import copy import mxnet as mx import pprint from common.vis.vis_im import draw_bbox, show_text, draw_points from common.processing.image_roi import get_roi_images from common.processing.bbox_transform import bbox_pred, clip_boxes from common.processing.generate_anchor import generate_base_anchors from common.processing.image import resize, transform from common.predict import MutablePredictor from common.processing.nms import py_nms_wrapper #from rcnn_symbol_fpn import get_rcnn_symbol from rcnn.rcnn_symbol_fpn_corr import get_rcnn_symbol nms = py_nms_wrapper(0.3) class RCNNPredictor(MutablePredictor): def __init__(self, network, output_folder, epoch, ctx, config, has_json_symbol=False, fpn=False, step='rcnn'): symbol = get_rcnn_symbol(network, config.proposal_type, config.num_classes, config.num_anchors, config) self.proposal_type = config.proposal_type self.feat_sym = [] if fpn: for i in range(len(config.RPN_FEAT_STRIDE)): inter_feat_sym = symbol.get_internals()["rpn_cls_score_p%d_output"%(i+2)] (self.feat_sym).append(inter_feat_sym) if self.proposal_type == 'rpn': prefix = '{0}/model/{0}'.format(output_folder) input_shapes = [('data', (1, config.input_channel, config.target_size, config.max_size)), ('im_info', (1, 3)), ('feat_shape', (1, len(config.RPN_FEAT_STRIDE), 4))]
def pred_eval(predictor, test_data, imdb, vis=False, thresh=1e-3): """ wrapper for calculating offline validation for faster data analysis in this example, all threshold are set by hand :param predictor: Predictor :param test_data: data iterator, must be non-shuffle :param imdb: image database :param vis: controls visualization :param thresh: valid detection threshold :return: """ assert vis or not test_data.shuffle data_names = [k[0] for k in test_data.provide_data] nms = py_nms_wrapper(config.TEST.NMS) # limit detections to max_per_image over all classes max_per_image = -1 num_images = imdb.num_images # all detections are collected into: # all_boxes[cls][image] = N x 5 array of detections in # (x1, y1, x2, y2, score) all_boxes = [[[] for _ in xrange(num_images)] for _ in xrange(imdb.num_classes)] i = 0 t = time.time() for im_info, data_batch in test_data: t1 = time.time() - t t = time.time() scale = im_info[0, 2] scores, boxes, data_dict = im_detect(predictor, data_batch, data_names, scale) t2 = time.time() - t t = time.time() for j in range(1, imdb.num_classes): indexes = np.where(scores[:, j] > thresh)[0] cls_scores = scores[indexes, j, np.newaxis] cls_boxes = boxes[indexes, j * 4:(j + 1) * 4] cls_dets = np.hstack((cls_boxes, cls_scores)) keep = nms(cls_dets) all_boxes[j][i] = cls_dets[keep, :] if max_per_image > 0: image_scores = np.hstack( [all_boxes[j][i][:, -1] for j in range(1, imdb.num_classes)]) if len(image_scores) > max_per_image: image_thresh = np.sort(image_scores)[-max_per_image] for j in range(1, imdb.num_classes): keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0] all_boxes[j][i] = all_boxes[j][i][keep, :] if vis: boxes_this_image = [[]] + [ all_boxes[j][i] for j in range(1, imdb.num_classes) ] vis_all_detection(data_dict['data'].asnumpy(), boxes_this_image, imdb.classes, scale) t3 = time.time() - t t = time.time() print('testing {}/{} data {:.4f}s net {:.4f}s post {:.4f}s'.format( i, imdb.num_images, t1, t2, t3)) i += 1 det_file = os.path.join(imdb.cache_path, imdb.name + '_detections.pkl') with open(det_file, 'wb') as f: cPickle.dump(all_boxes, f, protocol=cPickle.HIGHEST_PROTOCOL) imdb.evaluate_detections(all_boxes)
def forward(self, is_train, req, in_data, out_data, aux): #nms = gpu_nms_wrapper(self._threshold, in_data[0].context.device_id) nms = py_nms_wrapper(self._threshold) batch_size = in_data[0].shape[0] if batch_size > 1: raise ValueError( "Sorry, multiple images each device is not implemented") # for each (H, W) location i # generate A anchor boxes centered on cell i # apply predicted bbox deltas at cell i to each of the A anchors # clip predicted boxes to image # remove predicted boxes with either height or width < threshold # sort all (proposal, score) pairs by score from highest to lowest # take top pre_nms_topN proposals before NMS # apply NMS with threshold 0.7 to remaining proposals # take after_nms_topN proposals after NMS # return the top proposals (-> RoIs top, scores top) pre_nms_topN = self._rpn_pre_nms_top_n post_nms_topN = self._rpn_post_nms_top_n min_size = self._rpn_min_size # the first set of anchors are background probabilities # keep the second part scores = in_data[0].asnumpy()[:, self._num_anchors:, :, :] bbox_deltas = in_data[1].asnumpy() im_info = in_data[2].asnumpy()[0, :] if DEBUG: print 'im_size: ({}, {})'.format(im_info[0], im_info[1]) print 'scale: {}'.format(im_info[2]) # feat_shape = in_data[3].asnumpy() # # 1. Generate proposals from bbox_deltas and shifted anchors # # use real image size instead of padded feature map sizes # height = feat_shape[0,i,2] # width = feat_shape[0,i,3] height, width = int(im_info[0] / self._feat_stride), int( im_info[1] / self._feat_stride) if DEBUG: print 'score map size: {}'.format(scores.shape) print "resudial: {}".format( (scores.shape[2] - height, scores.shape[3] - width)) # Enumerate all shifts shift_x = np.arange(0, width) * self._feat_stride shift_y = np.arange(0, height) * self._feat_stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() # Enumerate all shifted anchors: # # add A anchors (1, A, 4) to # cell K shifts (K, 1, 4) to get # shift anchors (K, A, 4) # reshape to (K*A, 4) shifted anchors A = self._num_anchors K = shifts.shape[0] anchors = self._anchors.reshape((1, A, 4)) + shifts.reshape( (1, K, 4)).transpose((1, 0, 2)) anchors = anchors.reshape((K * A, 4)) # Transpose and reshape predicted bbox transformations to get them # into the same order as the anchors: # # bbox deltas will be (1, 4 * A, H, W) format # transpose to (1, H, W, 4 * A) # reshape to (1 * H * W * A, 4) where rows are ordered by (h, w, a) # in slowest to fastest order bbox_deltas = self._clip_pad(bbox_deltas, (height, width)) bbox_deltas = bbox_deltas.transpose((0, 2, 3, 1)).reshape((-1, 4)) # Same story for the scores: # # scores are (1, A, H, W) format # transpose to (1, H, W, A) # reshape to (1 * H * W * A, 1) where rows are ordered by (h, w, a) scores = self._clip_pad(scores, (height, width)) scores = scores.transpose((0, 2, 3, 1)).reshape((-1, 1)) # Convert anchors into proposals via bbox transformations proposals = bbox_pred(anchors, bbox_deltas) # 2. clip predicted boxes to image proposals = clip_boxes(proposals, im_info[:2]) # 3. remove predicted boxes with either height or width < threshold # (NOTE: convert min_size to input image scale stored in im_info[2]) keep = self._filter_boxes(proposals, min_size * im_info[2]) proposals = proposals[keep, :] scores = scores[keep] # 4. sort all (proposal, score) pairs by score from highest to lowest # 5. take top pre_nms_topN (e.g. 6000) order = scores.ravel().argsort()[::-1] if pre_nms_topN > 0: order = order[:pre_nms_topN] proposals = proposals[order, :] scores = scores[order] # 6. apply nms (e.g. threshold = 0.7) # 7. take after_nms_topN (e.g. 300) # 8. return the top proposals (-> RoIs top) det = np.hstack((proposals, scores)).astype(np.float32) keep = nms(det) if post_nms_topN > 0: keep = keep[:post_nms_topN] # pad to ensure output size remains unchanged if len(keep) < post_nms_topN: pad = npr.choice(keep, size=post_nms_topN - len(keep)) keep = np.hstack((keep, pad)) proposals = proposals[keep, :] scores = scores[keep] # Output rois array # Our RPN implementation only supports a single input image, so all # batch inds are 0 batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32) blob = np.hstack((batch_inds, proposals.astype(np.float32, copy=False))) self.assign(out_data[0], req[0], blob) if self._output_score: self.assign(out_data[1], req[1], scores.astype(np.float32, copy=False))