self.plot_specs.num_y): for j in xrange(0, self.plot_specs.num_x): datapoints[i][j] = self.difference_values[i][j].getProperty(property) / 1000 img = plt.imshow(datapoints, cmap=colormap) if self.plot_specs.startingpoint.longitude != self.plot_specs.endingpoint.longitude: plt.xticks([0,self.plot_specs.num_x/2,self.plot_specs.num_x], ["[S] %.2f" % self.plot_specs.startingpoint.longitude, \ "%.2f" % ((float(self.plot_specs.endingpoint.longitude) + float(self.plot_specs.startingpoint.longitude)) / 2), \ "[E] %.2f" % self.plot_specs.endingpoint.longitude]) else: plt.xticks([0,self.plot_specs.num_x/2,self.plot_specs.num_x], ["[S] %.2f" % self.plot_specs.startingpoint.latitude, \ "%.2f" % ((float(self.plot_specs.endingpoint.latitude) + float(self.plot_specs.startingpoint.latitude)) / 2), \ "[E] %.2f" % self.plot_specs.endingpoint.latitude]) plt.yticks([0,self.plot_specs.num_y/2,self.plot_specs.num_y], ["%.0f" % self.plot_specs.startingpoint.depth, \ "%.0f" % (self.plot_specs.todepth / 2000), \ "%.0f" % (self.plot_specs.todepth / 1000)]) plt.title(title) cax = plt.axes([0.1, 0.1, 0.8, 0.02]) cbar = plt.colorbar(img, cax=cax, orientation='horizontal') cbar.set_label(property.title() + " (km/s)") if filename: plt.savefig(filename) else: plt.show()
def plot(self, horizontal_label=None): if self.upperleftpoint.description == None: location_text = "" else: location_text = self.upperleftpoint.description + " " if 'data_type' in self.meta: mproperty = self.meta['data_type'] else: mproperty = "vs" scale_gate = None if 'color' in self.meta: color_scale = self.meta['color'] if 'gate' in self.meta: scale_gate = float(self.meta['gate']) if color_scale == "b" and scale_gate is None: scale_gate = 2.5 # Gets the better CVM description if it exists. try: cvmdesc = UCVM_CVMS[self.cvm] except: cvmdesc = self.cvm if 'title' in self.meta: title = self.meta['title'] else: title = "%s%s Horizontal Slice at %.0fm" % ( location_text, cvmdesc, self.upperleftpoint.depth) self.meta['title'] = title self.getplotvals(mproperty) # Call the plot object. p = Plot(title, "", "", None, 10, 10) u = UCVM(install_dir=self.installdir, config_file=self.configfile) BOUNDS = u.makebounds() TICKS = u.maketicks() m = basemap.Basemap(projection='cyl', llcrnrlat=self.bottomrightpoint.latitude, \ urcrnrlat=self.upperleftpoint.latitude, \ llcrnrlon=self.upperleftpoint.longitude, \ urcrnrlon=self.bottomrightpoint.longitude, \ resolution='f', anchor='C') lat_ticks = np.arange(self.bottomrightpoint.latitude, self.upperleftpoint.latitude + 0.1, self.plot_height / 2) lon_ticks = np.arange(self.upperleftpoint.longitude, self.bottomrightpoint.longitude + 0.1, self.plot_width / 2) m.drawparallels(lat_ticks, linewidth=1.0, labels=[1, 0, 0, 0]) m.drawmeridians(lon_ticks, linewidth=1.0, labels=[0, 0, 0, 1]) m.drawstates() m.drawcountries() alons = np.arange(self.upperleftpoint.longitude, self.bottomrightpoint.longitude, self.spacing) alats = np.arange(self.bottomrightpoint.latitude, self.upperleftpoint.latitude, self.spacing) lons = np.linspace(self.upperleftpoint.longitude, self.bottomrightpoint.longitude - self.spacing, self.num_x - 1) lats = np.linspace(self.bottomrightpoint.latitude, self.upperleftpoint.latitude - self.spacing, self.num_y - 1) # Get the properties. datapoints = np.arange(self.num_x * self.num_y, dtype=np.float32).reshape( self.num_y, self.num_x) nancnt = 0 zerocnt = 0 negcnt = 0 print("total cnt is ", self.num_x * self.num_y) for i in xrange(0, self.num_y): for j in xrange(0, self.num_x): if (self.datafile != None): datapoints[i][j] = self.materialproperties[i][ j].getProperty(mproperty) elif mproperty != "poisson": if color_scale == "sd" or color_scale == "sd_r": datapoints[i][j] = self.materialproperties[i][ j].getProperty(mproperty) if (datapoints[i][j] == -1): datapoints[i][j] = np.nan nancnt = nancnt + 1 ##to have blank background ## if (datapoints[i][j] == 0) : ## datapoints[i][j]=np.nan ## zerocnt=zerocnt+1 ## else: datapoints[i][j] = self.materialproperties[i][ j].getProperty(mproperty) if (datapoints[i][j] == 0): # KEEP 0 as 0 datapoints[i][j]=np.nan zerocnt = zerocnt + 1 if (datapoints[i][j] < 0): negcnt = negcnt + 1 if (datapoints[i][j] == -1): datapoints[i][j] = np.nan nancnt = nancnt + 1 else: datapoints[i][j] = u.poisson( self.materialproperties[i][j].vs, self.materialproperties[i][j].vp) # print (" total number of nancnt is ", nancnt) # print (" total number of zerocnt is ", zerocnt) # print (" total number of negcnt is ", negcnt) myInt = 1000 if mproperty == "poisson": ## no need to reduce.. should also be using sd or dd myInt = 1 if color_scale == "s": color_scale = "sd" elif color_scale == "d": color_scale = "dd" newdatapoints = datapoints / myInt newmax_val = np.nanmax(newdatapoints) newmin_val = np.nanmin(newdatapoints) newmean_val = np.mean(newdatapoints) self.max_val = np.nanmax(datapoints) self.min_val = np.nanmin(datapoints) self.mean_val = np.mean(datapoints) if color_scale == "s": colormap = basemap.cm.GMT_seis norm = mcolors.Normalize(vmin=BOUNDS[0], vmax=BOUNDS[len(BOUNDS) - 1]) elif color_scale == "s_r": colormap = basemap.cm.GMT_seis_r norm = mcolors.Normalize(vmin=BOUNDS[0], vmax=BOUNDS[len(BOUNDS) - 1]) elif color_scale == "sd": BOUNDS = u.makebounds(newmin_val, newmax_val, 5, newmean_val, substep=5) # colormap = basemap.cm.GMT_globe colormap = basemap.cm.GMT_seis TICKS = u.maketicks(newmin_val, newmax_val, 5) norm = mcolors.Normalize(vmin=BOUNDS[0], vmax=BOUNDS[len(BOUNDS) - 1]) elif color_scale == "b": C = [] for bound in BOUNDS: if bound < scale_gate: C.append("grey") else: C.append("red") colormap = mcolors.ListedColormap(C) norm = mcolors.BoundaryNorm(BOUNDS, colormap.N) elif color_scale == "d": colormap = pycvm_cmapDiscretize(basemap.cm.GMT_seis, len(BOUNDS) - 1) norm = mcolors.BoundaryNorm(BOUNDS, colormap.N) elif color_scale == "d_r": colormap = pycvm_cmapDiscretize(basemap.cm.GMT_seis_r, len(BOUNDS) - 1) norm = mcolors.BoundaryNorm(BOUNDS, colormap.N) elif color_scale == 'dd': BOUNDS = u.makebounds(newmin_val, newmax_val, 5, newmean_val, substep=5, all=True) TICKS = u.maketicks(newmin_val, newmax_val, 5) colormap = pycvm_cmapDiscretize(basemap.cm.GMT_seis, len(BOUNDS) - 1) # colormap = pycvm_cmapDiscretize(basemap.cm.GMT_globe, len(BOUNDS) - 1) norm = mcolors.BoundaryNorm(BOUNDS, colormap.N) else: print "ERROR: unknown option for colorscale." if (self.datafile == None): self.meta['num_x'] = self.num_x self.meta['num_y'] = self.num_y self.meta['datapoints'] = datapoints.size self.meta['max'] = np.asscalar(self.max_val) self.meta['min'] = np.asscalar(self.min_val) self.meta['mean'] = np.asscalar(self.mean_val) self.meta['lon_list'] = lons.tolist() self.meta['lat_list'] = lats.tolist() if self.filename: u.export_metadata(self.meta, self.filename) u.export_binary(datapoints, self.filename) ## reduce the datapoints before passing in.. t = m.transform_scalar(newdatapoints, lons, lats, len(lons), len(lats)) img = m.imshow(t, cmap=colormap, norm=norm) # print "MIN is ", np.nanmin(datapoints) # print "MAX is ", np.nanmax(datapoints) # img=m.scatter(xlist, ylist, c=dlist, cmap=colormap, norm=norm, s=1, edgecolor='',marker='o') # img=m.scatter(xcoords, ycoords, c=datapoints, cmap=colormap, norm=norm, s=1, edgecolor='',marker='o') m.drawcoastlines() cax = plt.axes([0.125, 0.05, 0.775, 0.02]) cbar = plt.colorbar(img, cax=cax, orientation='horizontal', spacing='proportional', ticks=TICKS) if mproperty != "poisson": if horizontal_label == None: cbar.set_label(mproperty.title() + " (km/s)") else: cbar.set_label(horizontal_label) else: cbar.set_label("Poisson(Vs,Vp)") if self.filename: plt.savefig(self.filename) ## MEI, TODO p.savehtml("show.html") else: plt.show()
def plot(self, property, filename=None, title=None, horizontal_label=None, color_scale="d"): if self.upperleftpoint.description == None: location_text = "" else: location_text = self.upperleftpoint.description + " " # Gets the better CVM description if it exists. try: cvmdesc = UCVM_CVMS[self.cvm] except: cvmdesc = self.cvm if title == None: title = "%s%s Horizontal Slice at %.0fm" % ( location_text, cvmdesc, self.upperleftpoint.depth) self.getplotvals() # Call the plot object. p = Plot(title, "", "", None, 10, 10) BOUNDS = [0, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5] TICKS = [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5] if property == "vp": BOUNDS = [bound * 1.7 for bound in BOUNDS] TICKS = [tick * 1.7 for tick in TICKS] if color_scale == "s": colormap = basemap.cm.GMT_seis norm = mcolors.Normalize(vmin=BOUNDS[0], vmax=BOUNDS[len(BOUNDS) - 1]) elif color_scale == "sd": colormap = basemap.cm.GMT_seis norm = mcolors.Normalize(vmin=self.min_val, vmax=self.max_val) TICKS = [ self.min_val, (self.min_val + self.max_val) / 2, self.max_val ] else: colormap = pycvm_cmapDiscretize(basemap.cm.GMT_seis, len(BOUNDS) - 1) norm = mcolors.BoundaryNorm(BOUNDS, colormap.N) m = basemap.Basemap(projection='cyl', llcrnrlat=self.bottomrightpoint.latitude, \ urcrnrlat=self.upperleftpoint.latitude, \ llcrnrlon=self.upperleftpoint.longitude, \ urcrnrlon=self.bottomrightpoint.longitude, \ resolution='f', anchor='C') lat_ticks = np.arange(self.bottomrightpoint.latitude, self.upperleftpoint.latitude + 0.1, self.plot_height / 2) lon_ticks = np.arange(self.upperleftpoint.longitude, self.bottomrightpoint.longitude + 0.1, self.plot_width / 2) m.drawparallels(lat_ticks, linewidth=1.0, labels=[1, 0, 0, 0]) m.drawmeridians(lon_ticks, linewidth=1.0, labels=[0, 0, 0, 1]) m.drawstates() m.drawcountries() lons = np.arange(self.upperleftpoint.longitude, self.bottomrightpoint.longitude, self.spacing) lats = np.arange(self.bottomrightpoint.latitude, self.upperleftpoint.latitude, self.spacing) # Get the properties. datapoints = np.arange(self.num_x * self.num_y, dtype=float).reshape(self.num_y, self.num_x) for i in xrange(0, self.num_y): for j in xrange(0, self.num_x): if property != "poisson": if color_scale == "sd": datapoints[i][j] = self.materialproperties[i][ j].getProperty(property) else: datapoints[i][j] = self.materialproperties[i][ j].getProperty(property) / 1000.0 else: datapoints[i][j] = self.materialproperties[i][ j].vp / self.materialproperties[i][j].vs t = m.transform_scalar(datapoints, lons, lats, len(lons), len(lats)) img = m.imshow(t, cmap=colormap, norm=norm) m.drawcoastlines() cax = plt.axes([0.125, 0.05, 0.775, 0.02]) cbar = plt.colorbar(img, cax=cax, orientation='horizontal', ticks=TICKS) if property != "poisson": if horizontal_label == None: cbar.set_label(property.title() + " (km/s)") else: cbar.set_label(horizontal_label) else: cbar.set_label("Vp/Vs") if filename: plt.savefig(filename) else: plt.show()
def plot(self, property, filename=None, title=None, color_scale="d"): if self.startingpoint.description == None: location_text = "" else: location_text = self.startingpoint.description + " " # Gets the better CVM description if it exists. try: cvmdesc = UCVM_CVMS[self.cvm] except: cvmdesc = self.cvm if title == None: title = "%s%s Cross Section from (%.2f, %.2f) to (%.2f, %.2f)" % (location_text, cvmdesc, self.startingpoint.longitude, \ self.startingpoint.latitude, self.endingpoint.longitude, self.endingpoint.latitude) self.getplotvals() # Call the plot object. p = Plot(None, None, None, None, 10, 10) BOUNDS = [0, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5] TICKS = [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5] if property == "vp": BOUNDS = [bound * 1.7 for bound in BOUNDS] TICKS = [tick * 1.7 for tick in TICKS] # Set default colormap and range colormap = basemap.cm.GMT_seis norm = mcolors.BoundaryNorm(BOUNDS, colormap.N) try: if color_scale == "s": colormap = basemap.cm.GMT_seis norm = mcolors.Normalize(vmin=0, vmax=self.max_val) except: colormap = pycvm_cmapDiscretize(basemap.cm.GMT_seis, len(BOUNDS) - 1) norm = mcolors.BoundaryNorm(BOUNDS, colormap.N) plt.axes([0.1, 0.7, 0.8, 0.25]) # Figure out which is upper-right and bottom-left. ur_lat = self.startingpoint.latitude if self.startingpoint.latitude > self.endingpoint.latitude else self.endingpoint.latitude ur_lon = self.startingpoint.longitude if self.startingpoint.longitude > self.endingpoint.longitude else self.endingpoint.longitude ll_lat = self.startingpoint.latitude if self.startingpoint.latitude < self.endingpoint.latitude else self.endingpoint.latitude ll_lon = self.startingpoint.longitude if self.startingpoint.longitude < self.endingpoint.longitude else self.endingpoint.longitude # Add 1% to each for good measure. ur_lat = ur_lat + 0.03 * ur_lat ur_lon = ur_lon - 0.015 * ur_lon ll_lat = ll_lat - 0.03 * ll_lat ll_lon = ll_lon + 0.015 * ll_lon # Plot map up top. m = basemap.Basemap(projection='cyl', llcrnrlat=ll_lat, urcrnrlat=ur_lat, \ llcrnrlon=ll_lon, urcrnrlon=ur_lon, \ resolution='f', anchor='C') lat_ticks = np.arange(ll_lat, ur_lat + 0.1, (ur_lat - ll_lat)) lon_ticks = np.arange(ll_lon, ur_lon + 0.1, (ur_lon - ll_lon)) m.drawparallels(lat_ticks, linewidth=1.0, labels=[1, 0, 0, 0]) m.drawmeridians(lon_ticks, linewidth=1.0, labels=[0, 0, 0, 1]) m.drawstates() m.drawcountries() m.drawcoastlines() m.drawmapboundary(fill_color='aqua') m.fillcontinents(color='brown', lake_color='aqua') m.plot([self.startingpoint.longitude, self.endingpoint.longitude], [self.startingpoint.latitude, self.endingpoint.latitude]) valign1 = "top" valign2 = "bottom" if self.endingpoint.latitude < self.startingpoint.latitude: valign1 = "bottom" valign2 = "top" plt.text(self.startingpoint.longitude, self.startingpoint.latitude, \ '[S] %.1f, %.1f' % (self.startingpoint.longitude, self.startingpoint.latitude), \ color='k', horizontalalignment="center", verticalalignment=valign1) plt.text(self.endingpoint.longitude, self.endingpoint.latitude, \ '[E] %.1f, %.1f' % (self.endingpoint.longitude, self.endingpoint.latitude), \ color='k', horizontalalignment="center", verticalalignment=valign2) plt.axes([0.05, 0.18, 0.9, 0.54]) datapoints = np.arange(self.num_x * self.num_y, dtype=float).reshape(self.num_y, self.num_x) for y in xrange(0, self.num_y): for x in xrange(0, self.num_x): datapoints[y][x] = self.materialproperties[y][x].getProperty( property) / 1000 img = plt.imshow(datapoints, cmap=colormap, norm=norm) plt.xticks([0,self.num_x/2,self.num_x], ["[S] %.2f" % self.startingpoint.longitude, \ "%.2f" % ((float(self.endingpoint.longitude) + float(self.startingpoint.longitude)) / 2), \ "[E] %.2f" % self.endingpoint.longitude]) plt.yticks([0,self.num_y/2,self.num_y], ["%.0f" % self.startingpoint.depth, \ "%.0f" % (self.todepth / 2000), \ "%.0f" % (self.todepth / 1000)]) plt.title(title) cax = plt.axes([0.1, 0.1, 0.8, 0.02]) cbar = plt.colorbar(img, cax=cax, orientation='horizontal', ticks=TICKS) if property != "poisson": cbar.set_label(property.title() + " (km/s)") else: cbar.set_label("Vp/Vs") if filename: plt.savefig(filename) else: plt.show()