コード例 #1
0
        replay_buffer = ReplayBuffer(50000)
        # Create the schedule for exploration starting from 1 (every action is random) down to
        # 0.02 (98% of actions are selected according to values predicted by the model).
        exploration = LinearSchedule(schedule_timesteps=10000,
                                     initial_p=1.0,
                                     final_p=0.02)

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        update_target()

        episode_rewards = [0.0]
        obs = env.reset()
        for t in itertools.count():
            # Take action and update exploration to the newest value
            action = act(obs[None], update_eps=exploration.value(t))[0]
            new_obs, rew, done, _ = env.step(action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0)

            is_solved = t > 100 and np.mean(episode_rewards[-101:-1]) >= 200
            if is_solved:
                # Show off the result
                env.render()
            else:
コード例 #2
0
class QRM(RL):
    """
    This class includes a list of policies (a.k.a neural nets) for decomposing the current reward machine
    """
    def __init__(self, lp, num_features, num_actions, reward_machine):
        super().__init__()
        
        # learning parameters
        self.lp = lp 
        self.rm = reward_machine
        self.num_features = num_features
        self.num_actions  = num_actions

        # Creating the network
        self.sess = tf.Session()
        self._create_network()

        # create experience replay buffer
        if self.lp.prioritized_replay:
            self.replay_buffer = PrioritizedReplayBuffer(lp.buffer_size, alpha=lp.prioritized_replay_alpha)
            if lp.prioritized_replay_beta_iters is None:
                lp.prioritized_replay_beta_iters = lp.train_steps
            self.beta_schedule = LinearSchedule(lp.prioritized_replay_beta_iters, initial_p=lp.prioritized_replay_beta0, final_p=1.0)
        else:
            self.replay_buffer = ReplayBuffer(lp.buffer_size)
            self.beta_schedule = None

        # count of the number of environmental steps
        self.step = 0

    def _get_step(self):
        return self.step

    def _add_step(self):
        self.step += 1

    def _create_network(self):
        n_features = self.num_features
        n_actions  = self.num_actions
        n_policies = len(self.rm.get_states())

        # Inputs to the network
        self.s1 = tf.placeholder(tf.float64, [None, n_features])
        self.a = tf.placeholder(tf.int32) 
        self.s2 = tf.placeholder(tf.float64, [None, n_features])
        self.done = tf.placeholder(tf.float64, [None, n_policies])
        self.ignore = tf.placeholder(tf.float64, [None, n_policies])
        self.rewards = tf.placeholder(tf.float64, [None, n_policies])
        self.next_policies = tf.placeholder(tf.int32, [None, n_policies])
        self.IS_weights = tf.placeholder(tf.float64) # Importance sampling weights for prioritized ER

        # Adding one policy per state in the RM
        self.policies = []
        for i in range(n_policies):
            # adding a policy of the RM state "i"
            policy = PolicyDQN("qrm_%d"%i, self.lp, n_features, n_actions, self.sess, self.s1, self.a, self.s2, self.IS_weights)
            self.policies.append(policy)

        # connecting all the networks into one big net
        self._reconnect()        

    def _reconnect(self):
        # Redefining connections between the different DQN networks
        n_policies = len(self.policies)
        batch_size = self.lp.batch_size
        
        # concatenating q_target of every policy
        Q_target_all = tf.concat([self.policies[i].get_q_target_value() for i in range(len(self.policies))], 1)

        # Indexing the right target next policy
        aux_range = tf.reshape(tf.range(batch_size),[-1,1])
        aux_ones = tf.ones([1, n_policies], tf.int32)
        delta = tf.matmul(aux_range * n_policies, aux_ones) 
        Q_target_index = tf.reshape(self.next_policies+delta, [-1])
        Q_target_flat = tf.reshape(Q_target_all, [-1])
        Q_target = tf.reshape(tf.gather(Q_target_flat, Q_target_index),[-1,n_policies]) 
        # Obs: Q_target is batch_size x n_policies tensor such that 
        #      Q_target[i,j] is the target Q-value for policy "j" in instance 'i'

        # Matching the loss to the right Q_target
        for i in range(n_policies):
            p = self.policies[i]
            # Adding the critic trainer
            p.add_optimizer(self.rewards[:,i], self.done[:,i], Q_target[:,i], self.ignore[:,i])
            # Now that everything is set up, we initialize the weights
            p.initialize_variables()
        
        # Auxiliary variables to train all the critics, actors, and target networks
        self.train = []
        for i in range(n_policies):
            p = self.policies[i]
            if self.lp.prioritized_replay:
                self.train.append(p.td_error)
            self.train.append(p.train)

    def get_best_action(self, s1, u1, epsilon):
        if self._get_step() <= self.lp.learning_starts or random.random() < epsilon:
            # epsilon greedy
            return random.randrange(self.num_actions)
        policy = self.policies[u1]
        s1 = s1.reshape((1,self.num_features))
        return self.sess.run(policy.get_best_action(), {self.s1: s1})[0]

    def _train(self, s1, a, s2, rewards, next_policies, done, ignore, IS_weights):
        # Learning
        values = {self.s1: s1, self.a: a, self.s2: s2, self.rewards: rewards, self.next_policies: next_policies, 
                  self.done: done, self.ignore: ignore, self.IS_weights: IS_weights}
        res = self.sess.run(self.train, values)
        if self.lp.prioritized_replay:
            # Computing new priorities (max of the absolute td-errors)
            td_errors = np.array([np.abs(td_error) for td_error in res if td_error is not None])
            td_errors_max = np.max(td_errors, axis=0) 
            return td_errors_max

    def _learn(self):
        if self.lp.prioritized_replay:
            experience = self.replay_buffer.sample(self.lp.batch_size, beta=self.beta_schedule.value(self._get_step()))
            s1, a, s2, rewards, next_policies, done, ignore, weights, batch_idxes = experience
        else:
            s1, a, s2, rewards, next_policies, done, ignore = self.replay_buffer.sample(self.lp.batch_size)
            weights, batch_idxes = None, None
        td_errors = self._train(s1, a, s2, rewards, next_policies, done, ignore, weights) # returns the absolute td_error
        if self.lp.prioritized_replay:
            new_priorities = np.abs(td_errors) + self.lp.prioritized_replay_eps
            self.replay_buffer.update_priorities(batch_idxes, new_priorities)

    def _update_target_network(self):
        for i in range(len(self.policies)):
            self.policies[i].update_target_networks()

    def learn_if_needed(self): 
        # Learning
        if self._get_step() > self.lp.learning_starts and self._get_step() % self.lp.train_freq == 0:
            self._learn()

        # Updating the target networks
        if self._get_step() > self.lp.learning_starts and self._get_step() % self.lp.target_network_update_freq == 0:
            self._update_target_network()

    def add_experience(self, o1_events, o1_features, u1, a, reward, o2_events, o2_features, u2, done):
        # NOTE:
        #   - The reward estimation might change over time
        #   - However, we are adding a fixed reward to the buffer (for simplicity)
        #   - In the future, we might try to recompute the reward every time the experience is sampled

        # Using the RM to compute the rewards, next policies, and 
        # whether it is a terminal transition or it should be ignored
        n_policies = len(self.policies)
        rewards, next_policies, done, ignore = [], [], [], []
        for ui in range(n_policies):
            ui_r  = self.rm.get_reward(ui, o1_events, a, o2_events)
            ui_np = self.rm.get_next_state(ui, o2_events)
            ui_d  = self.rm.is_terminal_observation(o2_events)
            # NOTE: We ignore transitions that are impossible (as explained in Sect. 5 of the paper)
            ui_ig = self.rm.is_observation_impossible(ui, o1_events, o2_events)

            rewards.append(ui_r)
            next_policies.append(ui_np)
            done.append(float(ui_d))
            ignore.append(float(ui_ig))

        # Adding this experience to the replay buffer
        self.replay_buffer.add(o1_features, a, o2_features, rewards, next_policies, done, ignore)
        self._add_step()
コード例 #3
0
def learn(env,
          seed=None,
          num_agents = 2,
          lr=0.00008,
          total_timesteps=100000,
          buffer_size=2000,
          exploration_fraction=0.2,
          exploration_final_eps=0.01,
          train_freq=1,
          batch_size=16,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=2000,
          gamma=0.99,
          target_network_update_freq=1000,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs
          ):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model
    set_global_seeds(seed)
    double_q = True
    grad_norm_clipping = True
    shared_weights = True
    play_test = 1000
    nsteps = 16
    agent_ids = env.agent_ids()

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None

    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    print(f'agent_ids {agent_ids}')
    num_actions = env.action_space.n
    print(f'num_actions {num_actions}')

    dqn_agent = MAgent(env, agent_ids, nsteps, lr, replay_buffer, shared_weights, double_q, num_actions,
                           gamma, grad_norm_clipping, param_noise)


    if load_path is not None:
        load_path = osp.expanduser(load_path)
        ckpt = tf.train.Checkpoint(model=dqn_agent.q_network)
        manager = tf.train.CheckpointManager(ckpt, load_path, max_to_keep=None)
        ckpt.restore(manager.latest_checkpoint)
        print("Restoring from {}".format(manager.latest_checkpoint))

    dqn_agent.update_target()

    episode_rewards = [0.0 for i in range(101)]
    saved_mean_reward = None
    obs_all = env.reset()
    obs_shape = obs_all
    reset = True
    done = False

    # Start total timer
    tstart = time.time()
    for t in range(total_timesteps):
        if callback is not None:
            if callback(locals(), globals()):
                break
        kwargs = {}
        if not param_noise:
            update_eps = tf.constant(exploration.value(t))
            update_param_noise_threshold = 0.
        else:
            update_eps = tf.constant(0.)
            # Compute the threshold such that the KL divergence between perturbed and non-perturbed
            # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
            # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
            # for detailed explanation.
            update_param_noise_threshold = -np.log(
                1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
            kwargs['reset'] = reset
            kwargs['update_param_noise_threshold'] = update_param_noise_threshold
            kwargs['update_param_noise_scale'] = True

        if t % print_freq == 0:
            time_1000_step = time.time()
            nseconds = time_1000_step - tstart
            tstart = time_1000_step
            print(f'time spend to perform {t-print_freq} to {t} steps is {nseconds} ')
            print('eps update', exploration.value(t))

        mb_obs, mb_rewards, mb_actions, mb_values, mb_dones = [], [], [], [], []
        # mb_states = states
        epinfos = []
        for _ in range(nsteps):
            # Given observations, take action and value (V(s))
            obs_ = tf.constant(obs_all)
            # print(f'obs_.shape is {obs_.shape}')
            # obs_ = tf.expand_dims(obs_, axis=1)
            # print(f'obs_.shape is {obs_.shape}')
            actions_list, fps_ = dqn_agent.choose_action(obs_, update_eps=update_eps, **kwargs)
            fps = [[] for _ in agent_ids]
            # print(f'fps_.shape is {np.asarray(fps_).shape}')
            for a in agent_ids:
                fps[a] = np.delete(fps_, a, axis=0)

            # print(fps)
            # print(f'actions_list is {actions_list}')
            # print(f'values_list is {values_list}')

            # Append the experiences
            mb_obs.append(obs_all.copy())
            mb_actions.append(actions_list)
            mb_values.append(fps)
            mb_dones.append([float(done) for _ in range(num_agents)])

            # Take actions in env and look the results
            obs1_all, rews, done, info = env.step(actions_list)
            rews = [np.max(rews) for _ in range(len(rews))]  # for cooperative purpose same reward for every one
            # print(rews)
            mb_rewards.append(rews)
            obs_all = obs1_all
            # print(rewards, done, info)
            maybeepinfo = info[0].get('episode')
            if maybeepinfo: epinfos.append(maybeepinfo)

            episode_rewards[-1] += np.max(rews)
            if done:
                episode_rewards.append(0.0)
                obs_all = env.reset()
                reset = True

        mb_dones.append([float(done) for _ in range(num_agents)])

        # print(f'mb_actions is {mb_actions}')
        # print(f'mb_rewards is {mb_rewards}')
        # print(f'mb_values is {mb_values}')
        # print(f'mb_dones is {mb_dones}')

        mb_obs = np.asarray(mb_obs, dtype=obs_all[0].dtype)
        mb_actions = np.asarray(mb_actions, dtype=actions_list[0].dtype)
        mb_rewards = np.asarray(mb_rewards, dtype=np.float32)
        mb_values = np.asarray(mb_values, dtype=np.float32)
        # print(f'mb_values.shape is {mb_values.shape}')
        mb_dones = np.asarray(mb_dones, dtype=np.bool)
        mb_masks = mb_dones[:-1]
        mb_dones = mb_dones[1:]

        # print(f'mb_actions is {mb_actions}')
        # print(f'mb_rewards is {mb_rewards}')
        # print(f'mb_values is {mb_values}')
        # print(f'mb_dones is {mb_dones}')
        # print(f'mb_masks is {mb_masks}')
        # print(f'mb_masks.shape is {mb_masks.shape}')

        if gamma > 0.0:
            # Discount/bootstrap off value fn
            last_values = dqn_agent.value(tf.constant(obs_all))
            # print(f'last_values is {last_values}')
            if mb_dones[-1][0] == 0:
                # print('================ hey ================ mb_dones[-1][0] == 0')
                mb_rewards = discount_with_dones(np.concatenate((mb_rewards, [last_values])),
                                                 np.concatenate((mb_dones, [[float(False) for _ in range(num_agents)]]))
                                                 , gamma)[:-1]
            else:
                mb_rewards = discount_with_dones(mb_rewards, mb_dones, gamma)

        # print(f'after discount mb_rewards is {mb_rewards}')

        if replay_buffer is not None:
            replay_buffer.add(mb_obs, mb_actions, mb_rewards, obs1_all, mb_masks[:,0],
                              mb_values, np.tile([exploration.value(t), t], (nsteps, num_agents, 1)))

        if t > learning_starts and t % train_freq == 0:
            # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
            if prioritized_replay:
                experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
            else:
                obses_t, actions, rewards, obses_tp1, dones, fps, extra_datas = replay_buffer.sample(batch_size)
                weights, batch_idxes = np.ones_like(rewards), None

            obses_t, obses_tp1 = tf.constant(obses_t), None
            actions, rewards, dones = tf.constant(actions), tf.constant(rewards, dtype=tf.float32), tf.constant(dones)
            weights, fps, extra_datas = tf.constant(weights), tf.constant(fps), tf.constant(extra_datas)

            s = obses_t.shape
            # print(f'obses_t.shape is {s}')
            obses_t = tf.reshape(obses_t, (s[0] * s[1], *s[2:]))
            s = actions.shape
            # print(f'actions.shape is {s}')
            actions = tf.reshape(actions, (s[0] * s[1], *s[2:]))
            s = rewards.shape
            # print(f'rewards.shape is {s}')
            rewards = tf.reshape(rewards, (s[0] * s[1], *s[2:]))
            s = weights.shape
            # print(f'weights.shape is {s}')
            weights = tf.reshape(weights, (s[0] * s[1], *s[2:]))
            s = fps.shape
            # print(f'fps.shape is {s}')
            fps = tf.reshape(fps, (s[0] * s[1], *s[2:]))
            # print(f'fps.shape is {fps.shape}')
            s = extra_datas.shape
            # print(f'extra_datas.shape is {s}')
            extra_datas = tf.reshape(extra_datas, (s[0] * s[1], *s[2:]))
            s = dones.shape
            # print(f'dones.shape is {s}')
            dones = tf.reshape(dones, (s[0], s[1], *s[2:]))
            # print(f'dones.shape is {s}')

            td_errors = dqn_agent.nstep_train(obses_t, actions, rewards, obses_tp1, dones, weights, fps, extra_datas)

        if t > learning_starts and t % target_network_update_freq == 0:
            # Update target network periodically.
            dqn_agent.update_target()

        if t % play_test == 0 and t != 0:
            play_test_games(dqn_agent)

        mean_100ep_reward = np.mean(episode_rewards[-101:-1])
        num_episodes = len(episode_rewards)
        if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
            print(f'last 100 episode mean reward {mean_100ep_reward} in {num_episodes} playing')
            logger.record_tabular("steps", t)
            logger.record_tabular("episodes", num_episodes)
            logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
            logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
            logger.dump_tabular()
コード例 #4
0
class DQN:
    def __init__(self, config):
        self.writer = SummaryWriter() 
        self.device = 'cuda' if T.cuda.is_available() else 'cpu'

        self.dqn_type = config["dqn-type"]
        self.run_title = config["run-title"]
        self.env = gym.make(config["environment"])

        self.num_states  = np.prod(self.env.observation_space.shape)
        self.num_actions = self.env.action_space.n

        layers = [
            self.num_states, 
            *config["architecture"], 
            self.num_actions
        ]

        self.policy_net = Q_Network(self.dqn_type, layers).to(self.device)
        self.target_net = Q_Network(self.dqn_type, layers).to(self.device)
        self.target_net.load_state_dict(self.policy_net.state_dict())
        self.target_net.eval()

        capacity = config["max-experiences"]
        self.p_replay_eps = config["p-eps"]
        self.prioritized_replay = config["prioritized-replay"]
        self.replay_buffer = PrioritizedReplayBuffer(capacity, config["p-alpha"]) if self.prioritized_replay \
                        else ReplayBuffer(capacity)

        self.beta_scheduler = LinearSchedule(config["episodes"], initial_p=config["p-beta-init"], final_p=1.0)
        self.epsilon_decay = lambda e: max(config["epsilon-min"], e * config["epsilon-decay"])

        self.train_freq = config["train-freq"]
        self.use_soft_update = config["use-soft-update"]
        self.target_update = config["target-update"]
        self.tau = config["tau"]
        self.gamma = config["gamma"]
        self.batch_size = config["batch-size"]
        self.time_step = 0

        self.optim = T.optim.AdamW(self.policy_net.parameters(), lr=config["lr-init"], weight_decay=config["weight-decay"])
        self.lr_scheduler = T.optim.lr_scheduler.StepLR(self.optim, step_size=config["lr-step"], gamma=config["lr-gamma"])
        self.criterion = nn.SmoothL1Loss(reduction="none") # Huber Loss
        self.min_experiences = max(config["min-experiences"], config["batch-size"])

        self.save_path = config["save-path"]

    def act(self, state, epsilon=0):
        """
            Act on environment using epsilon-greedy policy
        """
        if np.random.sample() < epsilon:
            return int(np.random.choice(np.arange(self.num_actions)))
        else:
            self.policy_net.eval()
            return self.policy_net(T.tensor(state, device=self.device).float().unsqueeze(0)).argmax().item()

    def _soft_update(self, tau):
        """
            Polyak averaging: soft update model parameters. 
            θ_target = τ*θ_current + (1 - τ)*θ_target
        """
        for target_param, current_param in zip(self.target_net.parameters(), self.policy_net.parameters()):
            target_param.data.copy_(tau*target_param.data + (1.0-tau)*current_param.data)

    def update_target(self, tau):
        if self.use_soft_update:
            self._soft_update(tau)
        elif self.time_step % self.target_update == 0:
            self.target_net.load_state_dict(self.policy_net.state_dict())

    def optimize(self, beta=None):
        if len(self.replay_buffer) < self.min_experiences:
            return None, None 

        self.policy_net.train()

        if self.prioritized_replay:
            transitions, (is_weights, t_idxes) = self.replay_buffer.sample(self.batch_size, beta)
        else:
            transitions = self.replay_buffer.sample(self.batch_size)
            is_weights, t_idxes = np.ones(self.batch_size), None

        # transpose the batch --> transition of batch-arrays
        batch = Transition(*zip(*transitions))
        # compute a mask of non-final states and concatenate the batch elements
        non_final_mask = T.tensor(tuple(map(lambda state: state is not None, batch.next_state)), 
                                                                device=self.device, dtype=T.bool)  
        non_final_next_states = T.cat([T.tensor([state]).float() for state in batch.next_state if state is not None]).to(self.device)

        state_batch  = T.tensor(batch.state,  device=self.device).float()
        action_batch = T.tensor(batch.action, device=self.device).long()
        reward_batch = T.tensor(batch.reward, device=self.device).float()

        state_action_values = self.policy_net(state_batch).gather(1, action_batch.unsqueeze(1))
    
        next_state_values = T.zeros(self.batch_size, device=self.device)
        if self.dqn_type == "vanilla":
            next_state_values[non_final_mask] = self.target_net(non_final_next_states).max(1)[0].detach()
        else:
            self.policy_net.eval()
            action_next_state = self.policy_net(non_final_next_states).max(1)[1]
            self.policy_net.train()
            next_state_values[non_final_mask] = self.target_net(non_final_next_states).gather(1, action_next_state.unsqueeze(1)).squeeze().detach()

        # compute the expected Q values (RHS of the Bellman equation)
        expected_state_action_values = (next_state_values * self.gamma) + reward_batch
        
        # compute temporal difference error
        td_error = T.abs(state_action_values.squeeze() - expected_state_action_values).detach().cpu().numpy()

        # compute Huber loss
        loss = self.criterion(state_action_values, expected_state_action_values.unsqueeze(1))
        loss = T.mean(loss * T.tensor(is_weights, device=self.device))
      
        # optimize the model
        self.optim.zero_grad()
        loss.backward()
        for param in self.policy_net.parameters():
            param.grad.data.clamp_(-1, 1)
        self.optim.step()

        return td_error, t_idxes

    def run_episode(self, epsilon, beta):
        total_reward, done = 0, False
        state = self.env.reset()
        while not done:
            # use epsilon-greedy to get an action
            action = self.act(state, epsilon)
            # caching the information of current state
            prev_state = state
            # take action
            state, reward, done, _ = self.env.step(action)
            # accumulate reward
            total_reward += reward
            # store the transition in buffer
            if done: state = None 
            self.replay_buffer.push(prev_state, action, state, reward)
            # optimize model
            if self.time_step % self.train_freq == 0:
                td_error, t_idxes = self.optimize(beta=beta)
                # update priorities 
                if self.prioritized_replay and td_error is not None:
                    self.replay_buffer.update_priorities(t_idxes, td_error + self.p_replay_eps)
            # update target network
            self.update_target(self.tau)
            # increment time-step
            self.time_step += 1

        return total_reward

    def train(self, episodes, epsilon, solved_reward):
        total_rewards = np.zeros(episodes)
        for episode in range(episodes):
            
            # compute beta using linear scheduler
            beta = self.beta_scheduler.value(episode)
            # run episode and get rewards
            reward = self.run_episode(epsilon, beta)
            # exponentially decay epsilon
            epsilon = self.epsilon_decay(epsilon)
            # reduce learning rate by
            self.lr_scheduler.step()

            total_rewards[episode] = reward
            avg_reward = total_rewards[max(0, episode-100):(episode+1)].mean()
            last_lr = self.lr_scheduler.get_last_lr()[0]

            # log into tensorboard
            self.writer.add_scalar(f'dqn-{self.dqn_type}/reward', reward, episode)
            self.writer.add_scalar(f'dqn-{self.dqn_type}/reward_100', avg_reward, episode)
            self.writer.add_scalar(f'dqn-{self.dqn_type}/lr', last_lr, episode)
            self.writer.add_scalar(f'dqn-{self.dqn_type}/epsilon', epsilon, episode)

            print(f"Episode: {episode} | Last 100 Average Reward: {avg_reward:.5f} | Learning Rate: {last_lr:.5E} | Epsilon: {epsilon:.5E}", end='\r')

            if avg_reward > solved_reward:
                break
        
        self.writer.close()

        print(f"Environment solved in {episode} episodes")
        T.save(self.policy_net.state_dict(), os.path.join(self.save_path, f"{self.run_title}.pt"))

    def visualize(self, load_path=None):
        done = False
        state = self.env.reset()

        if load_path is not None:
            self.policy_net.load_state_dict(T.load(load_path, map_location=self.device))
        self.policy_net.eval()
        
        while not done:
            self.env.render()
            action = self.act(state)
            state, _, done, _ = self.env.step(int(action))
            sleep(0.01) 
コード例 #5
0
ファイル: deepq.py プロジェクト: skychwang/GameModel
def learn_att(env,
          q_func,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs
            ):

    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    # q_func = build_q_func(network, **network_kwargs) since no network setting

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space
    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = build_train_att(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        #add a mask function for the choice of actions
        mask_func=
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))


        for t in range(total_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs['update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes, new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
            load_variables(model_file)

    return act
コード例 #6
0
class Agent(tf.Module):
    def __init__(self, config, env):
        self.config = config
        self.agent_ids = [a for a in range(config.num_agents)]
        self.env = env
        self.optimizer = tf.keras.optimizers.Adam(self.config.lr)
        self.replay_memory, self.beta_schedule = init_replay_memory(config)

        # Create the schedule for exploration starting from 1.
        self.exploration = LinearSchedule(schedule_timesteps=int(
            config.exploration_fraction * config.num_timesteps),
                                          initial_p=1.0,
                                          final_p=config.exploration_final_eps)

        self.loss = self.nstep_loss
        self.eps = tf.Variable(0.0)

        # init model
        self.network = Network(config)

    @tf.function
    def choose_action(self, obs, stochastic=True, update_eps=-1):
        """

        :param obs: list observations one for each agent
        :param stochastic: True for Train phase and False for test phase
        :param update_eps: epsilon update for eps-greedy
        :return: actions: list of actions chosen by agents based on observation one for each agent
        """

        # actions = []
        # fps = []
        deterministic_actions, fps = self.network.step(obs)
        # print(f'deterministic_actions {deterministic_actions}')

        batch_size = len(self.agent_ids)
        random_actions = tf.random.uniform(tf.stack([batch_size]),
                                           minval=0,
                                           maxval=self.config.num_actions,
                                           dtype=tf.int64)
        # print(f'random_actions {random_actions}')
        chose_random = tf.random.uniform(
            tf.stack([batch_size
                      ]), minval=0, maxval=1, dtype=tf.float32) < self.eps
        # print(f'chose_random {chose_random}')

        stochastic_actions = tf.where(chose_random, random_actions,
                                      deterministic_actions)
        # print(f'stochastic_actions.numpy() {stochastic_actions.numpy()}')

        if stochastic:
            actions = stochastic_actions.numpy()
        else:
            actions = deterministic_actions

        if update_eps >= 0:
            self.eps.assign(update_eps)

        # print(f'fps.shape {np.array(fps).shape}')
        return actions, fps

    @tf.function()
    def nstep_loss(self, obses_t_a, actions_a, rewards_a, dones_a, weights_a,
                   fps_a, agent_id):
        # print(f'obses_t_a.shape {obses_t_a.shape}')
        q_t = self.network.value(obses_t_a, fps_a, agent_id)

        q_t_selected = tf.reduce_sum(
            q_t *
            tf.one_hot(actions_a, self.config.num_actions, dtype=tf.float32),
            1)
        # print(f'q_t_selected.shape is {q_t_selected.shape}')

        td_error = q_t_selected - tf.stop_gradient(rewards_a)

        errors = huber_loss(td_error)
        weighted_loss = tf.reduce_mean(weights_a * errors)

        return weighted_loss, td_error

    @tf.function()
    def train(self, obses_t, actions, rewards, dones, weights, fps):
        td_errors = []
        loss = []
        with tf.GradientTape() as tape:
            for a in self.agent_ids:
                if self.config.network == 'tdcnn_rnn':
                    loss_a, td_error = self.loss(obses_t[a], actions[a, :, -1],
                                                 rewards[a, :, -1], dones[a, :,
                                                                          -1],
                                                 weights[a, :, -1], fps[a], a)
                else:
                    loss_a, td_error = self.loss(obses_t[a], actions[a],
                                                 rewards[a], dones[a],
                                                 weights[a], fps[a], a)

                loss.append(loss_a)
                td_errors.append(td_error)

            sum_loss = tf.reduce_sum(loss)
            sum_td_error = tf.reduce_sum(td_errors)

        # print(f'sum_loss is {sum_loss}, loss is {loss}')
        param = self.network.model.trainable_variables
        for a in self.agent_ids:
            param += self.network.agent_heads[a].trainable_variables

        # print(f'param {param}')

        grads = tape.gradient(sum_loss, param)

        if self.config.grad_norm_clipping:
            clipped_grads = []
            for grad in grads:
                clipped_grads.append(
                    tf.clip_by_norm(grad, self.config.grad_norm_clipping))
            grads = clipped_grads

        grads_and_vars = list(zip(grads, param))
        self.optimizer.apply_gradients(grads_and_vars)

        return sum_loss.numpy(), sum_td_error.numpy()

    def learn(self):
        self.network.soft_update_target()
        episode_rewards = [0.0]
        obs = self.env.reset()
        done = False
        tstart = time.time()
        episodes_trained = [0, False]  # [episode_number, Done flag]
        for t in range(self.config.num_timesteps):
            update_eps = tf.constant(self.exploration.value(t))
            if t % (self.config.print_freq) == 0:
                time_1000_step = time.time()
                nseconds = time_1000_step - tstart
                tstart = time_1000_step
                print(
                    f'eps {self.exploration.value(t)} -- time {t - self.config.print_freq} to {t} steps: {nseconds}'
                )

            mb_obs, mb_rewards, mb_actions, mb_fps, mb_dones = [], [], [], [], []
            # mb_states = states
            epinfos = []
            for nstep in range(self.config.n_steps):
                actions, fps_ = self.choose_action(tf.constant(obs),
                                                   update_eps=update_eps)
                fps = []
                if self.config.num_agents > 1:
                    for a in self.agent_ids:
                        fp = fps_[:a]
                        fp.extend(fps_[a + 1:])
                        fp_a = np.concatenate(
                            (fp, [[self.exploration.value(t) * 100, t]]),
                            axis=None)
                        fps.append(fp_a)

                # print(f'fps.shape {np.array(fps).shape}')
                mb_obs.append(obs.copy())
                mb_actions.append(actions)
                mb_fps.append(fps)
                mb_dones.append([float(done) for _ in self.agent_ids])

                obs1, rews, done, info = self.env.step(actions.tolist())

                if self.config.same_reward_for_agents:
                    rews = [
                        np.max(rews) for _ in range(len(rews))
                    ]  # for cooperative purpose same reward for every one

                mb_rewards.append(rews)
                obs = obs1
                maybeepinfo = info.get('episode')
                if maybeepinfo: epinfos.append(maybeepinfo)

                episode_rewards[-1] += np.max(rews)
                if done:
                    episodes_trained[0] = episodes_trained[0] + 1
                    episodes_trained[1] = True
                    episode_rewards.append(0.0)
                    obs = self.env.reset()

            mb_dones.append([float(done) for _ in self.agent_ids])

            # swap axes to have lists in shape of (num_agents, num_steps, ...)
            mb_obs = np.asarray(mb_obs, dtype=obs[0].dtype).swapaxes(0, 1)
            mb_actions = np.asarray(mb_actions,
                                    dtype=actions[0].dtype).swapaxes(0, 1)
            mb_rewards = np.asarray(mb_rewards,
                                    dtype=np.float32).swapaxes(0, 1)
            mb_fps = np.asarray(mb_fps, dtype=np.float32).swapaxes(0, 1)
            mb_dones = np.asarray(mb_dones, dtype=np.bool).swapaxes(0, 1)
            mb_masks = mb_dones[:, :-1]
            mb_dones = mb_dones[:, 1:]

            # print(f'before discount mb_rewards is {mb_rewards}')

            if self.config.gamma > 0.0:
                # Discount/bootstrap off value fn
                last_values = self.network.last_value(tf.constant(obs1))
                # print(f'last_values {last_values}')
                for n, (rewards, dones, value) in enumerate(
                        zip(mb_rewards, mb_dones, last_values)):
                    rewards = rewards.tolist()
                    dones = dones.tolist()
                    if dones[-1] == 0:
                        rewards = discount_with_dones(rewards + [value],
                                                      dones + [0],
                                                      self.config.gamma)[:-1]
                    else:
                        rewards = discount_with_dones(rewards, dones,
                                                      self.config.gamma)

                    mb_rewards[n] = rewards

            # print(f'after discount mb_rewards is {mb_rewards}')

            if self.config.replay_buffer is not None:
                self.replay_memory.add(
                    (mb_obs, mb_actions, mb_rewards, obs1, mb_masks, mb_fps))

            if t > self.config.learning_starts and t % self.config.train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if self.config.prioritized_replay:
                    experience = self.replay_memory.sample(
                        self.config.batch_size,
                        beta=self.beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, fps, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones, fps = self.replay_memory.sample(
                        self.config.batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None

                #  shape format is (batch_size, agent_num, n_steps, ...)
                obses_t = obses_t.swapaxes(0, 1)
                actions = actions.swapaxes(0, 1)
                rewards = rewards.swapaxes(0, 1)
                obses_tp1 = obses_tp1.swapaxes(0, 1)
                dones = dones.swapaxes(0, 1)
                fps = fps.swapaxes(0, 1)
                weights = weights.swapaxes(0, 1)

                if self.config.network == 'cnn':
                    shape = obses_t.shape
                    obses_t = np.reshape(
                        obses_t, (shape[0], shape[1] * shape[2], *shape[3:]))
                    shape = actions.shape
                    actions = np.reshape(
                        actions, (shape[0], shape[1] * shape[2], *shape[3:]))
                    shape = rewards.shape
                    rewards = np.reshape(
                        rewards, (shape[0], shape[1] * shape[2], *shape[3:]))
                    shape = dones.shape
                    dones = np.reshape(
                        dones, (shape[0], shape[1] * shape[2], *shape[3:]))
                    shape = weights.shape
                    weights = np.reshape(
                        weights, (shape[0], shape[1] * shape[2], *shape[3:]))
                    shape = fps.shape
                    fps = np.reshape(
                        fps, (shape[0], shape[1] * shape[2], *shape[3:]))

                #  shape format is (agent_num, batch_size, n_steps, ...)
                obses_t = tf.constant(obses_t)
                actions = tf.constant(actions)
                rewards = tf.constant(rewards)
                dones = tf.constant(dones)
                weights = tf.constant(weights)
                fps = tf.constant(fps)

                # print(f'obses_t.shape {obses_t.shape}')
                # print(f'actions.shape {actions.shape}')
                # print(f'rewards.shape {rewards.shape}')
                # print(f'dones.shape {dones.shape}')
                # print(f'weights.shape {weights.shape}')
                # print(f'fps.shape {fps.shape}')

                loss, td_errors = self.train(obses_t, actions, rewards, dones,
                                             weights, fps)

                if t % (self.config.train_freq * 50) == 0:
                    print(f't = {t} , loss = {loss}')

            if t > self.config.learning_starts and t % self.config.target_network_update_freq == 0:
                # Update target network periodically.
                self.network.soft_update_target()

            if t % self.config.playing_test == 0 and t != 0:
                # self.network.save(self.config.save_path)
                self.play_test_games()

            mean_100ep_reward = np.mean(episode_rewards[-101:-1])
            num_episodes = len(episode_rewards)
            # if done and self.config.print_freq is not None and len(episode_rewards) % self.config.print_freq == 0:
            if episodes_trained[
                    1] and episodes_trained[0] % self.config.print_freq == 0:
                episodes_trained[1] = False
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 past episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * self.exploration.value(t)))
                logger.dump_tabular()

    def play_test_games(self):
        num_tests = self.config.num_tests

        test_env = init_env(self.config, mode='test')

        test_rewards = np.zeros(num_tests)
        for i in range(num_tests):
            test_done = False
            test_obs_all = test_env.reset()
            while not test_done:
                test_obs_all = tf.constant(test_obs_all)
                test_action_list, _ = self.choose_action(test_obs_all,
                                                         stochastic=False)
                test_new_obs_list, test_rew_list, test_done, _ = test_env.step(
                    test_action_list)
                test_obs_all = test_new_obs_list

                if test_done:
                    test_rewards[i] = np.mean(test_rew_list)

        print(
            f'test_rewards: {test_rewards} \n mean reward of {num_tests} tests: {np.mean(test_rewards)}'
        )
        test_env.close()
コード例 #7
0
ファイル: DQNAgent.py プロジェクト: GongXudong/DRL_IMPL
class DQNAgent(object):
    """
    refs: https://github.com/skumar9876/Hierarchical-DQN/blob/master/dqn.py
    """
    def __init__(self,
                 states_n: tuple,
                 actions_n: int,
                 hidden_layers: list,
                 scope_name: str,
                 sess=None,
                 learning_rate=1e-4,
                 discount=0.98,
                 replay_memory_size=100000,
                 batch_size=32,
                 begin_train=1000,
                 targetnet_update_freq=1000,
                 epsilon_start=1.0,
                 epsilon_end=0.1,
                 epsilon_decay_step=50000,
                 seed=1,
                 logdir='logs',
                 savedir='save',
                 save_freq=10000,
                 use_tau=False,
                 tau=0.001):
        """

        :param states_n: tuple
        :param actions_n: int
        :param hidden_layers: list
        :param scope_name: str
        :param sess: tf.Session
        :param learning_rate: float
        :param discount: float
        :param replay_memory_size: int
        :param batch_size: int
        :param begin_train: int
        :param targetnet_update_freq: int
        :param epsilon_start: float
        :param epsilon_end: float
        :param epsilon_decay_step: int
        :param seed: int
        :param logdir: str
        """
        self.states_n = states_n
        self.actions_n = actions_n
        self._hidden_layers = hidden_layers
        self._scope_name = scope_name
        self.lr = learning_rate
        self._target_net_update_freq = targetnet_update_freq
        self._current_time_step = 0
        self._epsilon_schedule = LinearSchedule(epsilon_decay_step,
                                                epsilon_end, epsilon_start)
        self._train_batch_size = batch_size
        self._begin_train = begin_train
        self._gamma = discount

        self._use_tau = use_tau
        self._tau = tau

        self.savedir = savedir
        self.save_freq = save_freq

        self.qnet_optimizer = tf.train.AdamOptimizer(self.lr)

        self._replay_buffer = ReplayBuffer(replay_memory_size)

        self._seed(seed)

        with tf.Graph().as_default():
            self._build_graph()
            self._merged_summary = tf.summary.merge_all()

            if sess is None:
                self.sess = tf.Session()
            else:
                self.sess = sess
            self.sess.run(tf.global_variables_initializer())

            self._saver = tf.train.Saver()

            self._summary_writer = tf.summary.FileWriter(logdir=logdir)
            self._summary_writer.add_graph(tf.get_default_graph())

    def show_memory(self):
        print(self._replay_buffer.show())

    def _q_network(self, state, hidden_layers, outputs, scope_name, trainable):

        with tf.variable_scope(scope_name):
            out = state
            for ly in hidden_layers:
                out = layers.fully_connected(out,
                                             ly,
                                             activation_fn=tf.nn.relu,
                                             trainable=trainable)
            out = layers.fully_connected(out,
                                         outputs,
                                         activation_fn=None,
                                         trainable=trainable)
        return out

    def _build_graph(self):
        self._state = tf.placeholder(dtype=tf.float32,
                                     shape=(None, ) + self.states_n,
                                     name='state_input')

        with tf.variable_scope(self._scope_name):
            self._q_values = self._q_network(self._state, self._hidden_layers,
                                             self.actions_n, 'q_network', True)
            self._target_q_values = self._q_network(self._state,
                                                    self._hidden_layers,
                                                    self.actions_n,
                                                    'target_q_network', False)

        with tf.variable_scope('q_network_update'):
            self._actions_onehot = tf.placeholder(dtype=tf.float32,
                                                  shape=(None, self.actions_n),
                                                  name='actions_onehot_input')
            self._td_targets = tf.placeholder(dtype=tf.float32,
                                              shape=(None, ),
                                              name='td_targets')
            self._q_values_pred = tf.reduce_sum(self._q_values *
                                                self._actions_onehot,
                                                axis=1)

            self._error = tf.abs(self._q_values_pred - self._td_targets)
            quadratic_part = tf.clip_by_value(self._error, 0.0, 1.0)
            linear_part = self._error - quadratic_part
            self._loss = tf.reduce_mean(0.5 * tf.square(quadratic_part) +
                                        linear_part)

            qnet_gradients = self.qnet_optimizer.compute_gradients(
                self._loss, tf.trainable_variables())
            for i, (grad, var) in enumerate(qnet_gradients):
                if grad is not None:
                    qnet_gradients[i] = (tf.clip_by_norm(grad, 10), var)
            self.train_op = self.qnet_optimizer.apply_gradients(qnet_gradients)

            tf.summary.scalar('loss', self._loss)

            with tf.name_scope('target_network_update'):
                q_network_params = [
                    t for t in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                                 scope=self._scope_name +
                                                 '/q_network')
                    if t.name.startswith(self._scope_name + '/q_network/')
                ]
                target_q_network_params = tf.get_collection(
                    tf.GraphKeys.GLOBAL_VARIABLES,
                    scope=self._scope_name + '/target_q_network')

                self.target_update_ops = []
                for var, var_target in zip(
                        sorted(q_network_params, key=lambda v: v.name),
                        sorted(target_q_network_params, key=lambda v: v.name)):
                    # self.target_update_ops.append(var_target.assign(var))

                    # soft target update
                    self.target_update_ops.append(
                        var_target.assign(
                            tf.multiply(var_target, 1 - self._tau) +
                            tf.multiply(var, self._tau)))
                self.target_update_ops = tf.group(*self.target_update_ops)

    def choose_action(self, state, epsilon=None):
        """
        for one agent
        :param state:
        :param epsilon:
        :return:
        """
        if epsilon is not None:
            epsilon_used = epsilon
        else:
            epsilon_used = self._epsilon_schedule.value(
                self._current_time_step)
        if np.random.random() < epsilon_used:
            return np.random.randint(0, self.actions_n)
        else:
            q_values = self.sess.run(self._q_values,
                                     feed_dict={self._state: state[None]})

            return np.argmax(q_values[0])

    def choose_actions(self, states, epsilons=None):
        """
        for multi-agent
        :param states:
        :param epsilon:
        :return:
        """
        if epsilons is not None:
            epsilons_used = epsilons
        else:
            epsilons_used = self._epsilon_schedule.value(
                self._current_time_step)

        actions = []
        for i, state in enumerate(states):
            if np.random.random() < epsilons_used[i]:
                actions.append(np.random.randint(0, self.actions_n))
            else:
                q_values = self.sess.run(self._q_values,
                                         feed_dict={self._state: state[None]})

                actions.append(np.argmax(q_values[0]))

        return actions

    def check_network_output(self, state):
        q_values = self.sess.run(self._q_values,
                                 feed_dict={self._state: state[None]})
        print(q_values[0])

    def store(self, state, action, reward, next_state, terminate):
        self._replay_buffer.add(state, action, reward, next_state, terminate)

    def get_max_target_Q_s_a(self, next_states):
        next_state_q_values = self.sess.run(
            self._q_values, feed_dict={self._state: next_states})
        next_state_target_q_values = self.sess.run(
            self._target_q_values, feed_dict={self._state: next_states})

        next_select_actions = np.argmax(next_state_q_values, axis=1)
        bt_sz = len(next_states)
        next_select_actions_onehot = np.zeros((bt_sz, self.actions_n))
        for i in range(bt_sz):
            next_select_actions_onehot[i, next_select_actions[i]] = 1.

        next_state_max_q_values = np.sum(next_state_target_q_values *
                                         next_select_actions_onehot,
                                         axis=1)
        return next_state_max_q_values

    def train(self):

        self._current_time_step += 1

        if self._current_time_step == 1:
            print('Training starts.')
            self.sess.run(self.target_update_ops)

        if self._current_time_step > self._begin_train:
            states, actions, rewards, next_states, terminates = self._replay_buffer.sample(
                batch_size=self._train_batch_size)

            actions_onehot = np.zeros((self._train_batch_size, self.actions_n))
            for i in range(self._train_batch_size):
                actions_onehot[i, actions[i]] = 1.

            next_state_q_values = self.sess.run(
                self._q_values, feed_dict={self._state: next_states})
            next_state_target_q_values = self.sess.run(
                self._target_q_values, feed_dict={self._state: next_states})

            next_select_actions = np.argmax(next_state_q_values, axis=1)
            next_select_actions_onehot = np.zeros(
                (self._train_batch_size, self.actions_n))
            for i in range(self._train_batch_size):
                next_select_actions_onehot[i, next_select_actions[i]] = 1.

            next_state_max_q_values = np.sum(next_state_target_q_values *
                                             next_select_actions_onehot,
                                             axis=1)

            td_targets = rewards + self._gamma * next_state_max_q_values * (
                1 - terminates)

            _, str_ = self.sess.run(
                [self.train_op, self._merged_summary],
                feed_dict={
                    self._state: states,
                    self._actions_onehot: actions_onehot,
                    self._td_targets: td_targets
                })

            self._summary_writer.add_summary(str_, self._current_time_step)

        # update target_net
        if self._use_tau:
            self.sess.run(self.target_update_ops)
        else:
            if self._current_time_step % self._target_net_update_freq == 0:
                self.sess.run(self.target_update_ops)

        # save model
        if self._current_time_step % self.save_freq == 0:

            # TODO save the model with highest performance
            self._saver.save(sess=self.sess,
                             save_path=self.savedir + '/my-model',
                             global_step=self._current_time_step)

    def train_without_replaybuffer(self, states, actions, target_values):

        self._current_time_step += 1

        if self._current_time_step == 1:
            print('Training starts.')
            self.sess.run(self.target_update_ops)

        bt_sz = len(states)
        actions_onehot = np.zeros((bt_sz, self.actions_n))
        for i in range(bt_sz):
            actions_onehot[i, actions[i]] = 1.

        _, str_ = self.sess.run(
            [self.train_op, self._merged_summary],
            feed_dict={
                self._state: states,
                self._actions_onehot: actions_onehot,
                self._td_targets: target_values
            })

        self._summary_writer.add_summary(str_, self._current_time_step)

        # update target_net
        if self._use_tau:
            self.sess.run(self.target_update_ops)
        else:
            if self._current_time_step % self._target_net_update_freq == 0:
                self.sess.run(self.target_update_ops)

        # save model
        if self._current_time_step % self.save_freq == 0:

            # TODO save the model with highest performance
            self._saver.save(sess=self.sess,
                             save_path=self.savedir + '/my-model',
                             global_step=self._current_time_step)

    def load_model(self):
        self._saver.restore(self.sess,
                            tf.train.latest_checkpoint(self.savedir))

    def _seed(self, lucky_number):
        tf.set_random_seed(lucky_number)
        np.random.seed(lucky_number)
        random.seed(lucky_number)
コード例 #8
0
def main(env_name='KungFuMasterNoFrameskip-v0',
         train_freq=4,
         target_update_freq=10000,
         checkpoint_freq=100000,
         log_freq=1,
         batch_size=32,
         train_after=200000,
         max_timesteps=5000000,
         buffer_size=50000,
         vmin=-10,
         vmax=10,
         n=51,
         gamma=0.99,
         final_eps=0.1,
         final_eps_update=1000000,
         learning_rate=0.00025,
         momentum=0.95):
    env = gym.make(env_name)
    env = wrap_env(env)

    state_dim = (4, 84, 84)
    action_count = env.action_space.n

    with C.default_options(activation=C.relu, init=C.he_uniform()):
        model_func = Sequential([
            Convolution2D((8, 8), 32, strides=4, name='conv1'),
            Convolution2D((4, 4), 64, strides=2, name='conv2'),
            Convolution2D((3, 3), 64, strides=1, name='conv3'),
            Dense(512, name='dense1'),
            Dense((action_count, n), activation=None, name='out')
        ])

    agent = CategoricalAgent(state_dim, action_count, model_func, vmin, vmax, n, gamma,
                             lr=learning_rate, mm=momentum, use_tensorboard=True)
    logger = agent.writer

    epsilon_schedule = LinearSchedule(1.0, final_eps, final_eps_update)
    replay_buffer = ReplayBuffer(buffer_size)

    try:
        obs = env.reset()
        episode = 0
        rewards = 0
        steps = 0

        for t in range(max_timesteps):
            # Take action
            if t > train_after:
                action = agent.act(obs, epsilon=epsilon_schedule.value(t))
            else:
                action = np.random.choice(action_count)
            obs_, reward, done, _ = env.step(action)

            # Store transition in replay buffer
            replay_buffer.add(obs, action, reward, obs_, float(done))

            obs = obs_
            rewards += reward

            if t > train_after and (t % train_freq) == 0:
                # Minimize error in projected Bellman update on a batch sampled from replay buffer
                experience = replay_buffer.sample(batch_size)
                agent.train(*experience)  # experience is (s, a, r, s_, t) tuple
                logger.write_value('loss', agent.trainer.previous_minibatch_loss_average, t)

            if t > train_after and (t % target_update_freq) == 0:
                agent.update_target()

            if t > train_after and (t % checkpoint_freq) == 0:
                agent.checkpoint('checkpoints/model_{}.chkpt'.format(t))

            if done:
                episode += 1
                obs = env.reset()

                if episode % log_freq == 0:
                    steps = t - steps + 1

                    logger.write_value('rewards', rewards, episode)
                    logger.write_value('steps', steps, episode)
                    logger.write_value('epsilon', epsilon_schedule.value(t), episode)
                    logger.flush()

                rewards = 0
                steps = t

    finally:
        agent.save_model('checkpoints/{}.cdqn'.format(env_name))
コード例 #9
0
class LypSarsaAgent(object):

    def __init__(self,
                 args,
                 env,
                 writer = None):
        """
        init agent
        """
        self.eval_env = copy.deepcopy(env)
        self.args = args

        self.state_dim = env.reset().shape

        self.action_dim = env.action_space.n

        self.device = torch.device("cuda" if (torch.cuda.is_available() and  self.args.gpu) else "cpu")

        # set the random seed the same as the main launcher
        random.seed(self.args.seed)
        torch.manual_seed(self.args.seed)
        np.random.seed(self.args.seed)
        if self.args.gpu:
            torch.cuda.manual_seed(self.args.seed )

        self.writer = writer

        if self.args.env_name == "grid":
            self.dqn = OneHotDQN(self.state_dim, self.action_dim).to(self.device)
            self.dqn_target = OneHotDQN(self.state_dim, self.action_dim).to(self.device)

            # create more networks here
            self.cost_model = OneHotDQN(self.state_dim, self.action_dim).to(self.device)

            self.target_cost_model = OneHotDQN(self.state_dim, self.action_dim).to(self.device)

            self.target_cost_model.load_state_dict(self.cost_model.state_dict())
        else:
            raise Exception("what kind of DQN env is this?")


        # copy parameters
        self.dqn_target.load_state_dict(self.dqn.state_dict())

        self.optimizer = torch.optim.Adam(self.dqn.parameters(), lr=self.args.lr)
        self.critic_optimizer = optim.Adam(self.cost_model.parameters(), lr=self.args.cost_q_lr)

        # make the envs
        def make_env():
            def _thunk():
                env = create_env(args)
                return env

            return _thunk

        envs = [make_env() for i in range(self.args.num_envs)]
        self.envs = SubprocVecEnv(envs)

        # create epsilon  and beta schedule
        self.eps_decay = LinearSchedule(50000 * 200, 0.01, 1.0)
        # self.eps_decay = LinearSchedule(self.args.num_episodes * 200, 0.01, 1.0)

        self.total_steps = 0
        self.num_episodes = 0

        # for storing resutls
        self.results_dict = {
            "train_rewards" : [],
            "train_constraints" : [],
            "eval_rewards" : [],
            "eval_constraints" : [],
        }

        self.cost_indicator = "none"
        if "grid" in self.args.env_name:
            self.cost_indicator = 'pit'
        else:
            raise Exception("not implemented yet")

        self.eps = self.eps_decay.value(self.total_steps)



    def pi(self, state, current_cost=0.0, greedy_eval=False):
        """
        take the action based on the current policy
        """
        with torch.no_grad():
            # to take random action or not
            if (random.random() > self.eps_decay.value(self.total_steps)) or greedy_eval:
                q_value = self.dqn(state)

                # chose the max/greedy actions
                action = q_value.max(1)[1].cpu().numpy()
            else:
                action = np.random.randint(0, high=self.action_dim, size = (self.args.num_envs, ))

        return action



    def safe_deterministic_pi(self, state,  current_cost=0.0, greedy_eval=False):
        """
        take the action based on the current policy
        """
        with torch.no_grad():
            # to take random action or not
            if (random.random() > self.eps_decay.value(self.total_steps)) or greedy_eval:
                # No random action
                q_value = self.dqn(state)

                # Q_D(s,a)
                cost_q_val = self.cost_model(state)

                max_q_val = cost_q_val.max(1)[0].unsqueeze(1)

                # find the action set
                epsilon = (1 - self.args.gamma) * (self.args.d0 - current_cost)

                # create the filtered mask here
                constraint_mask = torch.le(cost_q_val , epsilon + max_q_val).float()

                filtered_Q = (q_value + 1000.0) * (constraint_mask)

                filtered_action = filtered_Q.max(1)[1].cpu().numpy()


                # alt action to take if infeasible solution
                # minimize the cost
                alt_action = (-1. * cost_q_val).max(1)[1].cpu().numpy()

                c_sum = constraint_mask.sum(1)
                action_mask = ( c_sum == torch.zeros_like(c_sum)).cpu().numpy()

                action = (1 - action_mask) * filtered_action + action_mask * alt_action

                return action

            else:
                # create an array of random indices, for all the environments
                action = np.random.randint(0, high=self.action_dim, size = (self.args.num_envs, ))


        return action


    def compute_n_step_returns(self, next_value, rewards, masks):
        """
        n-step SARSA returns
        """
        R = next_value
        returns = []
        for step in reversed(range(len(rewards))):
            R = rewards[step] + self.args.gamma * R * masks[step]
            returns.insert(0, R)

        return returns

    def compute_reverse_n_step_returns(self, prev_value, costs, begin_masks):
        """
        n-step SARSA returns (backward in time)
        """
        R = prev_value
        returns = []
        for step in range(len(costs)):
            R = costs[step] + self.args.gamma * R * begin_masks[step]
            returns.append(R)

        return returns


    def log_episode_stats(self, ep_reward, ep_constraint):
        """
        log the stats for environment performance
        """
        # log episode statistics
        self.results_dict["train_rewards"].append(ep_reward)
        self.results_dict["train_constraints"].append(ep_constraint)
        if self.writer:
            self.writer.add_scalar("Return", ep_reward, self.num_episodes)
            self.writer.add_scalar("Constraint",  ep_constraint, self.num_episodes)


        log(
            'Num Episode {}\t'.format(self.num_episodes) + \
            'E[R]: {:.2f}\t'.format(ep_reward) +\
            'E[C]: {:.2f}\t'.format(ep_constraint) +\
            'avg_train_reward: {:.2f}\t'.format(np.mean(self.results_dict["train_rewards"][-100:])) +\
            'avg_train_constraint: {:.2f}\t'.format(np.mean(self.results_dict["train_constraints"][-100:]))
            )



    def run(self):
        """
        learning happens here
        """

        self.total_steps = 0
        self.eval_steps = 0

        # reset state and env
        state = self.envs.reset()
        prev_state = torch.FloatTensor(state).to(self.device)
        tensor_state = torch.FloatTensor(state).to(self.device)

        current_cost = self.cost_model(tensor_state).max(1)[0].unsqueeze(1)

        ep_reward = 0
        ep_len = 0
        ep_constraint = 0
        start_time = time.time()


        while self.num_episodes < self.args.num_episodes:

            values      = []
            c_q_vals    = []
            c_r_vals    = []

            states      = []
            actions     = []
            mus         = []
            prev_states = []

            rewards     = []
            done_masks  = []
            begin_masks = []
            constraints = []


            # n-step sarsa
            for _ in range(self.args.traj_len):

                state = torch.FloatTensor(state).to(self.device)

                # get the expl action
                action = self.safe_deterministic_pi(state, current_cost= current_cost)
                next_state, reward, done, info = self.envs.step(action)

                # convert it back to tensor
                action = torch.LongTensor(action).unsqueeze(1).to(self.device)
                q_values = self.dqn(state)
                Q_value = q_values.gather(1, action)

                c_q_values = self.cost_model(state)
                cost_q_val = c_q_values.gather(1, action)

                # logging mode for only agent 1
                ep_reward += reward[0]
                ep_constraint += info[0][self.cost_indicator]


                values.append(Q_value)
                c_q_vals.append(cost_q_val)
                rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(self.device))
                done_masks.append(torch.FloatTensor(1.0 - done).unsqueeze(1).to(self.device))
                begin_masks.append(torch.FloatTensor([(1.0 - ci['begin']) for ci in info]).unsqueeze(1).to(self.device))
                constraints.append(torch.FloatTensor([ci[self.cost_indicator] for ci in info]).unsqueeze(1).to(self.device))

                prev_states.append(prev_state)
                states.append(state)
                actions.append(action)

                # update the costs
                prev_state = state
                state = next_state

                # update the current cost
                # if done flag is true for the current env, this implies that the next_state cost = 0.0
                # because the agent starts with 0.0 cost (or doesn't have access to it anyways)
                # this is V_{D}(x_0) for Lyapnuv agent
                tensor_state = torch.FloatTensor(state).to(self.device)
                next_cost = self.cost_model(tensor_state).max(1)[0].unsqueeze(1).detach()
                cost_mask = torch.FloatTensor(1.0 - done).unsqueeze(1).to(self.device)
                current_cost = ((1.0 - cost_mask) * next_cost + cost_mask * current_cost).detach()

                self.total_steps += (1 * self.args.num_envs)

                # hack to reuse the same code
                # iteratively add each done episode, so that can eval at regular interval
                for d_idx in range(done.sum()):


                    if done[0] and d_idx==0:
                        if self.num_episodes % self.args.log_every == 0:
                            self.log_episode_stats(ep_reward, ep_constraint)



                        # reset the rewards anyways
                        ep_reward = 0
                        ep_constraint = 0

                    self.num_episodes += 1

                    # eval the policy here after eval_every steps
                    if self.num_episodes  % self.args.eval_every == 0:
                        eval_reward, eval_constraint = self.eval()
                        self.results_dict["eval_rewards"].append(eval_reward)
                        self.results_dict["eval_constraints"].append(eval_constraint)

                        log('----------------------------------------')
                        log('Eval[R]: {:.2f}\t'.format(eval_reward) +\
                            'Eval[C]: {}\t'.format(eval_constraint) +\
                            'Episode: {}\t'.format(self.num_episodes) +\
                            'avg_eval_reward: {:.2f}\t'.format(np.mean(self.results_dict["eval_rewards"][-10:])) +\
                            'avg_eval_constraint: {:.2f}\t'.format(np.mean(self.results_dict["eval_constraints"][-10:]))
                            )
                        log('----------------------------------------')

                        if self.writer:
                            self.writer.add_scalar("eval_reward", eval_reward, self.eval_steps)
                            self.writer.add_scalar("eval_constraint", eval_constraint, self.eval_steps)

                        self.eval_steps += 1



            # break here
            if self.num_episodes >= self.args.num_episodes:
                break


            # calculate targets here
            next_state = torch.FloatTensor(next_state).to(self.device)
            next_q_values = self.dqn(next_state)
            next_action = self.safe_deterministic_pi(next_state, current_cost)
            next_action = torch.LongTensor(next_action).unsqueeze(1).to(self.device)
            next_q_values = next_q_values.gather(1, next_action)

            # calculate targets
            target_Q_vals = self.compute_n_step_returns(next_q_values, rewards, done_masks)
            Q_targets = torch.cat(target_Q_vals).detach()


            Q_values = torch.cat(values)

            # loss
            loss  = F.mse_loss(Q_values, Q_targets)

            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

            # calculate the cost-targets
            next_c_value = self.cost_model(next_state)
            next_c_value = next_c_value.gather(1, next_action)

            cq_targets = self.compute_n_step_returns(next_c_value, constraints, done_masks)
            C_q_targets = torch.cat(cq_targets).detach()
            C_q_vals = torch.cat(c_q_vals)

            cost_critic_loss = F.mse_loss(C_q_vals, C_q_targets)
            self.critic_optimizer.zero_grad()
            cost_critic_loss.backward()
            self.critic_optimizer.step()




        # done with all the training

        # save the models
        self.save_models()



    def eval(self):
        """
        evaluate the current policy and log it
        """
        avg_reward = []
        avg_constraint = []

        with torch.no_grad():
            for _ in range(self.args.eval_n):

                state = self.eval_env.reset()
                done = False
                ep_reward = 0
                ep_constraint = 0
                ep_len = 0
                start_time = time.time()

                state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
                current_cost = self.cost_model(state).max(1)[0].unsqueeze(1)

                while not done:


                    # get the policy action
                    action = self.safe_deterministic_pi(state, current_cost=current_cost, greedy_eval=True)[0]

                    next_state, reward, done, info = self.eval_env.step(action)
                    ep_reward += reward
                    ep_len += 1
                    ep_constraint += info[self.cost_indicator]



                    # update the state
                    state = next_state

                    state = torch.FloatTensor(state).unsqueeze(0).to(self.device)


                avg_reward.append(ep_reward)
                avg_constraint.append(ep_constraint)

        return np.mean(avg_reward), np.mean(avg_constraint)

    def save_models(self):
        """create results dict and save"""
        torch.save(self.results_dict, os.path.join(self.args.out, 'results_dict.pt'))
        models = {
            "dqn" : self.dqn.state_dict(),
            "cost_model" : self.cost_model.state_dict(),
            "env" : copy.deepcopy(self.eval_env),
        }
        torch.save(models,os.path.join(self.args.out, 'models.pt'))



    def load_models(self):
        models = torch.load(os.path.join(self.args.out, 'models.pt'))
        self.dqn.load_state_dict(models["dqn"])
        self.eval_env = models["env"]
コード例 #10
0
        exploration = LinearSchedule(schedule_timesteps=10000,
                                     initial_p=1.0,
                                     final_p=0.02)

        #매개 변수를 초기화하고 대상 네트워크에 복사.
        U.initialize()
        update_target()
        reward_list = []  #reward들을 파일에 저장하기 위한 list.
        episode_rewards = [0.0]
        obs = env.reset()  # 환경을 초기화

        #총 보상과 에피소드별 단계를 포함하는 목록 작성
        for t in itertools.count():
            #action을 취하고, 최신의 exploration로 update
            action = act(obs[None],
                         update_eps=exploration.value(t))[0]  #에이전트의 움직임.
            new_obs, rew, done, _ = env.step(
                action)  #움직임에 따른 결과값들, 환경으로부터 새로운 상태 및 보상 받기
            #replay buffer에 transition을 저장.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            reward_list.append(rew)  #리스트에 reward를 추가.
            obs = new_obs  #Step()함수의 새로운 결과 값을 obs에 저장.

            episode_rewards[-1] += rew  #현재 episode의 reward에 나온 reward 값을 합산.
            if done:
                obs = env.reset()  #완료 되었다면, 다시 반복하기 위해 환경 초기화
                episode_rewards.append(
                    0)  #episode_rewards에 다음 episode에서 학습할 리스트를 추가

                #Reward 파일에 저장(파일명 변경)
                with open("../../32neurons_1.txt", "a") as f:
コード例 #11
0
def learn_continuous_tasks(env,
                           q_func,
                           env_name,
                           dir_path,
                           time_stamp,
                           total_num_episodes,
                           num_actions_pad=33,
                           lr=1e-4,
                           grad_norm_clipping=10,
                           max_timesteps=int(1e8),
                           buffer_size=int(1e6),
                           train_freq=1,
                           batch_size=64,
                           print_freq=10,
                           learning_starts=1000,
                           gamma=0.99,
                           target_network_update_freq=500,
                           prioritized_replay=False,
                           prioritized_replay_alpha=0.6,
                           prioritized_replay_beta0=0.4,
                           prioritized_replay_beta_iters=None,
                           prioritized_replay_eps=int(1e8),
                           num_cpu=16,
                           epsilon_greedy=False,
                           timesteps_std=1e6,
                           initial_std=0.4,
                           final_std=0.05,
                           eval_freq=100,
                           n_eval_episodes=10,
                           eval_std=0.01,
                           log_index=0,
                           log_prefix='q',
                           loss_type="L2",
                           model_file='./',
                           callback=None):
    """Train a branching deepq model to solve continuous control tasks via discretization.
    Current assumptions in the implementation:
    - for solving continuous control domains via discretization (can be adjusted to be compatible with naturally disceret-action domains using 'env.action_space.n')
    - uniform number of sub-actions per action dimension (can be generalized to heterogeneous number of sub-actions across branches)

    Parameters
    -------
    env : gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    num_actions_pad: int
        number of sub-actions per action dimension (= num of discretization grains/bars + 1)
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimize for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
        0.1 for dqn-baselines
    exploration_final_eps: float
        final value of random action probability
        0.02 for dqn-baselines
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    grad_norm_clipping: int
        set None for no clipping
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the unified TD error for updating priorities.
        Erratum: The camera-ready copy of this paper incorrectly reported 1e-8.
        The value used to produece the results is 1e8.
    num_cpu: int
        number of cpus to use for training

    dir_path: str
        path for logs and results to be stored in
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    def make_obs_ph(name):
        return U.BatchInput(env.observation_space.shape, name=name)

    print('Observation shape:' + str(env.observation_space.shape))

    num_action_grains = num_actions_pad - 1
    num_action_dims = env.action_space.shape[0]
    num_action_streams = num_action_dims
    num_actions = num_actions_pad * num_action_streams  # total numb network outputs for action branching with one action dimension per branch

    print('Number of actions in total:' + str(num_actions))

    act, q_val, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        num_action_streams=num_action_streams,
        batch_size=batch_size,
        optimizer_name="Adam",
        learning_rate=lr,
        grad_norm_clipping=grad_norm_clipping,
        gamma=gamma,
        double_q=True,
        scope="deepq",
        reuse=None,
        loss_type="L2")

    print('TRAIN VARS:')
    print(tf.trainable_variables())

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': num_actions,
        'num_action_streams': num_action_streams,
    }

    print('Create the log writer for TensorBoard visualizations.')
    log_dir = "{}/tensorboard_logs/{}".format(dir_path, env_name)
    if not os.path.exists(log_dir):
        os.makedirs(log_dir)
    score_placeholder = tf.placeholder(tf.float32, [],
                                       name='score_placeholder')
    tf.summary.scalar('score', score_placeholder)
    lr_constant = tf.constant(lr, name='lr_constant')
    tf.summary.scalar('learning_rate', lr_constant)

    eval_placeholder = tf.placeholder(tf.float32, [], name='eval_placeholder')
    eval_summary = tf.summary.scalar('evaluation', eval_placeholder)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None

    if epsilon_greedy:
        approximate_num_iters = 2e6 / 4
        exploration = PiecewiseSchedule([(0, 1.0),
                                         (approximate_num_iters / 50, 0.1),
                                         (approximate_num_iters / 5, 0.01)],
                                        outside_value=0.01)
    else:
        exploration = ConstantSchedule(value=0.0)  # greedy policy
        std_schedule = LinearSchedule(schedule_timesteps=timesteps_std,
                                      initial_p=initial_std,
                                      final_p=final_std)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    # Initialize the parameters used for converting branching, discrete action indeces to continuous actions
    low = env.action_space.low
    high = env.action_space.high
    actions_range = np.subtract(high, low)
    print('###################################')
    print(low)
    print(high)
    print('###################################')

    episode_rewards = []
    reward_sum = 0.0
    time_steps = [0]
    time_spent_exploring = [0]

    prev_time = time.time()
    n_trainings = 0

    # Open a dircetory for recording results
    results_dir = "{}/results/{}".format(dir_path, env_name)
    if not os.path.exists(results_dir):
        os.makedirs(results_dir)

    displayed_mean_reward = None
    score_timesteps = []

    game_scores = []

    def evaluate(step, episode_number):
        global max_eval_reward_mean, model_saved
        print('Evaluate...')
        eval_reward_sum = 0.0
        # Run evaluation episodes
        for eval_episode in range(n_eval_episodes):
            obs = env.reset()
            done = False
            while not done:
                # Choose action
                action_idxes = np.array(
                    act(np.array(obs)[None],
                        stochastic=False))  # deterministic
                actions_greedy = action_idxes / num_action_grains * actions_range + low

                if eval_std == 0.0:
                    action = actions_greedy
                else:
                    action = []
                    for index in range(len(actions_greedy)):
                        a_greedy = actions_greedy[index]
                        out_of_range_action = True
                        while out_of_range_action:
                            a_stoch = np.random.normal(loc=a_greedy,
                                                       scale=eval_std)
                            a_idx_stoch = np.rint(
                                (a_stoch + high[index]) /
                                actions_range[index] * num_action_grains)
                            if a_idx_stoch >= 0 and a_idx_stoch < num_actions_pad:
                                action.append(a_stoch)
                                out_of_range_action = False

                # Step
                obs, rew, done, _ = env.step(action)

                eval_reward_sum += rew

        # Average the rewards and log
        eval_reward_mean = eval_reward_sum / n_eval_episodes
        print(eval_reward_mean, 'over', n_eval_episodes, 'episodes')
        game_scores.append(eval_reward_mean)
        score_timesteps.append(step)

        if max_eval_reward_mean is None or eval_reward_mean > max_eval_reward_mean:
            logger.log(
                "Saving model due to mean eval increase: {} -> {}".format(
                    max_eval_reward_mean, eval_reward_mean))
            U.save_state(model_file)
            model_saved = True
            max_eval_reward_mean = eval_reward_mean
            intact = ActWrapper(act, act_params)

            intact.save(model_file + "_" + str(episode_number) + "_" +
                        str(int(np.round(max_eval_reward_mean))))
            print('Act saved to ' + model_file + "_" + str(episode_number) +
                  "_" + str(int(np.round(max_eval_reward_mean))))

    with tempfile.TemporaryDirectory() as td:
        td = './logs'
        evaluate(0, 0)
        obs = env.reset()

        t = -1
        all_means = []
        q_stats = []
        current_qs = []

        training_game_scores = []
        training_timesteps = []
        while True:
            t += 1
            # Select action and update exploration probability
            action_idxes = np.array(
                act(np.array(obs)[None], update_eps=exploration.value(t)))
            qs = np.array(q_val(np.array(obs)[None],
                                stochastic=False))  # deterministic
            tt = []
            for val in qs:
                tt.append(np.std(val))
            current_qs.append(tt)

            # Convert sub-actions indexes (discrete sub-actions) to continuous controls
            action = action_idxes / num_action_grains * actions_range + low
            if not epsilon_greedy:  # Gaussian noise
                actions_greedy = action
                action_idx_stoch = []
                action = []
                for index in range(len(actions_greedy)):
                    a_greedy = actions_greedy[index]
                    out_of_range_action = True
                    while out_of_range_action:
                        # Sample from a Gaussian with mean at the greedy action and a std following a schedule of choice
                        a_stoch = np.random.normal(loc=a_greedy,
                                                   scale=std_schedule.value(t))
                        # Convert sampled cont action to an action idx
                        a_idx_stoch = np.rint(
                            (a_stoch + high[index]) / actions_range[index] *
                            num_action_grains)
                        # Check if action is in range
                        if a_idx_stoch >= 0 and a_idx_stoch < num_actions_pad:
                            action_idx_stoch.append(a_idx_stoch)
                            action.append(a_stoch)
                            out_of_range_action = False
                action_idxes = action_idx_stoch
            new_obs, rew, done, _ = env.step(np.array(action))
            # Store transition in the replay buffer
            replay_buffer.add(obs, action_idxes, rew, new_obs, float(done))
            obs = new_obs
            reward_sum += rew
            if done:
                obs = env.reset()
                time_spent_exploring[-1] = int(100 * exploration.value(t))
                time_spent_exploring.append(0)
                episode_rewards.append(reward_sum)
                training_game_scores.append(reward_sum)
                training_timesteps.append(t)
                time_steps[-1] = t
                reward_sum = 0.0
                time_steps.append(0)
                q_stats.append(np.mean(current_qs, 0))
                current_qs = []

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(
                    obses_t, actions, rewards, obses_tp1, dones,
                    weights)  # np.ones_like(rewards)) #TEMP AT NEW
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)
                n_trainings += 1
            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically
                update_target()
            if len(episode_rewards) == 0:
                mean_100ep_reward = 0
            elif len(episode_rewards) < 100:
                mean_100ep_reward = np.mean(episode_rewards)
            else:
                mean_100ep_reward = np.mean(episode_rewards[-100:])
            all_means.append(mean_100ep_reward)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                current_time = time.time()
                logger.record_tabular("trainings per second",
                                      n_trainings / (current_time - prev_time))
                logger.dump_tabular()
                n_trainings = 0
                prev_time = current_time
            if t > learning_starts and num_episodes > 100:
                if displayed_mean_reward is None or mean_100ep_reward > displayed_mean_reward:
                    if print_freq is not None:
                        logger.log("Mean reward increase: {} -> {}".format(
                            displayed_mean_reward, mean_100ep_reward))
                    displayed_mean_reward = mean_100ep_reward
                    # Performance evaluation with a greedy policy
            if done and num_episodes % eval_freq == 0:
                evaluate(t + 1, num_episodes)
                obs = env.reset()
            # STOP training
            if num_episodes >= total_num_episodes:
                break
        pickle.dump(q_stats,
                    open(
                        str(log_index) + "q_stat_stds99_" + log_prefix +
                        ".pkl", 'wb'),
                    protocol=pickle.HIGHEST_PROTOCOL)

        pickle.dump(game_scores,
                    open(
                        str(log_index) + "q_stat_scores99_" + log_prefix +
                        ".pkl", 'wb'),
                    protocol=pickle.HIGHEST_PROTOCOL)

    return ActWrapper(act, act_params)
コード例 #12
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        for t in range(total_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps,
                         **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act
コード例 #13
0
def learn(env_id,
          q_func,
          lr=5e-4,
          max_timesteps=10000,
          buffer_size=5000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          train_steps=10,
          learning_starts=500,
          batch_size=32,
          print_freq=10,
          checkpoint_freq=100,
          model_dir=None,
          gamma=1.0,
          target_network_update_freq=50,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          player_processes=None,
          player_connections=None):
    env, _, _ = create_gvgai_environment(env_id)

    # Create all the functions necessary to train the model
    # expert_decision_maker = ExpertDecisionMaker(env=env)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise)

    session = tf.Session()
    session.__enter__()
    policy_path = os.path.join(model_dir, "Policy.pkl")
    model_path = os.path.join(model_dir, "model", "model")
    if os.path.isdir(os.path.join(model_dir, "model")):
        load_state(model_path)
    else:
        act_params = {
            'make_obs_ph': make_obs_ph,
            'q_func': q_func,
            'num_actions': env.action_space.n,
        }
        act = ActWrapper(act, act_params)
        # Initialize the parameters and copy them to the target network.
        U.initialize()
        update_target()
        act.save(policy_path)
        save_state(model_path)
    env.close()
    # Create the replay buffer
    if prioritized_replay:
        replay_buffer_path = os.path.join(model_dir, "Prioritized_replay.pkl")
        if os.path.isfile(replay_buffer_path):
            with open(replay_buffer_path, 'rb') as input_file:
                replay_buffer = pickle.load(input_file)
        else:
            replay_buffer = PrioritizedReplayBuffer(
                buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer_path = os.path.join(model_dir, "Normal_replay.pkl")
        if os.path.isfile(replay_buffer_path):
            with open(replay_buffer_path, 'rb') as input_file:
                replay_buffer = pickle.load(input_file)
        else:
            replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None

    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    episode_rewards = list()
    saved_mean_reward = -999999999

    signal.signal(signal.SIGQUIT, signal_handler)
    global terminate_learning

    total_timesteps = 0
    for timestep in range(max_timesteps):
        if terminate_learning:
            break

        for connection in player_connections:
            experiences, reward = connection.recv()
            episode_rewards.append(reward)
            for experience in experiences:
                replay_buffer.add(*experience)
                total_timesteps += 1

        if total_timesteps < learning_starts:
            if timestep % 10 == 0:
                print("not strated yet", flush=True)
            continue

        if timestep % train_freq == 0:
            for i in range(train_steps):
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(total_timesteps))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

        if timestep % target_network_update_freq == 0:
            # Update target network periodically.
            update_target()

        mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
        num_episodes = len(episode_rewards)
        if print_freq is not None and timestep % print_freq == 0:
            logger.record_tabular("episodes", num_episodes)
            logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
            logger.record_tabular(
                "% time spent exploring",
                int(100 * exploration.value(total_timesteps)))
            logger.dump_tabular()

        if timestep % checkpoint_freq == 0 and mean_100ep_reward > saved_mean_reward:
            act.save(policy_path)
            save_state(model_path)
            saved_mean_reward = mean_100ep_reward
            with open(replay_buffer_path, 'wb') as output_file:
                pickle.dump(replay_buffer, output_file,
                            pickle.HIGHEST_PROTOCOL)
            send_message_to_all(player_connections, Message.UPDATE)

    send_message_to_all(player_connections, Message.TERMINATE)
    if mean_100ep_reward > saved_mean_reward:
        act.save(policy_path)
    with open(replay_buffer_path, 'wb') as output_file:
        pickle.dump(replay_buffer, output_file, pickle.HIGHEST_PROTOCOL)
    for player_process in player_processes:
        player_process.join()
        # player_process.terminate()

    return act.load(policy_path)
コード例 #14
0
def learn_continuous_tasks(env,
                           q_func,
                           env_name,
                           time_stamp,
                           total_num_episodes,
                           num_actions_pad=33,
                           lr=1e-4,
                           grad_norm_clipping=10,
                           max_timesteps=int(1e8),
                           buffer_size=int(1e6),
                           train_freq=1,
                           batch_size=64,
                           print_freq=10,
                           learning_starts=1000,
                           gamma=0.99,
                           target_network_update_freq=500,
                           prioritized_replay_alpha=0.6,
                           prioritized_replay_beta0=0.4,
                           prioritized_replay_beta_iters=2e6,
                           prioritized_replay_eps=int(1e8),
                           num_cpu=16,
                           timesteps_std=1e6,
                           initial_std=0.4,
                           final_std=0.05,
                           eval_freq=100,
                           n_eval_episodes=10,
                           eval_std=0.01,
                           callback=None):
    """Train a branching deepq model to solve continuous control tasks via discretization.
    Current assumptions in the implementation: 
    - for solving continuous control domains via discretization (can be adjusted to be compatible with naturally disceret-action domains using 'env.action_space.n')
    - uniform number of sub-actions per action dimension (can be generalized to heterogeneous number of sub-actions across branches) 

    Parameters
    -------
    env : gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    num_actions_pad: int
        number of sub-actions per action dimension (= num of discretization grains/bars + 1)
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimize for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
        0.1 for dqn-baselines
    exploration_final_eps: float
        final value of random action probability
        0.02 for dqn-baselines 
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    grad_norm_clipping: int
        set None for no clipping
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the unified TD error for updating priorities.
        Erratum: The camera-ready copy of this paper incorrectly reported 1e-8. 
        The value used to produece the results is 1e8.
    num_cpu: int
        number of cpus to use for training
    losses_version: int
        optimization version number
    dir_path: str 
        path for logs and results to be stored in 
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    def make_obs_ph(name):
        return U.BatchInput(env.observation_space.shape, name=name)

    num_action_grains = num_actions_pad - 1
    num_action_dims = env.action_space.shape[0]
    num_action_streams = num_action_dims
    num_actions = num_actions_pad * num_action_streams  # total numb network outputs for action branching with one action dimension per branch

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        num_action_streams=num_action_streams,
        batch_size=batch_size,
        learning_rate=lr,
        grad_norm_clipping=grad_norm_clipping,
        gamma=gamma,
        scope="deepq",
        reuse=None)
    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': num_actions,
        'num_action_streams': num_action_streams,
    }

    # prioritized_replay: create the replay buffer
    replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                            alpha=prioritized_replay_alpha)
    beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                   initial_p=prioritized_replay_beta0,
                                   final_p=1.0)

    # epsilon_greedy = False: just greedy policy
    exploration = ConstantSchedule(value=0.0)  # greedy policy
    std_schedule = LinearSchedule(schedule_timesteps=timesteps_std,
                                  initial_p=initial_std,
                                  final_p=final_std)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    # Initialize the parameters used for converting branching, discrete action indeces to continuous actions
    low = env.action_space.low
    high = env.action_space.high
    actions_range = np.subtract(high, low)

    episode_rewards = []
    reward_sum = 0.0
    num_episodes = 0
    time_steps = [0]
    time_spent_exploring = [0]

    prev_time = time.time()
    n_trainings = 0

    # Set up on-demand rendering of Gym environments using keyboard controls: 'r'ender or 's'top
    import termios, fcntl, sys
    fd = sys.stdin.fileno()
    oldterm = termios.tcgetattr(fd)
    newattr = termios.tcgetattr(fd)
    newattr[3] = newattr[3] & ~termios.ICANON & ~termios.ECHO
    render = False

    displayed_mean_reward = None

    def evaluate(step, episode_number):
        global max_eval_reward_mean, model_saved
        print('Evaluate...')
        eval_reward_sum = 0.0
        # Run evaluation episodes
        for eval_episode in range(n_eval_episodes):
            obs = env.reset()
            done = False
            while not done:
                # Choose action
                action_idxes = np.array(
                    act(np.array(obs)[None],
                        stochastic=False))  # deterministic
                actions_greedy = action_idxes / num_action_grains * actions_range + low

                if eval_std == 0.0:
                    action = actions_greedy
                else:
                    action = []
                    for index in range(len(actions_greedy)):
                        a_greedy = actions_greedy[index]
                        out_of_range_action = True
                        while out_of_range_action:
                            a_stoch = np.random.normal(loc=a_greedy,
                                                       scale=eval_std)
                            a_idx_stoch = np.rint(
                                (a_stoch + high[index]) /
                                actions_range[index] * num_action_grains)
                            if a_idx_stoch >= 0 and a_idx_stoch < num_actions_pad:
                                action.append(a_stoch)
                                out_of_range_action = False

                # Step
                obs, rew, done, _ = env.step(action)
                eval_reward_sum += rew

        # Average the rewards and log
        eval_reward_mean = eval_reward_sum / n_eval_episodes
        print(eval_reward_mean, 'over', n_eval_episodes, 'episodes')

        with open("results/{}_{}_eval.csv".format(time_stamp, env_name),
                  "a") as eval_fw:
            eval_writer = csv.writer(
                eval_fw,
                delimiter="\t",
                lineterminator="\n",
            )
            eval_writer.writerow([episode_number, step, eval_reward_mean])

        if max_eval_reward_mean is None or eval_reward_mean > max_eval_reward_mean:
            logger.log(
                "Saving model due to mean eval increase: {} -> {}".format(
                    max_eval_reward_mean, eval_reward_mean))
            U.save_state(model_file)
            model_saved = True
            max_eval_reward_mean = eval_reward_mean

    with tempfile.TemporaryDirectory() as td:
        model_file = os.path.join(td, "model")

        evaluate(0, 0)
        obs = env.reset()

        with open("results/{}_{}.csv".format(time_stamp, env_name), "w") as fw:
            writer = csv.writer(
                fw,
                delimiter="\t",
                lineterminator="\n",
            )

            t = -1
            while True:
                t += 1

                # Select action and update exploration probability
                action_idxes = np.array(
                    act(np.array(obs)[None], update_eps=exploration.value(t)))

                # Convert sub-actions indexes (discrete sub-actions) to continuous controls
                action = action_idxes / num_action_grains * actions_range + low

                # epsilon_greedy = False: use Gaussian noise
                actions_greedy = action
                action_idx_stoch = []
                action = []
                for index in range(len(actions_greedy)):
                    a_greedy = actions_greedy[index]
                    out_of_range_action = True
                    while out_of_range_action:
                        # Sample from a Gaussian with mean at the greedy action and a std following a schedule of choice
                        a_stoch = np.random.normal(loc=a_greedy,
                                                   scale=std_schedule.value(t))

                        # Convert sampled cont action to an action idx
                        a_idx_stoch = np.rint(
                            (a_stoch + high[index]) / actions_range[index] *
                            num_action_grains)

                        # Check if action is in range
                        if a_idx_stoch >= 0 and a_idx_stoch < num_actions_pad:
                            action_idx_stoch.append(a_idx_stoch)
                            action.append(a_stoch)
                            out_of_range_action = False

                action_idxes = action_idx_stoch

                new_obs, rew, done, _ = env.step(action)

                # On-demand rendering
                if (t + 1) % 100 == 0:
                    # TO DO better?
                    termios.tcsetattr(fd, termios.TCSANOW, newattr)
                    oldflags = fcntl.fcntl(fd, fcntl.F_GETFL)
                    fcntl.fcntl(fd, fcntl.F_SETFL, oldflags | os.O_NONBLOCK)
                    try:
                        try:
                            c = sys.stdin.read(1)
                            if c == 'r':
                                print()
                                print('Rendering begins...')
                                render = True
                            elif c == 's':
                                print()
                                print('Stop rendering!')
                                render = False
                                env.render(close=True)
                        except IOError:
                            pass
                    finally:
                        termios.tcsetattr(fd, termios.TCSAFLUSH, oldterm)
                        fcntl.fcntl(fd, fcntl.F_SETFL, oldflags)

                # Visualize Gym environment on render
                if render: env.render()

                # Store transition in the replay buffer
                replay_buffer.add(obs, action_idxes, rew, new_obs, float(done))
                obs = new_obs

                reward_sum += rew
                if done:
                    obs = env.reset()
                    time_spent_exploring[-1] = int(100 * exploration.value(t))
                    time_spent_exploring.append(0)
                    episode_rewards.append(reward_sum)
                    time_steps[-1] = t
                    reward_sum = 0.0
                    time_steps.append(0)
                    # Frequently log to file
                    writer.writerow(
                        [len(episode_rewards), t, episode_rewards[-1]])

                if t > learning_starts and t % train_freq == 0:
                    # Minimize the error in Bellman's equation on a batch sampled from replay buffer
                    # prioritized_replay
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience

                    td_errors = train(
                        obses_t, actions, rewards, obses_tp1, dones,
                        weights)  #np.ones_like(rewards)) #TEMP AT NEW

                    # prioritized_replay
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

                    n_trainings += 1

                if t > learning_starts and t % target_network_update_freq == 0:
                    # Update target network periodically
                    update_target()

                if len(episode_rewards) == 0: mean_100ep_reward = 0
                elif len(episode_rewards) < 100:
                    mean_100ep_reward = np.mean(episode_rewards)
                else:
                    mean_100ep_reward = np.mean(episode_rewards[-100:])

                num_episodes = len(episode_rewards)
                if done and print_freq is not None and len(
                        episode_rewards) % print_freq == 0:
                    logger.record_tabular("steps", t)
                    logger.record_tabular("episodes", num_episodes)
                    logger.record_tabular("mean 100 episode reward",
                                          mean_100ep_reward)
                    logger.record_tabular("% time spent exploring",
                                          int(100 * exploration.value(t)))
                    current_time = time.time()
                    logger.record_tabular(
                        "trainings per second",
                        n_trainings / (current_time - prev_time))
                    logger.dump_tabular()
                    n_trainings = 0
                    prev_time = current_time

                if t > learning_starts and num_episodes > 100:
                    if displayed_mean_reward is None or mean_100ep_reward > displayed_mean_reward:
                        if print_freq is not None:
                            logger.log("Mean reward increase: {} -> {}".format(
                                displayed_mean_reward, mean_100ep_reward))
                        displayed_mean_reward = mean_100ep_reward

                # Performance evaluation with a greedy policy
                if done and num_episodes % eval_freq == 0:
                    evaluate(t + 1, num_episodes)
                    obs = env.reset()

                # STOP training
                if num_episodes >= total_num_episodes:
                    break

            if model_saved:
                logger.log("Restore model with mean eval: {}".format(
                    max_eval_reward_mean))
                U.load_state(model_file)

    data_to_log = {
        'time_steps': time_steps,
        'episode_rewards': episode_rewards,
        'time_spent_exploring': time_spent_exploring
    }

    # Write to file the episodic rewards, number of steps, and the time spent exploring
    with open("results/{}_{}.txt".format(time_stamp, env_name), 'wb') as fp:
        pickle.dump(data_to_log, fp)

    return ActWrapper(act, act_params)
コード例 #15
0
        # Create the replay buffer
        replay_buffer = ReplayBuffer(50000)
        # Create the schedule for exploration starting from 1 (every action is random) down to
        # 0.02 (98% of actions are selected according to values predicted by the model).
        exploration = LinearSchedule(schedule_timesteps=10000, initial_p=1.0, final_p=0.02)

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        update_target()

        episode_rewards = [0.0]
        obs = env.reset()
        # for t in itertools.count():
        for t in range(100000):
            # Take action and update exploration to the newest value
            action = act(obs[None], update_eps=exploration.value(t))[0]
            new_obs, rew, done, _ = env.step(action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0)

            is_solved = t > 100 and np.mean(episode_rewards[-101:-1]) >= 200
            if is_solved:
                # Show off the result
                env.render()
            else:
コード例 #16
0
class Agent(tf.Module):
    def __init__(self, config, env):
        self.config = config
        self.agent_ids = [a for a in range(config.num_agents)]
        self.env = env
        # self.optimizer = tf.keras.optimizers.Adam(self.config.lr)
        self.optimizer = tf.keras.optimizers.Adadelta(
            learning_rate=self.config.lr,
            rho=0.95,
            epsilon=1e-07,
            name='Adadelta')
        self.replay_memory, self.beta_schedule = init_replay_memory(config)

        self.model = init_network_2(config)
        self.target_model = init_network_2(config)
        self.model.summary()
        # tf.keras.utils.plot_model(self.model, to_file='./model.png')

        if self.config.dueling:
            self.agent_heads = self.build_agent_heads_dueling()
            self.target_agent_heads = self.build_agent_heads_dueling()
        else:
            self.agent_heads = self.build_agent_heads()
            self.target_agent_heads = self.build_agent_heads()

        self.agent_heads[0].summary()
        # tf.keras.utils.plot_model(self.agent_heads[0], to_file='./agent_heads_model.png')

        # Create the schedule for exploration starting from 1.
        self.exploration = LinearSchedule(schedule_timesteps=int(
            config.exploration_fraction * config.num_timesteps),
                                          initial_p=1.0,
                                          final_p=config.exploration_final_eps)

        if config.load_path is not None:
            self.load_models(config.load_path)

        self.loss = self.nstep_loss
        self.eps = tf.Variable(0.0)
        self.one_hot_agents = tf.expand_dims(tf.one_hot(self.agent_ids,
                                                        len(self.agent_ids),
                                                        dtype=tf.float32),
                                             axis=1)
        print(f'self.onehot_agent.shape is {self.one_hot_agents.shape}')

        self.initialize_dummy_variabels()

    def initialize_dummy_variabels(self):
        self.dummy_nstep_obs = tf.zeros(
            ((self.config.n_steps - 1), *self.config.obs_shape),
            dtype=tf.float32)
        self.dummy_fps = tf.zeros(
            (1, 1, (self.config.num_agents - 1) * self.config.num_actions +
             self.config.num_extra_data))
        # print(f'self.dummy_fps.shape is {self.dummy_fps.shape}')
        self.dummy_done_mask = tf.zeros((1, 1))
        # print(f'tile done_mask shape is : {tf.tile(self.dummy_done_mask, (2, 1, 1)).shape}')

    def build_agent_heads(self):
        """

        :return: list of heads for agents

            - gets tensorflow model and adds heads for each agent
        """
        input_shape = self.model.output_shape[-1]
        print(input_shape)
        heads = []
        inputs = tf.keras.layers.Input(input_shape)
        for a in self.agent_ids:
            name = 'head_agent_' + str(a)
            head_a = tf.keras.layers.Dense(
                units=self.config.num_actions,
                activation=None,
                kernel_initializer=tf.keras.initializers.Orthogonal(1.0),
                bias_initializer=tf.keras.initializers.Constant(0.0),
                name=name)(inputs)
            head_a = tf.keras.Model(inputs=inputs, outputs=head_a)
            heads.append(head_a)

        return heads

    def build_agent_heads_dueling(self):
        """

        :return: list of heads for agents

            - gets tensorflow model and adds heads for each agent
        """
        input_shape = self.model.output_shape[-1]
        print(input_shape)
        heads = []
        inputs = tf.keras.layers.Input(input_shape)
        for a in self.agent_ids:
            name = 'head_agent_' + str(a)
            with tf.name_scope(f'action_value_{name}'):
                action_head_a = tf.keras.layers.Dense(
                    units=self.config.num_actions,
                    activation=None,
                    kernel_initializer=tf.keras.initializers.Orthogonal(1.0),
                    bias_initializer=tf.keras.initializers.Constant(0.0),
                    name='action_' + name)(inputs)

            with tf.name_scope(f'state_value_{name}'):
                state_head_a = tf.keras.layers.Dense(
                    units=1,
                    activation=None,
                    kernel_initializer=tf.keras.initializers.Orthogonal(1.0),
                    bias_initializer=tf.keras.initializers.Constant(0.0),
                    name='state_' + name)(inputs)

            action_scores_mean = tf.reduce_mean(action_head_a, 1)
            action_scores_centered = action_head_a - tf.expand_dims(
                action_scores_mean, 1)
            head_a = state_head_a + action_scores_centered

            head_a = tf.keras.Model(inputs=inputs, outputs=head_a)
            heads.append(head_a)

        return heads

    @tf.function
    def choose_action(self, obs, stochastic=True, update_eps=-1):
        """

        :param obs: list observations one for each agent
        :param stochastic: True for Train phase and False for test phase
        :param update_eps: epsilon update for eps-greedy
        :return: actions: list of actions chosen by agents based on observation one for each agent
        """

        actions = []
        fps = []
        for a in self.agent_ids:
            # print(f'tf.expand_dims(obs[a], 0), {tf.expand_dims(obs[a], 0).shape}')
            inputs = {
                '0': tf.expand_dims(tf.expand_dims(obs[a], 0), 0),
                '1': self.one_hot_agents[a],
                '2': self.dummy_fps,
                '3': self.dummy_done_mask
            }

            fc_values = self.model(inputs)
            # print(f'fc_values.shape {fc_values.shape}')
            q_values = self.agent_heads[a](fc_values[:, -1, :])  # [:, -1, :]
            fps.append(q_values.numpy().tolist()[0])
            # print(f'q_values.shape {q_values.shape}')
            deterministic_actions = tf.argmax(q_values, axis=1)
            # print(f'deterministic_actions {deterministic_actions}')

            batch_size = 1
            random_actions = tf.random.uniform(tf.stack([batch_size]),
                                               minval=0,
                                               maxval=self.config.num_actions,
                                               dtype=tf.int64)
            # print(f'random_actions {random_actions}')
            chose_random = tf.random.uniform(
                tf.stack([batch_size
                          ]), minval=0, maxval=1, dtype=tf.float32) < self.eps
            # print(f'chose_random {chose_random}')

            stochastic_actions = tf.where(chose_random, random_actions,
                                          deterministic_actions)
            # print(f'stochastic_actions {stochastic_actions}')

            if stochastic:
                actions.append(stochastic_actions.numpy()[0])
            else:
                actions.append(deterministic_actions.numpy()[0])

        if update_eps >= 0:
            self.eps.assign(update_eps)

        # print(f'actions {actions}')
        return actions, fps

    @tf.function
    def value(self, obs):
        """

        :param obs: list observations one for each agent
        :return: best values based on Q-Learning formula max Q(s',a')
        """

        values = []
        for a in self.agent_ids:
            # print(f'tf.expand_dims(obs[a], 0), {tf.expand_dims(obs[a], 0).shape}')
            inputs = {
                '0': tf.expand_dims(tf.expand_dims(obs[a], 0), 0),
                '1': self.one_hot_agents[a],
                '2': self.dummy_fps,
                '3': self.dummy_done_mask
            }
            fc_values = self.target_model(inputs)
            q_values = self.target_agent_heads[a](
                fc_values[:, -1, :])  # [:, -1, :]

            if self.config.double_q:
                fc_values_using_online_net = self.model(inputs)
                q_values_using_online_net = self.agent_heads[a](
                    fc_values_using_online_net[:, -1, :])  # [:, -1, :]
                q_value_best_using_online_net = tf.argmax(
                    q_values_using_online_net, 1)
                q_tp1_best = tf.reduce_sum(
                    q_values * tf.one_hot(q_value_best_using_online_net,
                                          self.config.num_actions,
                                          dtype=tf.float32), 1)
            else:
                q_tp1_best = tf.reduce_max(q_values, 1)

            values.append(q_tp1_best.numpy()[0])

        return values

    @tf.function()
    def nstep_loss(self, obses_t_a, actions_a, rewards_a, dones_a, weights_a,
                   fps_a, agent_id):
        # print(f'obses_t_a.shape {obses_t_a.shape}')
        s = obses_t_a.shape
        # obses_t_a = tf.reshape(obses_t_a, (s[0] * s[1], *s[2:]))
        # s = fps_a.shape
        # fps_a = tf.reshape(fps_a, (s[0] * s[1], *s[2:]))
        # s = dones_a.shape
        # dones_a = tf.reshape(dones_a, (s[0], s[1]))

        # s = actions_a.shape
        # actions_a = tf.reshape(actions_a, (s[0] * s[1], *s[2:]))
        # s = rewards_a.shape
        # rewards_a = tf.reshape(rewards_a, (s[0] * s[1], *s[2:]))
        # s = weights_a.shape
        # weights_a = tf.reshape(weights_a, (s[0] * s[1], *s[2:]))

        inputs_a = {
            '0': obses_t_a,
            '1': tf.tile(self.one_hot_agents[agent_id], (s[0] * s[1], 1)),
            '2': fps_a,
            '3': dones_a
        }

        fc_values = self.model(inputs_a)
        s = fc_values.shape
        # print(f'fc_values.shape {fc_values.shape}')
        # fc_values = tf.reshape(fc_values, (s[0] * s[1], *s[2:]))
        q_t = self.agent_heads[agent_id](fc_values[:, -1, :])

        q_t_selected = tf.reduce_sum(
            q_t * tf.one_hot(
                actions_a[:, -1], self.config.num_actions, dtype=tf.float32),
            1)
        # print(f'q_t_selected.shape is {q_t_selected.shape}')

        td_error = q_t_selected - tf.stop_gradient(rewards_a[:, -1])

        errors = huber_loss(td_error)
        weighted_loss = tf.reduce_mean(weights_a[:, -1] * errors)

        return weighted_loss, td_error

    @tf.function()
    def train(self, obses_t, actions, rewards, dones, weights, fps):
        td_errors = []
        loss = []
        # print(f'obses_t.shape {obses_t.shape}')
        with tf.GradientTape() as tape:
            for a in self.agent_ids:
                loss_a, td_error = self.loss(obses_t[:, a], actions[:, a],
                                             rewards[:, a], dones[:, a],
                                             weights[:, a], fps[:, a], a)
                loss.append(loss_a)
                td_errors.append(td_error)

            sum_loss = tf.reduce_sum(loss)
            sum_td_error = tf.reduce_sum(td_error)

        # print(f'sum_loss is {sum_loss}, loss is {loss}')
        param = self.model.trainable_variables
        for a in self.agent_ids:
            param += self.agent_heads[a].trainable_variables

        # print(f'param {param}')

        grads = tape.gradient(sum_loss, param)

        if self.config.grad_norm_clipping:
            clipped_grads = []
            for grad in grads:
                clipped_grads.append(
                    tf.clip_by_norm(grad, self.config.grad_norm_clipping))
            grads = clipped_grads

        grads_and_vars = list(zip(grads, param))
        self.optimizer.apply_gradients(grads_and_vars)

        return sum_loss.numpy(), sum_td_error.numpy()

    @tf.function(autograph=False)
    def update_target(self):
        for var, var_target in zip(self.model.trainable_variables,
                                   self.target_model.trainable_variables):
            var_target.assign(var)

        vars_, target_vars = [], []
        for a in self.agent_ids:
            vars_.extend(self.agent_heads[a].trainable_variables)
            target_vars.extend(self.target_agent_heads[a].trainable_variables)

        for var, var_target in zip(vars_, target_vars):
            var_target.assign(var)

    @tf.function(autograph=False)
    def soft_update_target(self):
        for var, var_target in zip(self.model.trainable_variables,
                                   self.target_model.trainable_variables):
            var_target.assign(self.config.tau * var +
                              (1.0 - self.config.tau) * var_target)

        vars, target_vars = [], []
        for a in self.agent_ids:
            vars.extend(self.agent_heads[a].trainable_variables)
            target_vars.extend(self.target_agent_heads[a].trainable_variables)

        for var, var_target in zip(vars, target_vars):
            var_target.assign(self.config.tau * var +
                              (1.0 - self.config.tau) * var_target)

    def save(self, save_path):
        self.model.save_weights(f'{save_path}/value_network.h5')
        self.target_model.save_weights(f'{save_path}/target_network.h5')
        for a in self.agent_ids:
            self.agent_heads[a].save_weights(f'{save_path}/agent_{a}_head.h5')
            self.target_agent_heads[a].save_weights(
                f'{save_path}/target_agent_{a}_head.h5')

    def load(self, load_path):
        self.model.load_weights(f'{load_path}/value_network.h5')
        self.target_model.load_weights(f'{load_path}/target_network.h5')
        for a in self.agent_ids:
            self.agent_heads[a].load_weights(f'{load_path}/agent_{a}_head.h5')
            self.target_agent_heads[a].load_weights(
                f'{load_path}/target_agent_{a}_head.h5')

    def learn(self):
        self.soft_update_target()
        episode_rewards = [0.0]
        obs = self.env.reset()
        done = False
        # Start total timer
        tstart = time.time()
        episodes_trained = [0, False]  # [episode_number, Done flag]
        for t in range(self.config.num_timesteps):
            update_eps = tf.constant(self.exploration.value(t))

            if t % (self.config.print_freq) == 0:
                time_1000_step = time.time()
                nseconds = time_1000_step - tstart
                tstart = time_1000_step
                print(
                    f'eps_update {self.exploration.value(t)} -- time {t - self.config.print_freq} to {t} steps: {nseconds} '
                )

            mb_obs, mb_rewards, mb_actions, mb_fps, mb_dones = [], [], [], [], []
            # mb_states = states
            epinfos = []
            for nstep in range(self.config.n_steps):
                actions, fps_ = self.choose_action(tf.constant(
                    obs, dtype=tf.float32),
                                                   update_eps=update_eps)
                # print(f'actions is {actions}')
                # print(f'fps_ is {fps_}')
                fps = []
                if self.config.num_agents > 1:
                    for a in self.agent_ids:
                        fp = fps_[:a]
                        fp.extend(fps_[a + 1:])
                        fp_a = np.concatenate(
                            (fp, [[self.exploration.value(t) * 100, t]]),
                            axis=None)
                        fps.append(fp_a)

                mb_obs.append(obs.copy())
                mb_actions.append(actions)
                mb_fps.append(fps)
                mb_dones.append([float(done) for _ in self.agent_ids])

                obs1, rews, done, info = self.env.step(actions)

                if self.config.same_reward_for_agents:
                    rews = [
                        np.max(rews) for _ in range(len(rews))
                    ]  # for cooperative purpose same reward for every one

                mb_rewards.append(rews)
                obs = obs1
                maybeepinfo = info.get('episode')
                if maybeepinfo: epinfos.append(maybeepinfo)

                episode_rewards[-1] += np.max(rews)
                if done:
                    episodes_trained[0] = episodes_trained[0] + 1
                    episodes_trained[1] = True

                    episode_rewards.append(0.0)
                    obs = self.env.reset()

            mb_dones.append([float(done) for _ in self.agent_ids])

            # swap axes to have lists in shape of (num_agents, num_steps, ...)
            mb_obs = np.asarray(mb_obs, dtype=obs[0].dtype).swapaxes(0, 1)
            mb_actions = np.asarray(mb_actions,
                                    dtype=actions[0].dtype).swapaxes(0, 1)
            mb_rewards = np.asarray(mb_rewards,
                                    dtype=np.float32).swapaxes(0, 1)
            mb_fps = np.asarray(mb_fps, dtype=np.float32).swapaxes(0, 1)
            mb_dones = np.asarray(mb_dones, dtype=np.bool).swapaxes(0, 1)
            mb_masks = mb_dones[:, :-1]
            mb_dones = mb_dones[:, 1:]

            # print(f'mb_masks.shape is {mb_masks.shape}')
            # print(f'mb_rewards is {mb_rewards}')

            if self.config.gamma > 0.0:
                # Discount/bootstrap off value fn
                last_values = self.value(tf.constant(obs1, dtype=tf.float32))
                # print(f'last_values {last_values}')
                for n, (rewards, dones, value) in enumerate(
                        zip(mb_rewards, mb_dones, last_values)):
                    rewards = rewards.tolist()
                    dones = dones.tolist()
                    if dones[-1] == 0:
                        rewards = discount_with_dones(rewards + [value],
                                                      dones + [0],
                                                      self.config.gamma)[:-1]
                    else:
                        rewards = discount_with_dones(rewards, dones,
                                                      self.config.gamma)

                    mb_rewards[n] = rewards

            # print(f'after discount mb_rewards is {mb_rewards}')

            if self.config.replay_buffer is not None:
                self.replay_memory.add(
                    (mb_obs, mb_actions, mb_rewards, obs1, mb_masks, mb_fps))

            if t > self.config.learning_starts and t % self.config.train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if self.config.prioritized_replay:
                    experience = self.replay_memory.sample(
                        self.config.batch_size,
                        beta=self.beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, fps, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones, fps = self.replay_memory.sample(
                        self.config.batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None

                obses_t = tf.constant(obses_t, dtype=tf.float32)
                actions = tf.constant(actions)
                rewards = tf.constant(rewards)
                dones = tf.constant(dones)
                weights = tf.constant(weights)
                fps = tf.constant(fps)

                loss, td_errors = self.train(obses_t, actions, rewards, dones,
                                             weights, fps)

                if t % (self.config.train_freq * 50) == 0:
                    print(f't = {t} , loss = {loss}')

            if t > self.config.learning_starts and t % self.config.target_network_update_freq == 0:
                # Update target network periodically.
                self.soft_update_target()

            if t % self.config.playing_test == 0 and t != 0:
                self.save(self.config.save_path)
                self.play_test_games()

            mean_100ep_reward = np.mean(episode_rewards[-101:-1])
            num_episodes = len(episode_rewards)
            # if done and self.config.print_freq is not None and len(episode_rewards) % self.config.print_freq == 0:
            if episodes_trained[
                    1] and episodes_trained[0] % self.config.print_freq == 0:
                episodes_trained[1] = False
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 past episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * self.exploration.value(t)))
                logger.dump_tabular()

    def play_test_games(self):
        num_tests = self.config.num_tests
        test_env = init_env(self.config, mode='test')
        test_rewards = np.zeros(num_tests)
        for i in range(num_tests):
            test_done = False
            test_obs_all = test_env.reset()
            # print(np.asarray(test_obs_all).shape)
            while not test_done:
                test_obs_all = tf.constant(test_obs_all, dtype=tf.float32)
                test_action_list, _ = self.choose_action(test_obs_all,
                                                         stochastic=False)
                test_new_obs_list, test_rew_list, test_done, _ = test_env.step(
                    test_action_list)
                test_obs_all = test_new_obs_list

                if test_done:
                    test_rewards[i] = np.mean(test_rew_list)

        print(
            f'test_rewards: {test_rewards} \n mean reward of {num_tests} tests: {np.mean(test_rewards)}'
        )
        test_env.close()
コード例 #17
0
                                    resume=True,
                                    mode="evaluation",
                                    write_upon_reset=True)
    steps, total_return = play_once(demo_env, 0.05, render=True)
    print("Demo for %d steps, Return %d" % (steps, total_return))
    summary = tf.Summary()
    summary.value.add(tag="demo/return", simple_value=total_return)
    summary.value.add(tag="demo/steps", simple_value=steps)
    demo_env.close()
    return summary


linear_schedule = LinearSchedule(int(EPSILON_STEPS),
                                 final_p=EPSILON_MIN,
                                 initial_p=EPSILON_MAX)
epsilon = linear_schedule.value(session.run(global_step))
# Populate replay buffer
print("Populating replay buffer with epsilon %f..." % epsilon)
while MINIMAL_SAMPLES > replay_buffer.number_of_samples():
    steps, total_return = play_once(env, epsilon, render=False)
    print("Played %d < %d steps" %
          (replay_buffer.number_of_samples(), MINIMAL_SAMPLES))

# Main loop
print("Start Main Loop...")
for n in range(ITERATIONS):
    gstep = tf.train.global_step(session, global_step)
    epsilon = linear_schedule.value(gstep)
    steps, total_return = play_once(env, epsilon)
    t0 = datetime.now()
    train_summary = train(steps)
コード例 #18
0
def main(env_name,
         train_freq=1,
         target_update_freq=1000,
         batch_size=32,
         train_after=64,
         final_gamma=0.02,
         max_timesteps=2000000,
         buffer_size=10000,
         prioritized_replay_alpha=0.6,
         prioritized_replay_beta=0.4,
         prioritized_replay_eps=1e-6,
         log_freq=1,
         checkpoint_freq=10000):
    env = gym.make(env_name)
    env = wrap_env(env)

    state_dim = (4, 84, 84)
    action_dim = env.action_space.n

    agent = LearningAgent(state_dim, action_dim)
    logger = agent.writer

    eps_sched = LinearSchedule(1.0, final_gamma, max_timesteps)
    beta_sched = LinearSchedule(prioritized_replay_beta, 1.0, max_timesteps)
    replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)

    try:
        obs = env.reset()
        episode = 0
        rewards = 0
        steps = 0
        for t in range(max_timesteps):
            # Take action and update exploration to newest value
            action = agent.act(obs, epsilon=eps_sched.value(t))
            obs_, reward, done, _ = env.step(action)

            # Store transition in replay buffer
            replay_buffer.add(obs, action, reward, obs_, float(done))
            obs = obs_

            rewards += reward
            if done:
                steps = t - steps
                episode += 1
                obs = env.reset()

            if t > train_after and (t % train_freq) == 0:
                print('Training...')
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer
                experience = replay_buffer.sample(batch_size, beta=beta_sched.value(t))
                (s, a, r, s_, t, weights, batch_idxes) = experience

                td_errors = agent.train(s, a, r, s_, t, weights)
                new_priorities = np.abs(td_errors) + prioritized_replay_eps
                replay_buffer.update_priorities(batch_idxes, new_priorities)

            if t > train_after and (t % target_update_freq) == 0:
                agent.update_target()

            if done and (episode % log_freq) == 0:
                logger.write_value('rewards', rewards, episode)
                logger.write_value('steps', steps, episode)
                logger.write_value('epsilon', eps_sched.value(t), episode)
                agent.trainer.summarize_training_progress()
                logger.flush()

                rewards = 0
                steps = t

            if t > train_after and (t % checkpoint_freq) == 0:
                agent.checkpoint('model_{}.chkpt'.format(t))
    finally:
        agent.save_model('model.dnn')
コード例 #19
0
ファイル: dqfd.py プロジェクト: Baldwin054212/DQfD-1
def learn(env,
          network,
          seed=None,
          lr=5e-5,
          total_timesteps=100000,
          buffer_size=500000,
          exploration_fraction=0.1,
          exploration_final_eps=0.01,
          train_freq=1,
          batch_size=32,
          print_freq=10,
          checkpoint_freq=100000,
          checkpoint_path=None,
          learning_starts=0,
          gamma=0.99,
          target_network_update_freq=10000,
          prioritized_replay=True,
          prioritized_replay_alpha=0.4,
          prioritized_replay_beta0=0.6,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-3,
          param_noise=False,
          callback=None,
          load_path=None,
          load_idx=None,
          demo_path=None,
          n_step=10,
          demo_prioritized_replay_eps=1.0,
          pre_train_timesteps=750000,
          epsilon_schedule="constant",
          **network_kwargs):
    # Create all the functions necessary to train the model
    set_global_seeds(seed)
    q_func = build_q_func(network, **network_kwargs)

    with tf.device('/GPU:0'):
        model = DQfD(q_func=q_func,
                     observation_shape=env.observation_space.shape,
                     num_actions=env.action_space.n,
                     lr=lr,
                     grad_norm_clipping=10,
                     gamma=gamma,
                     param_noise=param_noise)

    # Load model from checkpoint
    if load_path is not None:
        load_path = osp.expanduser(load_path)
        ckpt = tf.train.Checkpoint(model=model)
        manager = tf.train.CheckpointManager(ckpt, load_path, max_to_keep=None)
        if load_idx is None:
            ckpt.restore(manager.latest_checkpoint)
            print("Restoring from {}".format(manager.latest_checkpoint))
        else:
            ckpt.restore(manager.checkpoints[load_idx])
            print("Restoring from {}".format(manager.checkpoints[load_idx]))

    # Setup demo trajectory
    assert demo_path is not None
    with open(demo_path, "rb") as f:
        trajectories = pickle.load(f)

    # Create the replay buffer
    replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                            prioritized_replay_alpha)
    if prioritized_replay_beta_iters is None:
        prioritized_replay_beta_iters = total_timesteps
    beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                   initial_p=prioritized_replay_beta0,
                                   final_p=1.0)
    temp_buffer = deque(maxlen=n_step)
    is_demo = True
    for epi in trajectories:
        for obs, action, rew, new_obs, done in epi:
            obs, new_obs = np.expand_dims(
                np.array(obs), axis=0), np.expand_dims(np.array(new_obs),
                                                       axis=0)
            if n_step:
                temp_buffer.append((obs, action, rew, new_obs, done, is_demo))
                if len(temp_buffer) == n_step:
                    n_step_sample = get_n_step_sample(temp_buffer, gamma)
                    replay_buffer.demo_len += 1
                    replay_buffer.add(*n_step_sample)
            else:
                replay_buffer.demo_len += 1
                replay_buffer.add(obs[0], action, rew, new_obs[0], float(done),
                                  float(is_demo))
    logger.log("trajectory length:", replay_buffer.demo_len)
    # Create the schedule for exploration
    if epsilon_schedule == "constant":
        exploration = ConstantSchedule(exploration_final_eps)
    else:  # not used
        exploration = LinearSchedule(schedule_timesteps=int(
            exploration_fraction * total_timesteps),
                                     initial_p=1.0,
                                     final_p=exploration_final_eps)

    model.update_target()

    # ============================================== pre-training ======================================================
    start = time()
    num_episodes = 0
    temp_buffer = deque(maxlen=n_step)
    for t in tqdm(range(pre_train_timesteps)):
        # sample and train
        experience = replay_buffer.sample(batch_size,
                                          beta=prioritized_replay_beta0)
        batch_idxes = experience[-1]
        if experience[6] is None:  # for n_step = 0
            obses_t, actions, rewards, obses_tp1, dones, is_demos = tuple(
                map(tf.constant, experience[:6]))
            obses_tpn, rewards_n, dones_n = None, None, None
            weights = tf.constant(experience[-2])
        else:
            obses_t, actions, rewards, obses_tp1, dones, is_demos, obses_tpn, rewards_n, dones_n, weights = tuple(
                map(tf.constant, experience[:-1]))
        td_errors, n_td_errors, loss_dq, loss_n, loss_E, loss_l2, weighted_error = model.train(
            obses_t, actions, rewards, obses_tp1, dones, is_demos, weights,
            obses_tpn, rewards_n, dones_n)

        # Update priorities
        new_priorities = np.abs(td_errors) + np.abs(
            n_td_errors) + demo_prioritized_replay_eps
        replay_buffer.update_priorities(batch_idxes, new_priorities)

        # Update target network periodically
        if t > 0 and t % target_network_update_freq == 0:
            model.update_target()

        # Logging
        elapsed_time = timedelta(time() - start)
        if print_freq is not None and t % 10000 == 0:
            logger.record_tabular("steps", t)
            logger.record_tabular("episodes", num_episodes)
            logger.record_tabular("mean 100 episode reward", 0)
            logger.record_tabular("max 100 episode reward", 0)
            logger.record_tabular("min 100 episode reward", 0)
            logger.record_tabular("demo sample rate", 1)
            logger.record_tabular("epsilon", 0)
            logger.record_tabular("loss_td", np.mean(loss_dq.numpy()))
            logger.record_tabular("loss_n_td", np.mean(loss_n.numpy()))
            logger.record_tabular("loss_margin", np.mean(loss_E.numpy()))
            logger.record_tabular("loss_l2", np.mean(loss_l2.numpy()))
            logger.record_tabular("losses_all", weighted_error.numpy())
            logger.record_tabular("% time spent exploring",
                                  int(100 * exploration.value(t)))
            logger.record_tabular("pre_train", True)
            logger.record_tabular("elapsed time", elapsed_time)
            logger.dump_tabular()

    # ============================================== exploring =========================================================
    sample_counts = 0
    demo_used_counts = 0
    episode_rewards = deque(maxlen=100)
    this_episode_reward = 0.
    best_score = 0.
    saved_mean_reward = None
    is_demo = False
    obs = env.reset()
    # Always mimic the vectorized env
    obs = np.expand_dims(np.array(obs), axis=0)
    reset = True
    for t in tqdm(range(total_timesteps)):
        if callback is not None:
            if callback(locals(), globals()):
                break
        kwargs = {}
        if not param_noise:
            update_eps = tf.constant(exploration.value(t))
            update_param_noise_threshold = 0.
        else:  # not used
            update_eps = tf.constant(0.)
            update_param_noise_threshold = -np.log(1. - exploration.value(t) +
                                                   exploration.value(t) /
                                                   float(env.action_space.n))
            kwargs['reset'] = reset
            kwargs[
                'update_param_noise_threshold'] = update_param_noise_threshold
            kwargs['update_param_noise_scale'] = True
        action, epsilon, _, _ = model.step(tf.constant(obs),
                                           update_eps=update_eps,
                                           **kwargs)
        action = action[0].numpy()
        reset = False
        new_obs, rew, done, _ = env.step(action)

        # Store transition in the replay buffer.
        new_obs = np.expand_dims(np.array(new_obs), axis=0)
        if n_step:
            temp_buffer.append((obs, action, rew, new_obs, done, is_demo))
            if len(temp_buffer) == n_step:
                n_step_sample = get_n_step_sample(temp_buffer, gamma)
                replay_buffer.add(*n_step_sample)
        else:
            replay_buffer.add(obs[0], action, rew, new_obs[0], float(done), 0.)
        obs = new_obs

        # invert log scaled score for logging
        this_episode_reward += np.sign(rew) * (np.exp(np.sign(rew) * rew) - 1.)
        if done:
            num_episodes += 1
            obs = env.reset()
            obs = np.expand_dims(np.array(obs), axis=0)
            episode_rewards.append(this_episode_reward)
            reset = True
            if this_episode_reward > best_score:
                best_score = this_episode_reward
                ckpt = tf.train.Checkpoint(model=model)
                manager = tf.train.CheckpointManager(ckpt,
                                                     './best_model',
                                                     max_to_keep=1)
                manager.save(t)
                logger.log("saved best model")
            this_episode_reward = 0.0

        if t % train_freq == 0:
            experience = replay_buffer.sample(batch_size,
                                              beta=beta_schedule.value(t))
            batch_idxes = experience[-1]
            if experience[6] is None:  # for n_step = 0
                obses_t, actions, rewards, obses_tp1, dones, is_demos = tuple(
                    map(tf.constant, experience[:6]))
                obses_tpn, rewards_n, dones_n = None, None, None
                weights = tf.constant(experience[-2])
            else:
                obses_t, actions, rewards, obses_tp1, dones, is_demos, obses_tpn, rewards_n, dones_n, weights = tuple(
                    map(tf.constant, experience[:-1]))
            td_errors, n_td_errors, loss_dq, loss_n, loss_E, loss_l2, weighted_error = model.train(
                obses_t, actions, rewards, obses_tp1, dones, is_demos, weights,
                obses_tpn, rewards_n, dones_n)
            new_priorities = np.abs(td_errors) + np.abs(
                n_td_errors
            ) + demo_prioritized_replay_eps * is_demos + prioritized_replay_eps * (
                1. - is_demos)
            replay_buffer.update_priorities(batch_idxes, new_priorities)

            # for logging
            sample_counts += batch_size
            demo_used_counts += np.sum(is_demos)

        if t % target_network_update_freq == 0:
            # Update target network periodically.
            model.update_target()

        if t % checkpoint_freq == 0:
            save_path = checkpoint_path
            ckpt = tf.train.Checkpoint(model=model)
            manager = tf.train.CheckpointManager(ckpt,
                                                 save_path,
                                                 max_to_keep=10)
            manager.save(t)
            logger.log("saved checkpoint")

        elapsed_time = timedelta(time() - start)
        if done and num_episodes > 0 and num_episodes % print_freq == 0:
            logger.record_tabular("steps", t)
            logger.record_tabular("episodes", num_episodes)
            logger.record_tabular("mean 100 episode reward",
                                  np.mean(episode_rewards))
            logger.record_tabular("max 100 episode reward",
                                  np.max(episode_rewards))
            logger.record_tabular("min 100 episode reward",
                                  np.min(episode_rewards))
            logger.record_tabular("demo sample rate",
                                  demo_used_counts / sample_counts)
            logger.record_tabular("epsilon", epsilon.numpy())
            logger.record_tabular("loss_td", np.mean(loss_dq.numpy()))
            logger.record_tabular("loss_n_td", np.mean(loss_n.numpy()))
            logger.record_tabular("loss_margin", np.mean(loss_E.numpy()))
            logger.record_tabular("loss_l2", np.mean(loss_l2.numpy()))
            logger.record_tabular("losses_all", weighted_error.numpy())
            logger.record_tabular("% time spent exploring",
                                  int(100 * exploration.value(t)))
            logger.record_tabular("pre_train", False)
            logger.record_tabular("elapsed time", elapsed_time)
            logger.dump_tabular()

    return model
コード例 #20
0
class SarsaAgent(object):
    def __init__(self, args, env, writer=None):
        """
        init the agent here
        """
        self.eval_env = copy.deepcopy(env)
        self.args = args

        self.state_dim = env.reset().shape

        self.action_dim = env.action_space.n

        self.device = torch.device("cuda" if (
            torch.cuda.is_available() and self.args.gpu) else "cpu")

        # set the same random seed in the main launcher
        random.seed(self.args.seed)
        torch.manual_seed(self.args.seed)
        np.random.seed(self.args.seed)
        if self.args.gpu:
            torch.cuda.manual_seed(self.args.seed)

        self.writer = writer

        if self.args.env_name == "grid":
            self.dqn = OneHotDQN(self.state_dim,
                                 self.action_dim).to(self.device)
            self.dqn_target = OneHotDQN(self.state_dim,
                                        self.action_dim).to(self.device)
        else:
            raise Exception("not implemented yet!")

        # copy parameters
        self.dqn_target.load_state_dict(self.dqn.state_dict())

        self.optimizer = torch.optim.Adam(self.dqn.parameters(),
                                          lr=self.args.lr)

        # for actors
        def make_env():
            def _thunk():
                env = create_env(args)
                return env

            return _thunk

        envs = [make_env() for i in range(self.args.num_envs)]
        self.envs = SubprocVecEnv(envs)

        # create epsilon and beta schedule
        # NOTE: hardcoded for now
        self.eps_decay = LinearSchedule(50000 * 200, 0.01, 1.0)
        # self.eps_decay = LinearSchedule(self.args.num_episodes * 200, 0.01, 1.0)

        self.total_steps = 0
        self.num_episodes = 0

        # for storing resutls
        self.results_dict = {
            "train_rewards": [],
            "train_constraints": [],
            "eval_rewards": [],
            "eval_constraints": [],
        }

        self.cost_indicator = "none"
        if "grid" in self.args.env_name:
            self.cost_indicator = 'pit'
        else:
            raise Exception("not implemented yet")

        self.eps = self.eps_decay.value(self.total_steps)

    def pi(self, state, greedy_eval=False):
        """
        take the action based on the current policy
        """
        with torch.no_grad():
            # to take random action or not
            if (random.random() > self.eps_decay.value(
                    self.total_steps)) or greedy_eval:
                q_value = self.dqn(state)

                # chose the max/greedy actions
                action = q_value.max(1)[1].cpu().numpy()
            else:
                action = np.random.randint(0,
                                           high=self.action_dim,
                                           size=(self.args.num_envs, ))

        return action

    def compute_n_step_returns(self, next_value, rewards, masks):
        """
        n-step SARSA returns
        """
        R = next_value
        returns = []
        for step in reversed(range(len(rewards))):
            R = rewards[step] + self.args.gamma * R * masks[step]
            returns.insert(0, R)

        return returns

    def log_episode_stats(self, ep_reward, ep_constraint):
        """
        log the stats for environment performance
        """
        # log episode statistics
        self.results_dict["train_rewards"].append(ep_reward)
        self.results_dict["train_constraints"].append(ep_constraint)
        if self.writer:
            self.writer.add_scalar("Return", ep_reward, self.num_episodes)
            self.writer.add_scalar("Constraint", ep_constraint,
                                   self.num_episodes)


        log(
            'Num Episode {}\t'.format(self.num_episodes) + \
            'E[R]: {:.2f}\t'.format(ep_reward) +\
            'E[C]: {:.2f}\t'.format(ep_constraint) +\
            'avg_train_reward: {:.2f}\t'.format(np.mean(self.results_dict["train_rewards"][-100:])) +\
            'avg_train_constraint: {:.2f}\t'.format(np.mean(self.results_dict["train_constraints"][-100:]))
            )

    def run(self):
        """
        Learning happens here
        """

        self.total_steps = 0
        self.eval_steps = 0

        # reset state and env
        # reset exploration porcess
        state = self.envs.reset()
        prev_state = state

        ep_reward = 0
        ep_len = 0
        ep_constraint = 0
        start_time = time.time()

        while self.num_episodes < self.args.num_episodes:

            values = []
            c_q_vals = []
            c_r_vals = []

            states = []
            actions = []
            mus = []
            prev_states = []

            rewards = []
            done_masks = []
            begin_masks = []
            constraints = []

            # n-step sarsa
            for _ in range(self.args.traj_len):

                state = torch.FloatTensor(state).to(self.device)

                # get the action
                action = self.pi(state)
                next_state, reward, done, info = self.envs.step(action)

                # convert it back to tensor
                action = torch.LongTensor(action).unsqueeze(1).to(self.device)

                q_values = self.dqn(state)
                Q_value = q_values.gather(1, action)

                # logging mode for only agent 1
                ep_reward += reward[0]
                ep_constraint += info[0][self.cost_indicator]

                values.append(Q_value)
                rewards.append(
                    torch.FloatTensor(reward).unsqueeze(1).to(self.device))
                done_masks.append(
                    torch.FloatTensor(1 - done).unsqueeze(1).to(self.device))
                begin_masks.append(
                    torch.FloatTensor([ci['begin'] for ci in info
                                       ]).unsqueeze(1).to(self.device))
                constraints.append(
                    torch.FloatTensor([ci[self.cost_indicator] for ci in info
                                       ]).unsqueeze(1).to(self.device))
                prev_states.append(prev_state)
                states.append(state)
                actions.append(action)

                # update states
                prev_state = state
                state = next_state

                self.total_steps += (1 * self.args.num_envs)

                # hack to reuse the same code
                # iteratively add each done episode, so that can eval at regular interval
                for _ in range(done.sum()):
                    if done[0]:
                        if self.num_episodes % self.args.log_every == 0:
                            self.log_episode_stats(ep_reward, ep_constraint)

                        # reset the rewards anyways
                        ep_reward = 0
                        ep_constraint = 0

                    self.num_episodes += 1

                    # eval the policy here after eval_every steps
                    if self.num_episodes % self.args.eval_every == 0:
                        eval_reward, eval_constraint = self.eval()
                        self.results_dict["eval_rewards"].append(eval_reward)
                        self.results_dict["eval_constraints"].append(
                            eval_constraint)

                        log('----------------------------------------')
                        log('Eval[R]: {:.2f}\t'.format(eval_reward) +\
                            'Eval[C]: {}\t'.format(eval_constraint) +\
                            'Episode: {}\t'.format(self.num_episodes) +\
                            'avg_eval_reward: {:.2f}\t'.format(np.mean(self.results_dict["eval_rewards"][-10:])) +\
                            'avg_eval_constraint: {:.2f}\t'.format(np.mean(self.results_dict["eval_constraints"][-10:]))
                            )
                        log('----------------------------------------')

                        if self.writer:
                            self.writer.add_scalar("eval_reward", eval_reward,
                                                   self.eval_steps)
                            self.writer.add_scalar("eval_constraint",
                                                   eval_constraint,
                                                   self.eval_steps)

                        self.eval_steps += 1

            # break here
            if self.num_episodes >= self.args.num_episodes:
                break

            # calculate targets here
            next_state = torch.FloatTensor(next_state).to(self.device)

            next_q_values = self.dqn(next_state)
            next_action = self.pi(next_state)
            next_action = torch.LongTensor(next_action).unsqueeze(1).to(
                self.device)

            next_q_values = next_q_values.gather(1, next_action)

            # calculate targets
            target_Q_vals = self.compute_n_step_returns(
                next_q_values, rewards, done_masks)
            Q_targets = torch.cat(target_Q_vals).detach()
            Q_values = torch.cat(values)

            # bias corrected loss
            loss = F.mse_loss(Q_values, Q_targets)

            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

        # done with all the training

        # save the models
        self.save_models()

    def eval(self):
        """
        evaluate the current policy and log it
        """
        avg_reward = []
        avg_constraint = []

        with torch.no_grad():
            for _ in range(self.args.eval_n):

                state = self.eval_env.reset()
                done = False
                ep_reward = 0
                ep_constraint = 0
                ep_len = 0
                start_time = time.time()

                while not done:

                    # convert the state to tensor
                    state_tensor = torch.FloatTensor(state).to(
                        self.device).unsqueeze(0)

                    # get the policy action
                    action = self.pi(state_tensor, greedy_eval=True)[0]

                    next_state, reward, done, info = self.eval_env.step(action)
                    ep_reward += reward
                    ep_len += 1
                    ep_constraint += info[self.cost_indicator]

                    # update the state
                    state = next_state

                avg_reward.append(ep_reward)
                avg_constraint.append(ep_constraint)

        return np.mean(avg_reward), np.mean(avg_constraint)

    def save_models(self):
        """create results dict and save"""
        models = {
            "dqn": self.dqn.state_dict(),
            "env": copy.deepcopy(self.eval_env),
        }
        torch.save(models, os.path.join(self.args.out, 'models.pt'))
        torch.save(self.results_dict,
                   os.path.join(self.args.out, 'results_dict.pt'))

    def load_models(self):
        models = torch.load(os.path.join(self.args.out, 'models.pt'))
        self.dqn.load_state_dict(models["dqn"])
        self.eval_env = models["env"]
コード例 #21
0
class DQN:
    """
    This baseline solves the problem using standard q-learning over the cross product 
    between the RM and the MDP
    """
    def __init__(self, sess, policy_name, learning_params, curriculum,
                 num_features, num_states, num_actions):
        # initialize attributes
        self.sess = sess
        self.learning_params = learning_params
        self.use_double_dqn = learning_params.use_double_dqn
        self.use_priority = learning_params.prioritized_replay
        self.policy_name = policy_name
        self.tabular_case = learning_params.tabular_case
        # This proxy adds the machine state representation to the MDP state
        self.feature_proxy = FeatureProxy(num_features, num_states,
                                          self.tabular_case)
        self.num_actions = num_actions
        self.num_features = self.feature_proxy.get_num_features()
        # create dqn network
        self._create_network(learning_params.lr, learning_params.gamma,
                             learning_params.num_neurons,
                             learning_params.num_hidden_layers)
        # create experience replay buffer
        if self.use_priority:
            self.replay_buffer = PrioritizedReplayBuffer(
                learning_params.buffer_size,
                alpha=learning_params.prioritized_replay_alpha)
            if learning_params.prioritized_replay_beta_iters is None:
                learning_params.prioritized_replay_beta_iters = curriculum.total_steps
            self.beta_schedule = LinearSchedule(
                learning_params.prioritized_replay_beta_iters,
                initial_p=learning_params.prioritized_replay_beta0,
                final_p=1.0)
        else:
            self.replay_buffer = ReplayBuffer(learning_params.buffer_size)
            self.beta_schedule = None
        # count of the number of environmental steps
        self.step = 0

    def _create_network(self, lr, gamma, num_neurons, num_hidden_layers):
        total_features = self.num_features
        total_actions = self.num_actions

        # Inputs to the network
        self.s1 = tf.placeholder(tf.float64, [None, total_features])
        self.a = tf.placeholder(tf.int32)
        self.r = tf.placeholder(tf.float64)
        self.s2 = tf.placeholder(tf.float64, [None, total_features])
        self.done = tf.placeholder(tf.float64)
        self.IS_weights = tf.placeholder(
            tf.float64)  # Importance sampling weights for prioritized ER

        # Creating target and current networks
        with tf.variable_scope(
                self.policy_name
        ):  # helps to give different names to this variables for this network
            # Defining regular and target neural nets
            if self.tabular_case:
                with tf.variable_scope("q_network") as scope:
                    q_values, _ = create_linear_regression(
                        self.s1, total_features, total_actions)
                    scope.reuse_variables()
                    q_target, _ = create_linear_regression(
                        self.s2, total_features, total_actions)
            else:
                with tf.variable_scope("q_network") as scope:
                    q_values, q_values_weights = create_net(
                        self.s1, total_features, total_actions, num_neurons,
                        num_hidden_layers)
                    if self.use_double_dqn:
                        scope.reuse_variables()
                        q2_values, _ = create_net(self.s2, total_features,
                                                  total_actions, num_neurons,
                                                  num_hidden_layers)
                with tf.variable_scope("q_target"):
                    q_target, q_target_weights = create_net(
                        self.s2, total_features, total_actions, num_neurons,
                        num_hidden_layers)
                self.update_target = create_target_updates(
                    q_values_weights, q_target_weights)

            # Q_values -> get optimal actions
            self.best_action = tf.argmax(q_values, 1)

            # Optimizing with respect to q_target
            action_mask = tf.one_hot(indices=self.a,
                                     depth=total_actions,
                                     dtype=tf.float64)
            q_current = tf.reduce_sum(tf.multiply(q_values, action_mask), 1)

            if self.use_double_dqn:
                # DDQN
                best_action_mask = tf.one_hot(indices=tf.argmax(q2_values, 1),
                                              depth=total_actions,
                                              dtype=tf.float64)
                q_max = tf.reduce_sum(tf.multiply(q_target, best_action_mask),
                                      1)
            else:
                # DQN
                q_max = tf.reduce_max(q_target, axis=1)

            # Computing td-error and loss function
            q_max = q_max * (1.0 - self.done
                             )  # dead ends must have q_max equal to zero
            q_target_value = self.r + gamma * q_max
            q_target_value = tf.stop_gradient(q_target_value)
            if self.use_priority:
                # prioritized experience replay
                self.td_error = q_current - q_target_value
                huber_loss = 0.5 * tf.square(self.td_error)  # without clipping
                loss = tf.reduce_mean(
                    self.IS_weights *
                    huber_loss)  # weights fix bias in case of using priorities
            else:
                # standard experience replay
                loss = 0.5 * tf.reduce_sum(
                    tf.square(q_current - q_target_value))

            # Defining the optimizer
            if self.tabular_case:
                optimizer = tf.train.GradientDescentOptimizer(learning_rate=lr)
            else:
                optimizer = tf.train.AdamOptimizer(learning_rate=lr)
            self.train = optimizer.minimize(loss=loss)

        # Initializing the network values
        self.sess.run(tf.variables_initializer(self._get_network_variables()))
        self.update_target_network()  # copying weights to target net

    def _train(self, s1, a, r, s2, done, IS_weights):
        if self.use_priority:
            _, td_errors = self.sess.run(
                [self.train, self.td_error], {
                    self.s1: s1,
                    self.a: a,
                    self.r: r,
                    self.s2: s2,
                    self.done: done,
                    self.IS_weights: IS_weights
                })
        else:
            self.sess.run(self.train, {
                self.s1: s1,
                self.a: a,
                self.r: r,
                self.s2: s2,
                self.done: done
            })
            td_errors = None
        return td_errors

    def get_number_features(self):
        return self.num_features

    def learn(self):
        if self.use_priority:
            experience = self.replay_buffer.sample(
                self.learning_params.batch_size,
                beta=self.beta_schedule.value(self.get_step()))
            s1, a, r, s2, done, weights, batch_idxes = experience
        else:
            s1, a, r, s2, done = self.replay_buffer.sample(
                self.learning_params.batch_size)
            weights, batch_idxes = None, None
        td_errors = self._train(s1, a, r, s2, done,
                                weights)  # returns the absolute td_error
        if self.use_priority:
            new_priorities = np.abs(
                td_errors) + self.learning_params.prioritized_replay_eps
            self.replay_buffer.update_priorities(batch_idxes, new_priorities)

    def add_experience(self, s1, u1, a, r, s2, u2, done):
        s1 = self.feature_proxy.add_state_features(s1, u1)
        s2 = self.feature_proxy.add_state_features(s2, u2)
        self.replay_buffer.add(s1, a, r, s2, done)

    def get_step(self):
        return self.step

    def add_step(self):
        self.step += 1

    def get_best_action(self, s1, u1):
        s1 = self.feature_proxy.add_state_features(s1, u1).reshape(
            (1, self.num_features))
        return self.sess.run(self.best_action, {self.s1: s1})

    def update_target_network(self):
        if not self.tabular_case:
            self.sess.run(self.update_target)

    def _get_network_variables(self):
        return tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                 scope=self.policy_name)
コード例 #22
0
class Learn:
    def __init__(self, config, env):
        # super().__init__()
        self.config = config
        self.env = env
        self.agent_ids = self.get_agent_ids()

        self.replay_memory, self.beta_schedule = self.init_replay_memory()
        self.optimizer = tf.keras.optimizers.Adam(self.config.lr)
        # Create the schedule for exploration starting from 1.
        self.exploration = LinearSchedule(schedule_timesteps=int(
            config.exploration_fraction * config.num_timesteps),
                                          initial_p=1.0,
                                          final_p=config.exploration_final_eps)
        self.eps = tf.Variable(0.0)

        self.models, self.target_models = self._init_networks()

        self.agents = [
            Agent(config, self.models[agent_id], self.target_models[agent_id],
                  agent_id) for agent_id in self.agent_ids
        ]
        self.support_z = np.linspace(-5.0, 5.0, self.config.atoms)

        self.fps_zeros = np.zeros(
            (self.config.num_agents, self.config.fp_shape))

    def _init_networks(self):
        network = Network(self.config, self.agent_ids)
        # base_model = network.init_base_model()
        # target_base_model = network.init_base_model()
        return network.build_models("learn_"), network.build_models("target_")

    def get_agent_ids(self):
        return [agent_id for agent_id in range(self.config.num_agents)]

    def init_replay_memory(self):
        """
        :return: replay_buffer, beta_schedule
        """
        if self.config.prioritized_replay:
            replay_buffer = PrioritizedReplayBuffer(
                self.config.buffer_size,
                alpha=self.config.prioritized_replay_alpha,
                n_steps=self.config.n_steps)
            if self.config.prioritized_replay_beta_iters is None:
                prioritized_replay_beta_iters = self.config.num_timesteps
            beta_schedule = LinearSchedule(
                prioritized_replay_beta_iters,
                initial_p=self.config.prioritized_replay_beta0,
                final_p=1.0)
        else:
            replay_buffer = ReplayBuffer(self.config.buffer_size,
                                         self.config.n_steps)
            beta_schedule = None
        return replay_buffer, beta_schedule

    @tf.function
    def get_actions(self, obs, stochastic=True, update_eps=-1):
        """
        :param obs: observation for all agents
        :param stochastic: True for Train phase and False for test phase
        :param update_eps: epsilon update for eps-greedy
        :return: actions, q_values of all agents as fps
        """
        deterministic_actions = []
        fps = []
        for agent_id in self.agent_ids:
            if self.config.distributionalRL:
                deterministic_action, fp = self.agents[
                    agent_id].greedy_action_dist(obs[agent_id])
            else:
                deterministic_action, fp = self.agents[agent_id].greedy_action(
                    obs[agent_id])

            deterministic_actions.append(deterministic_action)
            fps.append(fp)
        # print(f' deterministic_actions {deterministic_actions}')
        # print(f' fps {fps}')

        random_actions = tf.random.uniform(tf.stack([self.config.num_agents]),
                                           minval=0,
                                           maxval=self.config.num_actions,
                                           dtype=tf.int64)
        # print(f' random_actions {random_actions}')
        chose_random = tf.random.uniform(tf.stack([self.config.num_agents]),
                                         minval=0,
                                         maxval=1,
                                         dtype=tf.float32) < self.eps
        # print(f' chose_random {chose_random}')

        stochastic_actions = tf.where(chose_random, random_actions,
                                      deterministic_actions)
        # print(f' stochastic_actions.numpy() {stochastic_actions.numpy()}')

        if stochastic:
            actions = stochastic_actions.numpy()
        else:
            actions = deterministic_actions

        if update_eps >= 0:
            self.eps.assign(update_eps)

        # print(f' actions {actions}')
        return actions, fps

    @tf.function
    def get_max_values(self, obs):
        """
        :param obs: list observations one for each agent
        :return: best values based on Q-Learning formula maxQ(s',a')
        """
        best_q_vals = []
        for agent_id in self.agent_ids:
            if self.config.distributionalRL:
                best_q_val = self.agents[agent_id].max_value_dist(
                    obs[agent_id])
            else:
                best_q_val = self.agents[agent_id].max_value(obs[agent_id])

            best_q_vals.append(best_q_val)
        # print(f' best_q_vals.numpy() {best_q_vals.numpy()}')
        return best_q_vals

    @tf.function
    def compute_loss(self,
                     obses_t,
                     actions,
                     rewards,
                     obses_tp1,
                     dones,
                     weights,
                     fps=None):
        """
        :param obses_t: list observations one for each agent
        :param actions:
        :param rewards:
        :param dones:
        :param weights:
        :param fps:
        :return: loss and td errors tensor list one for each agent
        """
        # print(f' obses_t.shape {obses_t.shape}')
        losses = []
        td_errors = np.zeros(self.config.batch_size)
        for agent_id in self.agent_ids:
            if self.config.distributionalRL:
                loss, td_error = self.agents[agent_id].compute_loss_dist(
                    obses_t[agent_id], actions[agent_id], rewards[agent_id],
                    obses_tp1[agent_id], dones[agent_id], weights[agent_id],
                    fps[agent_id])
            else:
                loss, td_error = self.agents[agent_id].compute_loss(
                    obses_t[agent_id], actions[agent_id], rewards[agent_id],
                    obses_tp1[agent_id], dones[agent_id], weights[agent_id],
                    fps[agent_id])
            losses.append(loss)
            td_errors += td_error

        return losses, td_errors

    @tf.function()
    def train(self,
              obses_t,
              actions,
              rewards,
              obses_tp1,
              dones,
              weights,
              fps=None):
        with tf.GradientTape() as tape:
            losses, td_errors = self.compute_loss(obses_t, actions, rewards,
                                                  obses_tp1, dones, weights,
                                                  fps)
            loss = tf.reduce_sum(losses)

        # params = tape.watched_variables()
        params = []
        for agent_id in self.agent_ids:
            params += self.agents[agent_id].model.trainable_variables
        # print(f' param {params}')
        grads = tape.gradient(loss, params)

        if self.config.grad_norm_clipping:
            clipped_grads = []
            for grad in grads:
                clipped_grads.append(
                    tf.clip_by_norm(grad, self.config.grad_norm_clipping))
            grads = clipped_grads

        self.optimizer.apply_gradients(list(zip(grads, params)))

        return loss, td_errors

    def compute_n_step_return(self, mb_rewards, mb_dones, obs1):
        if self.config.gamma > 0.0:
            # print(f' last_values {last_values}')
            last_values = self.get_max_values(tf.constant(obs1))
            for agent_id, (rewards, dones, value) in enumerate(
                    zip(mb_rewards, mb_dones, last_values)):
                rewards = rewards.tolist()
                dones = dones.tolist()
                value = value.tolist()
                if dones[-1] == 0:
                    rewards = discount_with_dones(rewards + [value],
                                                  dones + [0],
                                                  self.config.gamma)[:-1]
                else:
                    rewards = discount_with_dones(rewards, dones,
                                                  self.config.gamma)

                mb_rewards[agent_id] = rewards

        return mb_rewards

    def create_fingerprints(self, fps, t):
        fps_ = []
        for agent_id in self.agent_ids:
            fp = fps[:agent_id]
            fp.extend(fps[agent_id + 1:])
            fp_a = np.concatenate((fp, [[self.exploration.value(t) * 100, t]]),
                                  axis=None)
            # print(f' fp_a.shape is {np.array(fp_a).shape}')
            fps_.append(fp_a)
        return fps_

    def learn(self):
        episode_rewards = [0.0]
        obs = self.env.reset()
        print(obs.shape)

        done = False
        tstart = time.time()
        episodes_trained = [0, False]  # [episode_number, Done flag]
        t = 0
        for ep in range(self.config.num_episodes):
            episode_length = 0
            update_eps = tf.constant(self.exploration.value(t))

            mb_obs, mb_rewards, mb_actions, mb_obs1, mb_dones, mb_fps = [], [], [], [], [], []
            while True:
                # for n_step in range(self.config.n_steps):
                t += 1
                episode_length += 1
                # print(f't is {t} -- n_steps is {n_step}')
                actions, fps = self.get_actions(tf.constant(obs),
                                                update_eps=update_eps)
                # print(f' fps.shape is {np.array(fps).shape}')
                if self.config.num_agents == 1:
                    obs1, rews, done, _ = self.env.step(actions[0])
                else:
                    obs1, rews, done, _ = self.env.step(actions)
                    fps_ = self.create_fingerprints(fps, t)
                    # print(f' fps_.shape is {np.array(fps_).shape}')
                    mb_fps.append(fps_)

                mb_obs.append(obs.copy())
                mb_actions.append(actions)
                mb_dones.append([float(done) for _ in self.agent_ids])

                # print(f'rewards is {rews}')

                if self.config.same_reward_for_agents:
                    rews = [
                        np.max(rews) for _ in range(len(rews))
                    ]  # for cooperative purpose same reward for every one

                mb_obs1.append(obs1.copy())
                mb_rewards.append(rews)

                obs = obs1
                episode_rewards[-1] += np.max(rews)
                if done or episode_length > self.config.max_episodes_length:
                    episodes_trained[0] = episodes_trained[0] + 1
                    episodes_trained[1] = True
                    episode_rewards.append(0.0)
                    obs = self.env.reset()
                    break  # to break while as episode is finished here

            mb_obs.append(obs.copy())
            mb_dones.append([float(done) for _ in self.agent_ids])

            # print(f' mb_obs.shape is {np.array(mb_obs).shape}')
            for extra_step in range(self.config.n_steps - len(mb_actions) + 1):
                # print('extra_info as 0 s added')
                mb_obs.append(obs * 0.)
                mb_actions.append(actions * 0.)
                mb_rewards.append(np.array(rews) * 0.)
                mb_fps.append(self.fps_zeros)
                mb_dones.append([float(0.) for _ in self.agent_ids])

            # print(f' mb_fps.shape is {np.array(mb_fps).shape}')

            # swap axes to have lists in shape of (num_agents, num_steps, ...)
            # print(f' mb_obs.shape is {np.array(mb_obs).shape}')
            # print(f' mb_dones.shape is {np.array(mb_dones).shape}')
            mb_obs = np.asarray(mb_obs, dtype=obs[0].dtype).swapaxes(0, 1)
            # print(f' mb_obs.shape is {np.array(mb_obs).shape}')
            mb_actions = np.asarray(mb_actions,
                                    dtype=actions[0].dtype).swapaxes(0, 1)
            mb_rewards = np.asarray(mb_rewards,
                                    dtype=np.float32).swapaxes(0, 1)
            mb_dones = np.asarray(mb_dones, dtype=np.bool).swapaxes(0, 1)
            mb_fps = np.asarray(mb_fps, dtype=np.float32).swapaxes(0, 1)
            mb_masks = mb_dones  # [:, :-1]
            mb_dones = mb_dones[:, 1:]

            # print(f' before discount mb_rewards is {mb_rewards}')
            mb_rewards = self.compute_n_step_return(mb_rewards, mb_dones, obs1)
            # print(f' after discount mb_rewards is {mb_rewards}')

            if self.config.replay_buffer is not None:
                self.replay_memory.add_episode(mb_obs, mb_actions, mb_rewards,
                                               mb_masks, mb_fps)

            if ep > self.config.learning_starts:
                if self.config.prioritized_replay:
                    experience = self.replay_memory.sample(
                        self.config.batch_size,
                        beta=self.beta_schedule.value(t))
                    (obses_t, actions, rewards, dones, fps, weights,
                     batch_idxes) = experience
                    # print(f' dones.shape {dones.shape}')
                else:
                    obses_t, actions, rewards, dones, fps = self.replay_memory.sample(
                        self.config.batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None

                # print(f'obses_t.shape {obses_t.shape}')
                #  shape format is (batch_size, agent_num, n_steps, ...)
                obses_t = obses_t.swapaxes(0, 1)
                obses_t = obses_t[:, :, 0:-1]
                obses_tp1 = obses_t[:, :, -1]
                # print(f'obses_t.shape {obses_t.shape}')
                # print(f'obses_tp1.shape {obses_tp1.shape}')
                actions = actions.swapaxes(0, 1)
                # print(f'rewards.shape {rewards.shape}')
                rewards = rewards.swapaxes(0, 1)
                # print(f'rewards.shape {rewards.shape}')
                # obses_tp1 = obses_tp1.swapaxes(0, 1)
                dones = dones.swapaxes(0, 1)
                fps = fps.swapaxes(0, 1)
                # print(f'weights.shape {weights.shape}')
                # weights = np.expand_dims(weights, 2)
                # print(f'weights.shape {weights.shape}')
                _wt = np.tile(weights, (self.config.num_agents, 1))
                # print(f'_wt.shape {_wt.shape}')
                # print(f'weights.shape {weights.shape}')
                # weights = weights.swapaxes(0, 1)  # weights shape is (1, batch_size, n_steps)
                # print(f'weights.shape {weights.shape}')
                #  shape format is (agent_num, batch_size, n_steps, ...)

                # if 'rnn' not in self.config.network:
                #     shape = obses_t.shape
                #     obses_t = np.reshape(obses_t, (shape[0], shape[1] * shape[2], *shape[3:]))
                #     # shape = obses_tp1.shape
                #     # obses_tp1 = np.reshape(obses_tp1, (shape[0], shape[1] * shape[2], *shape[3:]))
                #     shape = actions.shape
                #     actions = np.reshape(actions, (shape[0], shape[1] * shape[2], *shape[3:]))
                #     shape = rewards.shape
                #     rewards = np.reshape(rewards, (shape[0], shape[1] * shape[2], *shape[3:]))
                #     shape = dones.shape
                #     dones = np.reshape(dones, (shape[0], shape[1] * shape[2], *shape[3:]))
                #     shape = _wt.shape
                #     _wt = np.reshape(_wt, (shape[0], shape[1] * shape[2], *shape[3:]))

                # print(f'obses_t.shape {obses_t.shape}')
                #  shape format is (agent_num, batch_size * n_steps, ...)

                # print(f' obses_t.shape {obses_t.shape}')
                # print(f' obses_tp1.shape {obses_tp1.shape}')
                # print(f' actions.shape {actions.shape}')
                # print(f' rewards.shape {rewards.shape}')
                # print(f' dones.shape {dones.shape}')
                # print(f' _wt.shape {_wt.shape}')

                obses_t = tf.constant(obses_t)
                obses_tp1 = tf.constant(obses_tp1)
                actions = tf.constant(actions)
                rewards = tf.constant(rewards)
                dones = tf.constant(dones)
                fps = tf.constant(fps)
                _wt = tf.constant(_wt)

                loss, td_errors = self.train(obses_t, actions, rewards,
                                             obses_tp1, dones, _wt, fps)
                # print(f' td_errors {td_errors}')
                # td_errors = td_errors.reshape((self.config.batch_size, -1))
                # print(f' td_errors.shape {td_errors.shape}')
                # td_errors = np.sum(td_errors, 1)
                # print(f' td_errors.shape {td_errors.shape}')

                # print(f'td_errors.shape = {np.array(td_errors).shape} , batch_idxes.shape = {np.array(batch_idxes).shape}')
                if self.config.prioritized_replay:
                    new_priorities = np.abs(
                        td_errors) + self.config.prioritized_replay_eps
                    self.replay_memory.update_priorities(
                        batch_idxes, new_priorities)

                if ep % (self.config.print_freq) == 0:
                    print(f't = {t} , loss = {loss}')

            if ep > self.config.learning_starts and ep % self.config.target_network_update_freq == 0:
                # Update target network periodically.
                for agent_id in self.agent_ids:
                    self.agents[agent_id].soft_update_target()

            if ep % self.config.playing_test == 0 and ep != 0:
                # self.network.save(self.config.save_path)
                self.play_test_games()

            mean_100ep_reward = np.mean(episode_rewards[-101:-1])
            num_episodes = len(episode_rewards)

            if ep % (self.config.print_freq * 10) == 0:
                time_1000_step = time.time()
                nseconds = time_1000_step - tstart
                tstart = time_1000_step
                print(
                    f'eps {self.exploration.value(t)} -- time {t - self.config.print_freq*10} to {t} steps: {nseconds}'
                )

            # if done and self.config.print_freq is not None and len(episode_rewards) % self.config.print_freq == 0:
            if episodes_trained[
                    1] and episodes_trained[0] % self.config.print_freq == 0:
                episodes_trained[1] = False
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 past episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * self.exploration.value(t)))
                logger.dump_tabular()

    def play_test_games(self):
        num_tests = self.config.num_tests
        test_env = init_env(self.config, mode='test')

        test_rewards = np.zeros(num_tests)
        for i in range(num_tests):
            done = False
            obs = test_env.reset()
            iter = 0
            while True:
                iter += 1
                actions, _ = self.get_actions(tf.constant(obs),
                                              stochastic=False)
                # print(f'actions[0] {actions[0]}, test_done {done}, {iter}')
                if self.config.num_agents == 1:
                    obs1, rews, done, _ = test_env.step(actions[0])
                else:
                    obs1, rews, done, _ = test_env.step(actions)
                    # ToDo fingerprint computation

                obs = obs1

                if done or iter >= self.config.max_episodes_length:
                    # print(f'test {i} rewards is {rews}')
                    test_rewards[i] = np.mean(rews)
                    break

        print(
            f'test_rewards: {test_rewards} \n mean reward of {num_tests} tests: {np.mean(test_rewards)}'
        )
        test_env.close()
コード例 #23
0
def learn(env,
          num_actions=3,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16):
    torch.set_num_threads(num_cpu)
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(
            buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(
            prioritized_replay_beta_iters,
            initial_p=prioritized_replay_beta0,
            final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    exploration = LinearSchedule(
        schedule_timesteps=int(exploration_fraction * max_timesteps),
        initial_p=1.0,
        final_p=exploration_final_eps)
    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

    screen = player_relative

    obs, xy_per_marine = common.init(env, obs)

    group_id = 0
    reset = True
    dqn = DQN(num_actions, lr, cuda)

    print('\nCollecting experience...')
    checkpoint_path = 'models/deepq/checkpoint.pth.tar'
    if os.path.exists(checkpoint_path):
        dqn, saved_mean_reward = load_checkpoint(dqn, cuda, filename=checkpoint_path)
    for t in range(max_timesteps):
        # Take action and update exploration to the newest value
        # custom process for DefeatZerglingsAndBanelings
        obs, screen, player = common.select_marine(env, obs)
        # action = act(
        #     np.array(screen)[None], update_eps=update_eps, **kwargs)[0]
        action = dqn.choose_action(np.array(screen)[None])
        reset = False
        rew = 0
        new_action = None
        obs, new_action = common.marine_action(env, obs, player, action)
        army_count = env._obs[0].observation.player_common.army_count
        try:
            if army_count > 0 and _ATTACK_SCREEN in obs[0].observation["available_actions"]:
                obs = env.step(actions=new_action)
            else:
                new_action = [sc2_actions.FunctionCall(_NO_OP, [])]
                obs = env.step(actions=new_action)
        except Exception as e:
            # print(e)
            1  # Do nothing
        player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]
        new_screen = player_relative
        rew += obs[0].reward
        done = obs[0].step_type == environment.StepType.LAST
        selected = obs[0].observation["screen"][_SELECTED]
        player_y, player_x = (selected == _PLAYER_FRIENDLY).nonzero()
        if len(player_y) > 0:
            player = [int(player_x.mean()), int(player_y.mean())]
        if len(player) == 2:
            if player[0] > 32:
                new_screen = common.shift(LEFT, player[0] - 32, new_screen)
            elif player[0] < 32:
                new_screen = common.shift(RIGHT, 32 - player[0],
                                          new_screen)
            if player[1] > 32:
                new_screen = common.shift(UP, player[1] - 32, new_screen)
            elif player[1] < 32:
                new_screen = common.shift(DOWN, 32 - player[1], new_screen)
        # Store transition in the replay buffer.
        replay_buffer.add(screen, action, rew, new_screen, float(done))
        screen = new_screen
        episode_rewards[-1] += rew
        reward = episode_rewards[-1]
        if done:
            print("Episode Reward : %s" % episode_rewards[-1])
            obs = env.reset()
            player_relative = obs[0].observation["screen"][
                _PLAYER_RELATIVE]
            screen = player_relative
            group_list = common.init(env, obs)
            # Select all marines first
            # env.step(actions=[sc2_actions.FunctionCall(_SELECT_UNIT, [_SELECT_ALL])])
            episode_rewards.append(0.0)
            reset = True

        if t > learning_starts and t % train_freq == 0:
            # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
            if prioritized_replay:
                experience = replay_buffer.sample(
                    batch_size, beta=beta_schedule.value(t))
                (obses_t, actions, rewards, obses_tp1, dones, weights,
                 batch_idxes) = experience
            else:
                obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                    batch_size)
                weights, batch_idxes = np.ones_like(rewards), None

            td_errors = dqn.learn(obses_t, actions, rewards, obses_tp1, gamma, batch_size)

            if prioritized_replay:
                new_priorities = np.abs(td_errors) + prioritized_replay_eps
                replay_buffer.update_priorities(batch_idxes,
                                                new_priorities)

        if t > learning_starts and t % target_network_update_freq == 0:
            # Update target network periodically.
            dqn.update_target()

        mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
        num_episodes = len(episode_rewards)
        if done and print_freq is not None and len(
                episode_rewards) % print_freq == 0:
            logger.record_tabular("steps", t)
            logger.record_tabular("episodes", num_episodes)
            logger.record_tabular("reward", reward)
            logger.record_tabular("mean 100 episode reward",
                                  mean_100ep_reward)
            logger.record_tabular("% time spent exploring",
                                  int(100 * exploration.value(t)))
            logger.dump_tabular()

        if (checkpoint_freq is not None and t > learning_starts
                and num_episodes > 100 and t % checkpoint_freq == 0):
            if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                if print_freq is not None:
                    logger.log(
                        "Saving model due to mean reward increase: {} -> {}".format(
                            saved_mean_reward,
                            mean_100ep_reward))
                save_checkpoint({
                    'epoch': t + 1,
                    'state_dict': dqn.save_state_dict(),
                    'best_accuracy': mean_100ep_reward
                }, checkpoint_path)
                saved_mean_reward = mean_100ep_reward
コード例 #24
0
def main():
    with open('cartpole.json', encoding='utf-8') as config_file:
        config = json.load(config_file)

    env = gym.make('CartPole-v0')
    state_shape = env.observation_space.shape
    action_count = env.action_space.n

    layers = []
    for layer in config['layers']:
        layers.append(Dense(layer, activation=C.relu))

    layers.append(Dense((action_count, config['n']), activation=None))
    model_func = Sequential(layers)

    replay_buffer = ReplayBuffer(config['buffer_capacity'])

    # Fill the buffer with randomly generated samples
    state = env.reset()
    for i in range(config['buffer_capacity']):
        action = env.action_space.sample()
        post_state, reward, done, _ = env.step(action)
        replay_buffer.add(state.astype(np.float32), action, reward, post_state.astype(np.float32), float(done))

        if done:
            state = env.reset()

    reward_buffer = np.zeros(config['max_episodes'], dtype=np.float32)
    losses = []

    epsilon_schedule = LinearSchedule(1, 0.01, config['max_episodes'])
    agent = CategoricalAgent(state_shape, action_count, model_func, config['vmin'], config['vmax'], config['n'],
                             lr=config['lr'], gamma=config['gamma'])

    log_freq = config['log_freq']
    for episode in range(1, config['max_episodes'] + 1):
        state = env.reset().astype(np.float32)
        done = False

        while not done:
            action = agent.act(state, epsilon_schedule.value(episode))
            post_state, reward, done, _ = env.step(action)

            post_state = post_state.astype(np.float32)
            replay_buffer.add(state, action, reward, post_state, float(done))
            reward_buffer[episode - 1] += reward

            state = post_state

        minibatch = replay_buffer.sample(config['minibatch_size'])
        agent.train(*minibatch)
        loss = agent.trainer.previous_minibatch_loss_average
        losses.append(loss)

        if episode % config['target_update_freq'] == 0:
            agent.update_target()

        if episode % log_freq == 0:
            average = np.sum(reward_buffer[episode - log_freq: episode]) / log_freq
            print('Episode {:4d} | Loss: {:6.4f} | Reward: {}'.format(episode, loss, average))

    agent.model.save('cartpole.cdqn')

    sns.set_style('dark')
    pd.Series(reward_buffer).rolling(window=log_freq).mean().plot()
    plt.xlabel('Episode')
    plt.ylabel('Reward')
    plt.title('CartPole - Reward with Time')
    plt.show()

    plt.plot(np.arange(len(losses)), losses)
    plt.xlabel('Episode')
    plt.ylabel('Loss')
    plt.title('CartPole - Loss with Time')
    plt.show()