def test(): from common.utils.misc import print_dict model = PlainCNN() print(model) data_batch = { 'image': torch.rand(4, 3, 128, 128), 'action': torch.randint(3, [4]) } pd_dict = model(data_batch) print_dict(pd_dict) loss_dict = model.compute_losses(pd_dict, data_batch) print_dict(loss_dict)
def test(): from common.utils.misc import print_dict from torch_geometric.data import Data, Batch model = EdgeConvNet() print(model) data = Data( x=torch.rand(4, 3, 16, 16), action=torch.randint(3, [1]), pos=torch.rand(4, 4), edge_index=torch.tensor([[0, 1, 2, 3], [1, 2, 3, 0]], dtype=torch.int64), size=torch.tensor([1], dtype=torch.int64), ) data_batch = Batch.from_data_list([data]) pd_dict = model(data_batch) print_dict(pd_dict) loss_dict = model.compute_losses(pd_dict, data_batch) print_dict(loss_dict)
def test(): from common.utils.misc import print_dict model = SPACE_v1() print(model) data_batch = { 'image': torch.rand(4, 3, 64, 64), 'z_pres_p_prior': 0.1, 'z_where_loc_prior': torch.tensor([0.0, 0.0, 0.0, 0.0]), 'z_where_scale_prior': torch.tensor([0.2, 0.2, 0.2, 0.2]), 'z_what_loc_prior': 0.0, 'z_what_scale_prior': 1.0, 'z_depth_loc_prior': 0.0, 'z_depth_scale_prior': 1.0, 'fg_recon_scale_prior': 0.15, 'bg_recon_scale_prior': 0.15, } pd_dict = model(data_batch) print_dict(pd_dict) loss_dict = model.compute_losses(pd_dict, data_batch) print_dict(loss_dict)